充气深槽浮选机性能参数试验及模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对铝土矿反浮选脱硅中存在的微细粒浮选效率低的问题,本文设计了一种较适合于铝土矿微细粒反浮选的充气式深槽浮选机,并对河南铝土矿进行了反浮选试验。
     论文系统考察了浮选机工艺参数对反浮选指标的影响规律,在最佳浮选机工艺参数下考察了深槽对微细粒的浮选效果,利用正交条件试验确定了试验相关因素的影响因子。采用FLUENT软件模拟浮选槽内部流体特性,结合空气分散度测定,验证分析浮选试验结果和模拟结果。
     反浮选试验结果表明:浮选机最佳充气量为200-250L/h,最佳转速为2000-2200rpm;浮选槽深度的增加有利于铝土矿的反浮选过程。槽深由131mm增加到177mm时,在精矿铝硅比相近的前提下,精矿Al2O3回收率由73.41%增加到77.99%。利用正交条件试验的R值和F值检验可知,调整浮选机转速对浮选精矿铝硅比和回收率影响较大;深槽不但有利于提高浮选回收率,而且能很好的控制尾矿铝硅比。表明充气式深槽浮选机能提高微细粒的浮选效果。
     基于FLUENT的流体特性模拟结果表明:随着浮选机充气量的增加,空气分散度增高,但当充气量高于一定水平时,空气分散度下降。提高浮选机转速有利于槽内气体分散,增强紊流作用,转速为2000rpm时浮选槽内流体特性最好,但转速过高,槽内紊流性变差,不利于浮选。浅槽时,槽内流体波动较大,槽表面不稳定,增加槽深,形成平稳的浮选区域(泡沫区和分离区),槽表面变稳定,槽内流体特性变好,深槽比浅槽有利于浮选。深槽条件下,槽内负压变大,浮选机需要的轴扭矩增加,对比144mm槽深模拟结果,浮选机最佳充气量由250L/h增加到300L/h,最佳转速由2000rpm增加到2200rpm。空气分散度测量结果与反浮选试验结果及模拟结果都相符合。
In order to solve the problem of low efficiency for fine particles flotation in reverse flotation of bauxite ore, a deep pneumatic flotation machine was designed to improve the flotation effiency of ultra-fine particles for bauxite reverse flotation, and experiments of this flotation machine were also systemetically carried out in reverse flotation for Henan bauxite resources.
     The influences of flotation machine performance parameters on the separating efficiency were studied to get the optimal parameters. Then the effects of cell-depth on the fine particles flotation were investigated under the optimal parmeters, and the relative effect factors were also determined by orthogonal test. The fluent softawre was uesd to simulate fluid characteristics inside the cell. Combining the measurements of air dispersion, the result of the flotation experiments and simulation was verified accurately.
     The results show that the best flotation aeration rate is between 200-250L/h, the optimal rotation speed is between 2000-2200rpm.The increase of cell depth is benefitial to the reverse flotation of bauxite ores. On the premise of the similar concentrate grade, the recovery of Al2O3 in concentrate improved from 73.41% to 77.99% when the cell depth increased from 131mm to 177 mm. The vlues of R and F in the orthogonal test show that rotation speed has a great effect on the ratio of Al/Si and recovery of concentrate. Deeper cell can not only increase the flotation recovery, but also can control the ratio of Al/Si of the tailings. In a word, the deeper pneumatic cell can greatly promote the flotation efficiency of ultra fine particles.
     The FLUENT software stimulation shows that the air dispersion increases with the increase of gas flow. However, when the gas capacity goes above a certain point, the air dispersion decreases. With the rotation speed increasing, the air dispersion and the turbulence both increase. The optimal fluid characteristics happened at the rotation speed of 2000rpm. If the rotation speed goes higher continually, the turbulent effect increases, and then the flotation perfomance goes worse. The fluid is fluctuate and the cell surface is not stable for shallow cell. When the depth of cell increases, a stable flotation zone (bubble zone and separation zone) is formed, and the fluid characteristics is getting better. Hence, the deep cell represents better flotation perfomacne than the shallow one. For the deep cell, the negative pressure is getting bigger, thus the bigger axle torsion is needing. Compared to the standard cell (h=144mm), the best aeration rate is varifing from 250 L/h to 300L/h and the best rotation speed is changing from 2000rpm to 2200rpm for deep cell. The measuremnts of air dispersion accord well with the results of FLUENT stimulation, which shows the accuracy of the stimulation results.
引文
[1]张继军,付平德,谢蓓.铝土矿中主要矿物的物相分析.矿产保护与利用,2002,(5):19-21
    [2]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术.有色金属学报,2004,(5):91-97
    [3]王志光.我国铝矿业资源现状与可持续发展.中国矿业,2002,11(5):28-30
    [4]包月天.关于氧化铝生产中能耗的研究.轻金属,1985,(2):25-27
    [5]梁爱珍.国外铝土矿选矿研究概况.国外金属矿选矿,1983,(1):31-36
    [6]V. P. Kuznetsov. Flotation of lean porous hydragillite-kaolinite baux-ites. Leningrad,1972:143-145 (in Russian)
    [7]M. A. Eygeles,et al. Selective flotation of kaolinite-hydrargillite. Tsvetnye Met. Jan,1970, (1):84-86. (in Russian)
    [8]L. M. Lyushnya, et al.Beneficiation of Low-Grade Ukrainian Bauxites. Obogashch. Bednykh Run,1973:101-104 (in Russian)
    [9]S. A. Hinds, et al. Benef iciation of bauxite tailings. Light Metals,1985, (2):24-28
    [10]D. W. Fuerstenau, et al. Adsorption at mineral/water interfaces. Pr-inciples of Flotation,1982:53-71
    [11]V. V. Ishchenko, et al. Physicochemical interaction of bauxite-forming minerals with flotation reagents, Nauch.Konf. Ural. Politekh. Inst,1973, (1):10-11
    [12]梁爱珍,李庭惠.一水硬铝石型铝土矿的浮选及前景.有色金属,1981,(6):6-11
    [13]刘焦萍.铝土矿含硅矿物在选矿-拜耳法生产中的行为初探.有色金属:选矿部分,2002,(1):11-12
    [14]陈湘清,白万全,晏唯真.铝土矿浮选脱硅现状及研究进展.轻金属,2006(2):8-12
    [15]徐靖.某铝土矿反浮选工艺试验研究.有色金属(选矿部分),2004(1):8-11
    [16]V. V. Ishchenko,et al. Flotation of silica from bauxite. Izv. Vys-sh. Ucheb. Zaved. Tsvet. Metall.1974, (3):7-11
    [17]N. M. Anishchenko, et al. Interaction of cation reagents in the flotation of chamositegibbsite bauxites. Izv. Vyssh. Uchebn. Zaved. Tsvet. Metall.1972, (4):12-16
    [18]Z. S. Sillag. Enrichent of Bauxites by Selective Agglomeration. Trav. ICSOBA,1976,13:271-284
    [19]Sasaki Hiroshi. Silica Remove from Alumina-containing Ore. JP. 0747,30121, Feb.1995
    [20]郭键.一水硬铝石型铝土矿浮选脱硅工艺及其机理研究.北京:北京科技大学,2001
    [21]胡岳华,王毓华,王淀佐.铝硅矿物浮选化学与铝土矿脱硅.北京:科学出版社,2004:10-255
    [22]胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用.中国有色金属学报,2003,1(1):222-227
    [23]王毓华,胡岳华.物理因素对铝土矿反浮选的影响.中国矿业,2001,(6):37-39
    [24]王毓华.物料粒度组成对铝土矿反浮选的影响.金属矿山,2002,8:29-30,41
    [25]D. W. Fuerstenau.用剪切絮凝和载体浮选法提高细粒赤铁矿浮选回收率.国外金属矿选矿,1993,(3):1-8
    [26]何廷树,陈炳辰.细粒浮选研究动向.国外金属矿选矿,1995,32(11):1-5
    [27]杨新华.浅析微细矿粒的分选.云南冶金,2001,30(1):15-17
    [28]周丽,文书明.细粒矿物浮选分选技术现状.国外金属矿选矿,2003,(2):11-14
    [29]邱衍卿,李明礼.细粒矿物选矿技术现状.西藏科技,2008,(8):26-27
    [30]杨久流,罗家珂.微细粒矿物的分选技术.国外金属矿选矿,1995,32(5):5-11
    [31]胡岳华,冯其明.矿物资源加工技术与设备.北京:科学出版社,2006.218-219
    [32]G. Zambrana, et al.Recovery of minus ten micron cassiterite by liquid-liquid extraction. Int. J. Min. Proc,1974:1,335-345
    [33]杨久流,罗家珂,王淀佐.微细粒黑钨矿复合聚团理论研究.矿冶,1999,(4):18-22
    [34]马子龙,马力强.旋流-静态微泡浮选柱浮选磁铁矿的研究.金属矿山,2004,11:19-20,9
    [35]杜新路,胡文根.微泡浮选理论应用实践.有色矿山,2001,7:37-41
    [36]孙时元.浮选柱应用范围扩大.矿业快报,2000,(23):18
    [37]尚旭,张文彬,刘殿文等.微细粒矿物的分选集注及设备探讨.矿产保护与 利用,2007,(2):31-35
    [38]何廷树,陈炳辰.微细粒浮选设备探讨.中国矿业,1994,3(4):31-35
    [39]何廷树,陈炳辰.细粒浮选机的设计准则.金属矿山,1996,(5):38-40
    [40]赵昱东.金属矿用浮选设备的进展(续).矿业快报,2007,23(12):4-7
    [41]赵昱东.金属矿用浮选设备的进展.矿业快报,2007,11(11):7-10
    [42]刘炯天等.浮选设备评述.选煤技术,2003,(6):25-33,17
    [43]邱冠周等.近年浮选进展.金属矿山,2006(1):41-52
    [44]沈政昌等.浮选设备发展概况.有色设备,2004(6):8-11
    [45]沈政昌等.浮选设备发展概况(续二).有色设备,2005(1):5-8
    [46]沈政昌等.浮选设备发展概况(续三).有色设备,2005(2):4-7
    [47]支同祥.浮选柱研究现状与应用前景.中国煤炭,1999,25(6):56-61
    [48]刘炯天.旋流-静态微泡柱分选方法及应用之一:两种浮选设备的比较与旋流-静态微泡柱分选方法.选煤技术,2000,(9):42-44
    [49]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,1998
    [50]张国旺.超细搅拌磨机的流场模拟和应用研究:[博士学位论文].湖南:中南大学,2005
    [51]R.Mann.Gas-Liquid Stirred Vessels Mixers:Towards a Unified Theory Based on Network of Zones. Chem. Eng. Res. Des,1986,64(1):23-35
    [52]A. D. Gosman, C, Lekakou. Multidimensional Modeling of Turbulent Two-Phase Flow in Stirred Vessels, AIChE J,1992,38(12):1946-1956
    [53]A. Balcker, H. E. A. Van den Akker. A Computational Study on Dispersing Gas in a Stirred Reactar. Proceeding of 7th European Congress on Mixing, Belgium, Brugge,1991:199-208
    [54]G. L. Lane, M. P. Schwarz, G.M.Evans. Predicting Gas-Liquid Flow in a Mechanically Stirred Tank. Applied Mathematical Modeling,2002,26 (2):223-235
    [55]F. Kerdouss, A. Bannari, P. Proulx. CFD Modeling of Gas Dispersion and Bubble Size in a Double Turbine Stirred Tank. Chem. Eng. Sci,2006,61 (10):3313-3322
    [56]H. M. Hulburt, S. Katz. Some Problems in Particle Technology:A Statistical Mechanical Formulation. Chem. Eng. Sci,1964,19(8):555-574
    [57]陈中,Jan Pruss.悬浮聚合的转化率和粒子尺寸分布.石油化工,1999,28(9):595-600
    [58]M. J. Prince, H. W. Blanch. Bubble Coalescence and Break-Up in Air-Sparged Bubble Columns. AIChE J,1990,36(10):1485-1499
    [59]T. Otake, S. Tone, K. Nakao, ea tl. Coalescence and Breakup of Babble in Liquids. Chem. Eng. Sci,1977,32(4):377-383
    [60]H. Luo, H. F. Svendsen. Theoretical Model for Drop and Bubble Breakup in Tturbulent Dispersions. AIChE J,1996,42(5):1225-1233
    [61]王铁峰.气-液(浆)反应器流体力学行为的实验研究和数值模拟:[博士研究生学位论文].北京:清华大学,2004
    [62]包雨云.常温及热态气-液-固三相搅拌反应器流体力学性能研究:[博士研究生学位论文].北京:北京化工大学,2005
    [63]K. A. Pericleous, M. K. Patel. The source-sink approach in the modeling of stirred reactors. Physical Chemical Hydradynamics,1987, (9):279-297
    [64]R. J. Weetman. Automated sliding mesh CFD computations for fluid foil impellers.9th Euro.Conf. On Mixing,1997:195-202
    [65]I. Naude, C. Xuereb, J. Bertrand, et al. Direct Prediction of the Flows Induced By a Propeller in an Agitated Vessel Using an Unstructured Mesh. Can J Chem Eng,1998, (76):631-640
    [66]J. K. Syrjanen, M. T. Manninen. Detailed CFD Prediction of Flow Around a 45° Pitched Blade Turbine. In Proceedings of 10th European Conference on Mixing, Delft:Delft University of Technalogy,2000:265-272
    [67]L. Oshinowo, Z. Jaworski, K. N. Dyster, et al. Predicting the Tangential Velocity Field in Stirred Tanks Using the Multiple Reference Frame MRF. InProceedings of 10th European Conference on Mixing, Delft:Delft University of Technolagy,2000:281-288
    [68]J. Tiitinen, K. Koskinen, S. Ronkainen. Numerical Modelling of ate Outokumpu Flotation Cell. Centenary of Flotation Symposium,2005, (7):271-275
    [69]P. T. L. KOH, M. P. SCHWARZ. CFD model of a self-aerating flotation cell. Fifth International Conference on CFD in the Process Industries 2006, (11):1-6
    [70]P. T. L. KOH, M. P. SCHWARZ. CFD Modelling of Bubble-Particle Att-achments ina Flotation Cell.Centenary of Flotation Symposium,2005, (7):201-207
    [71]沈政昌.大型充气机械搅拌式浮选机研究:[博士学位论文].北京:北京科 技大学,2007
    [72]刘振,曾爱武.浮选柱内流体流动CFD模拟.化工进展,2002,(1):16-19
    [73]卢东方.铝土矿脱硅水力分选设备的研究:[硕士学位论文].湖南:中南大学,2009
    [74]黄光耀.水平充填介质浮选柱的理论与应用研究:[博士学位论文].湖南:中南大学,2009
    [75]H. W. Smith. The efect of air flow rate on the kinetics of flotation. PartⅠ. Int. J. Miner. Process,1983, (11):203-219
    [76]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究:[博士学位论文].湖南:中南大学,2001
    [77]R.H.Yoon著,戴宗福译.矿粒-气泡作用中的流体动力及表面力.国外金属矿选矿,1993,(6):5-11
    [78]曾克文,余永富.浮选矿浆紊流强度对矿物浮选的影响.金属矿山,2000,(9):17-20
    [79]Zongfu Dai, Daniel Fornasiero, John Ralstonl. Particle-Bubble Attachment in Mineral Flotation. Journal of Colloid and Interface Science, 1999, (9):70-76
    [80]H. J. Schubert. Physico-chemical Elementary Processes in Flotation. Developments in Mineral Processing 4. Elsevier science publishing company,1984
    [81]周凌锋.细粒浮选设备结构设计原则的研究.中国钨业,2005,20(2):40-43
    [82]胡岳华,冯其明.矿物资源加工技术与设备.北京:科学出版社,2006.222-223
    [83]M.C.富尔斯特瑙.浮选.北京:冶金工业出版社,1982
    [84]易峦.旋流浮选的设计以及铝土矿反浮选脱硅中的应用研究:[硕士学位论文].湖南:中南大学,2008
    [85]张悦规,谢家钊.浮选机充气程度的测定方法.有色金属(选矿部分),1984,(1):11-12
    [86]韩占忠等.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004
    [87]沈政昌.160m3浮选机浮选动力学研究.有色金属(选矿部分),2005,(5):33-35
    [88]张汉卿,于卓,高源.应用Excel表格建立正交试验自动数据处理系统.药学实践杂志,2005,(1):52-55
    [89]赵玉新.FLUENT中文全教程.湖南:国防科技大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700