水电系统优化调度模型及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国流域梯级水电站群逐渐呈规模化发展和电力市场化改革的推进,对于水电站水库优化调度的精细化建模和考虑市场竞争机制的建模将会带来更大的经济效益。在计划调度体制下,水电跨年调度方案的优化空间有待进行深度挖掘,对于提高水能资源利用效率、发挥水电在节能减排方面的优势,具有重要的现实意义。随着我国电力市场化改革道路日渐明晰,研究在市场机制下的中长期水电调度期末水位优化方案、短期水电调度的精细化建模、水电富集电力系统短期发用电一体化调度方案等,不仅具有学术价值,而且还具有良好的应用前景,将为我国发电企业参与市场竞争和充分发挥水电资源的价值提供理论分析方法。
     在以上研究背景下,本文针对计划调度模式下长期梯级水电站的调度期末预留水位优化问题、市场价格机制下的中长期水电调度期末水位优化及水电站电能分配问题、考虑现货市场价格风险的短期水电优化调度问题以及水电富集电力系统的发用电一体化调度问题,开展了以下研究工作:
     (1)在计划调度模式下,针对梯级水电站调度期末预留水位优化问题,首先,借鉴经济学中的风险价值(value at risk, VaR)概念,计算在一定置信度下的第一个调度周期可靠来水流量;然后,构建以发电收益最大化为目标的梯级水电跨年随机优化调度模型,使得第一个调度期末预留水位能够适应第二个调度周期多种来水情况,并满足相应的运行约束条件;其次,采用条件风险价值(condition value at risk, CvaR)指标衡量发电收益风险,并建立将发电收益经济性与风险性统一的双层优化模型;最后,将模型进行线性化处理,针对所建混合整数线性规划模型的解算,提出了主、子问题一体控制的最优Benders分解方法。
     (2)在市场环境下,首先,针对具有单水库的水电站的调度期末水位优化问题,研究各种场景约束条件下的水电调度期末水位优化与短期市场出清一体化决策框架,使发电商发电收益最大化。为此,构建以未来一个调度周期的水电收益最大化为上层目标、以各种场景下系统短期市场发电成本最小化为下层目标的双层优化模型,运用下层问题的KKT条件将问题转化为均衡约束数学规划问题(mathematical problems with equilibrium constraints, MPECs),运用强对偶理论将模型中的非线性项进行线性转换,从而将原模型转换为大规模混合整数线性规划问题,利用Benders分解法对模型进行求解。然后,针对水电发电商参与现货市场与双边交易市场的电能分配问题,以发电商收益最大化为目标,建立两阶段随机线性规划模型,即在第一阶段考虑购电方的需求价格弹性,优化双边交易量及交易价格,在第二阶段以调整发电量的方式进行补偿决策;同时考虑来水及现货市场电价的波动性,以CvaR对收益风险进行衡量,应用混合整数线性规划法对模型进行求解。
     (3)在市场环境下,针对短期水电优化调度问题,首先,对现货市场电价进行仿真分析计算;然后,考虑水头对发电效率的影响,将二者之间的相互关系进行非线性建模,以充分挖掘水电发电收益;最后,以发电收益最大化为目标,构建考虑现货市场价格风险的短期水电优化调度模型,并采用混合整数非线性规划与混合整数线性规划相结合的方法对模型进行求解。
     (4)针对水电富集电力系统中的发用电一体化调度问题,首先,以计划调度体制下的负荷调度为研究切入点,建立两阶段优化模型:1)在第一阶段,考虑用户用电能效,构建多目标数学模型,采用改进的NSGA-Ⅱ算法对模型进行求解,优化得到负荷调度次序以及调度目标值;2)在第二阶段,在分析负荷可调容量随机特性的基础上,提出考虑负荷调度目标完成率的决策模型。然后,在对价格响应负荷进行建模的基础上,构建考虑负荷调度的最优潮流(optimal power flow, OPF)模型,继而,将可中断负荷与价格响应负荷分别纳入系统的正、负旋转备用约束模型中,从全系统的角度,构建以社会效益最大化为目标的发用电一体化调度模型,采用原-对偶内点法对模型进行求解。
     最后,通过算例计算分析,验证了所提优化调度模型和求解方法的正确性和可行性,为调度方案的实用化奠定了理论基础。
As the large-scale basin cascade hydropower stations are developing rapidly in our country and the electricity market reform is promoting, the fine modeling of the optimal scheduling of the hydropower station reservoirs and the modeling considering the competition mechanism in the market environment will bring about more economic benefits. Under the planned scheduling mode, the optimization of the scheduling of the hydropower need to be improved so as to promote the utilization efficiency of the water resource and show the advantage of the hydropower in the the energy saving and environmental protection, which is of practical importance. As the electricity marketization reform is clear, the scheduling should be optimized combining the electricity price mechanism and the load scheduling mechanism in order to realize the objective of the maximization of the generation profits. So under the market condition, the research on the mid-long term water level optimization scheme for the hydropower scheduling, the meticulous modeling for the short-term scheduling, and the integration of the power generation and consumption scheduling for the hydropower-domain power system will not only possess academic value, but will also provide the theoretical analyzing methods for the power generation enterprises participating the market competition and giving full play to the value of hydropower resources.
     (1) Under the planned scheduling mode, based on the economic concept, the dependable inflow in the first scheduling period under the given confidence level is proposed, second, a full-scenario biennial stochastic scheduling model of cascade hydropower plant was proposed to maximize the generation profits which will adapt the optimized water level to the constraints under different scenarios in the following year. The conditional value at risk (CVaR) was applied to illustrate the risk of the generation profit, and the bi-level programming combing the economy and the risk of the generation profit was constructed. At last, as for the solution of the proposed mixed-integer linear programming model, the optimal Benders decomposition with the integrated control of the master problem and the subproblems was proposed to solve the model.
     (2) Under the market environment, an integrated decision-making framework of end-year water level optimization and short-term market clearing is proposed to acquire the maximization of the profits of the power generation companies. Within this framework, a bi-level programming with the upper objective of maximizing the hydro power profits and the lower objective of maximizing the social welfare is constructed to optimize the water end-year water level in the upper problem and the market clearing prices in the lower problem. An optimal Benders decomposition approach with the master and subproblems is proposed with the application of the KKT conditions and the Strong Duality Theory. And then, the two-stage stochastic linear programming model is constructed aiming at the maximization of the power generation companies and the energy allocation problem of the spot market and the bilateral transactions market. The energy traded in the bilateral transactions market is optimized in the first stage considering the demand price elasticity, and the power generation is adjusted in order to compensate the energy traded in the second stage. Meanwhile, considering the stochastic nature of the spot market prices and the inflow water, the CVaR is utilized to measure the profits risk. Finally, the linear programming method is utilized to solve the model.
     (3) As for the short-term scheduling problem of the hydropower under the market environment, the conversion relationship between the water head and the power generated is subtly modeled in order to fully excavate the profits of the hydropower. Second, the spot market price is simulated. The short-term hydropower dispatching model is constructed satisfying the operational constraints in order to maximize the generation profits. Meanwhile, considering the market risks, the stochastic process is reasonably modeled and the risks are measured by CVaR. At last the mixed integral linear programming is utilized to solve the model.
     (4) The load dispatching is studied first. A two-stage load management scheme is proposed:1)The yardstick competition is applied in the optima! electricity energy rationing model to realize the maximum energy efficiency. The load dispatching order is optimized and the load dispatching amount is obtained.2)The stochastic characteristics is analyzed by means of two-state Markov Process, and the decision-making model considering the rate of load dispatching accopmplishment is constructed in order to obtain the optimized stochastic amount of the load control scheme. The price-responsive load is modeled combining the optimal power flow under the market environment, and from the systematic prospective, the price-responsive load and the interruptible load are separatedly integrated into the positive spinning reserve and the negative spinning reserve. Finally the primal-dual interior method is utilized to solve the proposed integrated dispatching model of the power generation and demand side.
     Finally, the feasibility and correctness of the proposed optimal scheduling models and solving methods are proved through the calculation of the case study, which will lay theoretical foundation for the practical use of the scheduling scheme.
引文
[1]国家能源局.国家能源科技“十二五”规划[S].北京:国家能源局,2013.
    [2]中华人民共和国中央人民政府.中国的能源政策(2012)白皮书[EB/OL]. (2012-10-24). http://www.gov.cn/jrzg/2012-10/24/content_2250357. htm/.
    [3]国家发展改革委、工业和信息化部、财政部、国资委、电监会、能源局.关于印发《电力需求侧管理办法》的通知[2010]2643号[S].北京:国家发展改革委,2010.
    [4]国家能源局.2013年全国发电装机平稳较快增长、结构持续优化[EB/OL]. (2014-02-10). http://www.gov.cn/gzdt/2014-02/10/content_2582807. htm.
    [5]Thapa S., Karki R., Billion R. Utilization of the area risk concept for operational reliability evaluation of a wind-integrated power system[J]. IEEE Transactions on Power Systems,2013,28(4):4771-4779.
    [6]Xavier Py, Yao Azoumah, Regis Olives. Concentrated solar power:Current technologies, major innovative issues and applicability to West African countries[J]. Renewable and Sustainable Energy Reviews,2013,18:306-315.
    [7]陈云华,吴世勇,马光文.中国水电发展形势与展望[J].水力发电学报,2013,32(6):1-4.
    [8]Frauke Urban, Johan Nordensvard, Deepika Khatri. An analysis of China's investment in the hydropower sector in the Greater Mekong Sub-Region[J]. Environment, Development and Sustainability,2013,15(2): 301-311.
    [9]李安强,张建云,仲志余,等.长江流域上游控制性水库群联合防洪调度研究[J].水利学报,2013,44(1):59-65.
    [10]钟瑞森,郝丽娜,包安明,等.干旱内陆河灌区地下水位调控措施及其效应[J].水力发电学报,2012,31(4):65-70.
    [11]葛晓琳.水火风发电系统多周期联合优化调度模型及方法[D].北京:华北电力大学,2013.
    [12]国务院.国务院关于取消和下放一批行政审批项目等事项的决定,国发[2013]19号[S].北京:国务院,2013.
    [13]国务院.国务院批转发展改革委关于2013年深化经济体制改革重点工作意 见的通知,国发[2013]20号[S].北京:国务院,2013.
    [14]潘理中,芮孝芳.水电站水库优化调度研究的若干进展[J].水文,1999,19(6):37-40.
    [15]马光文,刘金焕,李菊银.流域梯级水电站群联合优化运行[M].北京:中国电力出版社,2008:152-154.
    [16]王旭,雷晓辉,蒋云钟,等.基于可行空间搜索遗传算法的水库调度图优化[J].水利学报,2013,44(1):26-34.
    [17]Ilich N, Simonovic S P, Amron M. The Benefits of Computerized Real-timer River Basin Management in the Malahayu Reservoir System[J]. Canadian Journal of Civil Engineering,2000,27(1):55-64.
    [18]Paredes-Arquiola J, Solera Solera A, AndreuAlvarez J. Operation Rules for Multi-reservior Systems Combining Heuristic Methods and Flow Networks[J]. Ingenieria Hidraulica Mexieo,2008,23(3):151-164.
    [19]刘攀,张文选,李天元等.考虑发电风险率的水库优化调度图编制[J].水力发电学报,2013,32(4):252-259.
    [20]程雄,武新宇,程春田,等.松江跨流域引水梯级电站群长期优化调度方法[J].水利学报,2012,43(4):493-500.
    [21]吴杰康,郭壮志.基于仿电磁学算法的梯级水电站多目标短期优化调度[J].中国电机工程学报,2010,30(31):14-21.
    [22]廖胜利.面向省级电网的跨流域水电群优化建模与应用研究[D].大连:大连理工大学,2009.
    [23]刘攀,郭生练,张越华,等.水电站机组间最优负荷分配问题的多重解研究[J].水利学报,2010,41(5):601-607.
    [24]Sasikala J., Ramaswamy M. Optimal gamma based fixed head hydrothermal scheduling using genetic algorithm[J]. Expert Systems with Applications,2010, 37(4):3352-3357.
    [25]Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP Formulations for unit commitment problems[J]. IEEE Transactions on Power Systems,2009, 24(1):105-103.
    [26]Garcia-Gonzalez J, de la Muela RMR, Santos LM, et al. Stochstic joint optimization of wind generation and pumped-storage units in an electricity market[J]. IEEE Transactions on Power Systems,2008,23(2):460-468.
    [27]Edgardo D. Castronuovo, Julio Usaola, Ricardo Bessa, et al. An integrated approach for optimal coordination of wind power and hydro pumping storage[J]. Wind Energy,2013:3-8.
    [28]王睿,张粒子,张丽娟,等.含风电场系统风电与抽水蓄能匹配容量研究[J].太阳能学报,2012,33(6):1037-1042.
    [29]HMI Pousinho, Javier Contreras, Anastasios G. Bakirtzis, et al. Risk-constrained scheduling and offering strategies of a price-maker hydro producer under uncertainty[J]. IEEE Transactions on Power Systems,2013,28(2):1879-1886.
    [30]O. Nilsson, D. Sjelvgren. Hydro unit start-up costs and their impact on the short term scheduling strategies of Swedish power producers[J]. IEEE Transactions on Power Systems,1997,12(1):38-44.
    [31]武新宇,范祥莉,程春田.基于灰色关联度与理想内点法的梯级水电站多目标优化调度方法[J].水利学报,2012,43(4):422-428.
    [32]覃晖,周建中,肖舸,等.梯级水电站多目标发电优化调度[J].水科学进展,2010,21(3):377-384.
    [33]吴杰康,郭壮志,丁国强.采用梯级水电站动态弃水策略的多目标短期优化调度[J].中国电机工程学报,2011,31(4):15-23.
    [34]缪益平,纪昌明,李崇浩,等.水电能源系统最小熵增模型及其求解[J].水力发电学报,2006,25(1):1-5.
    [35]陆文玲,吴杰康.水火电力系统短期优化调度的多目标决策评价方法[J].中国电机工程学报,2011,31(10):23-28.
    [36]郭壮志,吴杰康,孔繁镍,等.梯级水电站水库蓄能利用最大化的长期优化调度[J].中国电机工程学报,2010,30(1):20-26.
    [37]刘本希,廖胜利,程春田.库群长期优化调度的多核并行禁忌遗传算法[J].水利学报,2012,43(11):1279-1286.
    [38]程雄,李刚,程春田,等.含混合式抽水蓄能电站的梯级水电站群调度规则建模方法[J].水利学报,2013,44(4):388-397.
    [39]裴哲义.大型流域水电站水库群联合优化调度及风险[D].北京:华北电力大学,2012.
    [40]程春田,郜晓亚,武新宇,等.梯级水电站长期优化调度的细粒度并行离散微分动态规划方法[J].中国电机工程学报,2011,31(10):26-32.
    [41]曾筠,武新宇,程春田,等.跨流域水电站群长期优化调度的可变策略搜索求解算法[J].中国电机工程学报,2013,33(1):1-8.
    [42]程春田,申建建,武新宇,等.大规模复杂水电优化调度系统的实用化求解策略及方法[J].水利学报,2012,43(7):785-802.
    [43]纪昌明,周婷,王丽萍,等.水库水电站中长期隐随机优化调度综述[J].电 力系统自动化,2013,37(16):129-135.
    [44]张勇传,熊斯毅.拓溪水电站水库优化调度,优化理论在水库调度中的应用[M].湖南:湖南科学技术出版社,1985:35-55.
    [45]Yanjia Z, Xi C, Qing-Shan J, et al. Long-term scheduling for cascade hydro energy systems with annual water consumption and release constraints[J]. IEEE Transactions on Automation Science and Engineering,2010,7(4):969-976.
    [46]陈雪青,陈刚,张炜,等.电力系统长、中、短期能源调度管理系统的研究[J].中国电机工程学报,1994,14(6):41-48.
    [47]Xiaolin Ge, Lizi Zhang, Jun Shu, et al. Short-term hydropower optimal scheduling considering the operation of water time delay[J]. Electric Power Systems Research,2014,110:188-197.
    [48]葛晓琳,舒隽,张粒子.考虑检修计划的中长期水火电联合优化调度方法[J].中国电机工程学报,2012,32(13):36-43.
    [49]Conjo A J, Arroyo J M, Contreras J, et al. Self-scheduling of a hydro producer in a pool-based electricity market[J]. IEEE Transactions on Power Systems, 2002,17(4):1265-1272.
    [50]Gaute Egeland Sanda, Eirik Tandberg Olsen, Stein-Erik Fleten. Selective hedging in hydro-based electricity companies[J]. Energy Economic,2013,40:326-338.
    [51]P. L. Carpentier, M. Gendreau, F. Bastin. Long-term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm[J]. Water Resources Research,2013,49(5):2812-2827.
    [52]L. Hongling, J. Chuanwen, Z. Yan. A review on risk-constrained hydropower scheduling in deregulated power market[J]. Renew. Sust. Energy Rev.,2008, 12(5):1465-1475.
    [53]J. Reneses, E. Centeno, J. Barquin. Coordination between medium-term generation planning and short-term operation in electricity markets[J]. IEEE Transactions on Power Systems,2006,21(1):43-52.
    [54]Amjady N, Soley manpour HR. Daily hydrothermal generation scheduling by a new modified adaptive particle swarm optimization technique[J]. Electr Power Syst Res,2010,80:723-732.
    [55]Fleten S-E, Kristofersen TK. Short-term hydropower production planning by stochastic programming[J]. Comput Oper Res,2008,35:2656-2671.
    [56]H. Skjelbred. Unified modeling of short- and long-term effects in hydropower systems[A]. Proceedings of PowerTech[C]. Trondheim,2011.
    [57]Lei Wu, Mohammad Shahidehpour, Zuyi Li. GENCO's risk-constrained hydrothermal scheduling[J]. IEEE Transactions on Power Systems,2008.23(4): 1847-1857.
    [58]Sanchez de la Nieta A. A., Contreras J., Munoz J. I. Optimal coordinated wind-hydro bidding strategies in day-ahead markets[J]. IEEE Transactions on Power Systems,2013,28(2):798-809.
    [59]Oliveira ARL, Soares S, Nepomuceno L. Short-term hydroelectric scheduling combining network flow and interior point approaches[J]. Int. J. Electr. Power Energy Syst.,2005,27:91-99.
    [60]Borghetti A, D ambrosia C, Lodi A, et al. An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir[J]. IEEE Transactions on Power Systems,2008,23(3):1115-1124.
    [61]De Ladurantaye D., Gendreau M. Strategic bidding for price-taker hydroelectricity producers[J]. IEEE Transactions on Power Systems,2007,22(4): 2187-2203.
    [62]博迪,凯恩,马库斯.投资学精要[M].第8版.北京:清华大学出版社,2011:108-164.
    [63]刘嘉佳,刘俊勇,帅颖,等.计及动态一致性风险度量的水电短期优化调度[J].中国电机工程学报,2008,28(10):94-99.
    [64]张显,王锡凡,王秀丽,等.水电厂电量不确定性风险的管理[J].中国电机工程学报,2006,26(2):93-100.
    [65]张显,王锡凡,王建学.发电商长期电能分配策略研究[J].中国电机工程学报,2005,25(1):6-12.
    [66]曾勇红,刘柱,王锡凡.基于参数调整策略的水电厂长期电量优化分配[J].西安交通大学学报,2008,42(8):1010-1014.
    [67]Steffen Rebennack, Bruno Flack, Mario V. F., et al. Stochastic Hydro-thermal scheduling under emission constraints[J]. IEEE Transactions on Power Systems, 2012,27(1):58-68.
    [68]Franco P. E. C, Carvalho M. F., Soares S. A network flow model for short-term hydro-dominated hydrothermal scheduling problems[J]. IEEE Transactions on Power Systems,1994,9(2):1016-1022.
    [69]Antonio Frangioni, Claudio Gentile, Fabrizio Lacalandra. Sequential Lagrangian-MILP approaches for unit commitment problems[J]. Electrical Power and Energy Systems,2011,33:585-593.
    [70]V. Senthil Kumar, M. R. Mohan. A genetic algorithm solution to the optimal short-term hydrothermal scheduling[J]. International Journal of Electrical Power and Energy Systems,33(4):827-835.
    [71]葛晓琳,张粒子,舒隽.风火水系统长期优化调度方法[J].中国电机工程学报,2013,33(34):153-161.
    [72]吴宏宇,管晓宏,翟桥柱,等.水火电联合短期调度的混合整数规划方法[J].中国电机工程学报,2009,29(28):82-88.
    [73]Ferguson A R, Dantzig G B. The allocation of aircraft to routes-an example of linear programming under uncertain demand[J]. Management Science,1956, 3(1):45-73.
    [74]Takriti S, Birge J R, Long E. A stochastic model for the unit commitment problem[J]. IEEE Transactions on Power Systems,1996,11(3):1497-1508.
    [75]Takriti S, Krasenbrink B, Lilian S. Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem[J]. Operations Research, 2000,48(2):268-280.
    [76]Carpentier P, Gohen G, Culioli J C, et al. Stochastic optimization of unit commitment:a new decomposition framework[J]. IEEE Transactions on Power Systems,1996,11(2):1067-1073.
    [77]Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment[J]. IEEE Transactions on Power Systems,2007,22(2):800-811.
    [78]Qianfan Wang, Yongpei Guan, Jianhui Wang. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output[J]. IEEE Transactions on Power Systems,2012,27(1):206-215.
    [79]Nurnberg R, Rmisch W. A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty[J]. Optimization and Engineering,2002, 3(4):355-378.
    [80]LiT, Shahidehpour M, Li Z. Risk-constrained bidding strategy with stochastic unit commitment[J]. IEEE Transactions on Power Systems,2007,22(1): 449-458.
    [81]Li T, Shahidehpour M. Risk-Constrained generation asset arbitrage in power systems[J]. IEEE Transactions on Power Systems,2007,22(3):1330-1339.
    [82]Francois Bouffard, Francisco D. Galiana. Stochastic security for operations planning with significant wind power generation[J]. IEEE Transactions on Power Systems,2008,23(2):306-312.
    [83]Allen R., Bridgeman S. Dynamic Programming in hydropower scheduling[J]. Journal of Water Resources Planning and Management,1986, 112(3):339-353.
    [84]Monica S. Zambelli, Ivette Luna, Secundino Soares. Long-term hydropower scheduling based on deterministic nonlinear optimization and annual inflow[A].2009 IEEE Bucharest Power Tech Conference, [C]. Romania,2009: 1-8.
    [85]Javier Garcia-Gonzalez, Ernesto Parrilla, Alicia Mateo, et al. Building optimal generation bids of a hydro chain in the day-ahead electricity market under price uncertainty[A].9th International Conference on Probabilistic Methods Applied to Power Systems[C]. Stockholm,2006,6:1-7.
    [86]Guy R. Newsham, Brent G. Bowker. The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use:A review[J]. Energy Policy,2010,38(7):3289-3296.
    [87]Antonio J. Conejo, Juan M. Morales, Luis Baringo. Real-time demand response model[J]. IEEE TRANSACTIONS ON SMART GRID,2010,1(3):236-242.
    [88]C. N. Kurucz, D. Brandt, S. Sim. A linear programming model for reducing system peak through customer load control programs[J]. IEEE Transactions on Power Systems,1996,11(4):1817-1824.
    [89]刘健,王双虎,明正峰.需求侧负荷管理中最优错峰计划的生成[J].电力系统自动化,2006,30(8):47-50.
    [90]Atzeni I., Ordonez L. G., Scutari G., et al. Demand-side management via distributed energy generation and storage optimization[J]. IEEE Transactions on Power Systems,2013,4(2):866-876.
    [91]董博.电网公司优化错峰避峰计划的研究[D].北京:华北电力大学,2007.
    [92]王建学,王锡凡,张显,等.电力市场和过度期电力系统可中断负荷管理(二)[J].电力自动化设备,2004,24(6):1-4.
    [93]张钦,王锡凡,别朝红,等.电力市场下直接负荷控制决策模型[J].电力系统自动化,2010,34(9):23-27.
    [94]Kun Yuan Huang. Demand subscription services—an iterative dynamic programming for the substation suffering from capacity shortage[J]. IEEE Transactions on Power Systems,2003,18(2):947-953.
    [95]Michael R. Kleinberg, Karen Miu, Hsiao-Dong Chiang. Improving service restoration of power distribution systems through load curtailment of in-service customers[J]. IEEE Transactions on Power Systems,2011,26(3):1110-1117.
    [96]黄弦超,张粒子,Gareth TAYLOR.考虑负荷控制的配电网故障恢复[J].电力系统自动化,2010,34(17):22-26.
    [97]Yogendra Kumar, Biswarup Das, Jaydev Sharma. Multi-objective, multi-constraint service restoration of electric power distribution system with priority customers[J]. IEEE TRANSACTIONS ON POWER DELIVERY,2008, 23(1):261-269.
    [98]傅旭,王锡凡.静态安全分析中的联动切负荷算法[J].中国电机工程学报,2006,26(9):82-85.
    [99]Le Anh Tuana, Kankar Bhattacharya, Jaap Daalder. Transmission congestion management in bilateral markets:An interruptible load auction solution[J]. Electric Power Systems Research,2005,74:379-389.
    [100]王卿然,谢国辉,张粒子.含风电系统的发用电一体化调度模型[J].电力系统自动化,2011,35(5):15-18.
    [101]刘小聪,王蓓蓓,李杨,等.智能电网下计及用户侧互动的发电日前调度计划模型[J].中国电机工程学报,2013,33(1):30-38.
    [102]Chi-Keung Woo, Debra Lloyd, Asher Tishler. Electricity market reform failures: UK, Norway, Alberta and California[J]. Energy Policy,2003,31:1103-1115.
    [103]Audun Botterud, Tarjei Kristiansen, Marija D. Illic. The relationship between spot and futures prices in the Nord Pool electricity market[J]. Energy Economics, 2010,32:967-978.
    [104]Ove Wolfgang, Jamshid Aghaei, Mohammad-Iman Alizadeh. Demand response in smart electricity grids equipped with renewable energy sources:A review[J]. Renewable and Sustainable Energy Reviews,2013,18:64-72.
    [105]徐鼎甲,戴国瑞.梯级水电站的长期优化调度[J].水利学报,1989(5):43-48.
    [106]Piantadosi J, Metcalfe A V, Howlett P G. Stochastic dynamic programming (SDP) with a conditional value-at-risk (CVaR) criterion for management of storm-water[J]. Journal of Hydrology,2008,348(3/4):320-329.
    [107]原文林,曲晓宁.混沌蚁群优化算法在梯级水库发电优化调度中的应用研究[J].水力发电学报,2013,32(3):47-61.
    [108]罗云霞,周慕逊,王万良.基于基因拟子协同进化算法的水电优化调度研究[J].水力发电学报,2010,29(4):58-62.
    [109]丁晶,刘权授.随机水文学[M].北京:中国水利水电出版社,1997:35-60.
    [110]Rick Durrett. Probability:Theory and Examples[M]. Fourth edition. New York: Cambridge University Press,2010:124-137.
    [111]Naomi Miller, Andrzej Ruszczynski. Risk-averse two-stage stochastic linear programming:Modeling and decomposition[J]. Operations Research,2011: 125-138.
    [112]Taras Bodnar, Wolfgang Schmid, Tara Zabolotskyy. Minimum VaR and minimum CVaR optimal portfolios:Estimators, confidence regions, and tests[J]. Statistics and Risk Modeling with Applications in Finance and Insurance,2012,29(4): 281-314.
    [113]Xiang Li, Asgeir Tomasgard, Paul I. Barton. Nonconvex generalized decomposition for stochastic separable mixed-integer nonlinear programs[J]. Journal of Optimization Theory and Applications,2011,151(3): 425-454.
    [114]Mahyar A. Amouzegar. A global optimization method for nonlinear bilevel programming problems[J]. IEEE Transactions on Power Systems,1999,29(6): 771-777.
    [115]曾永红,王锡凡,张显.电力市场中的水电机组优化调度模型[J].电网技术,2007,31(12):18-22.
    [116]Walter Nicholson. Microeconomic Theory:Basic principles and extensions[M]. United States:Hodder Paperback,2004:334-342.
    [117]University of Washington Electrical Engineering. Power Systems Test Case Archive[EB/OL]. http://www.ee.washington.edu/research/pstca.
    [118]John W. Labadie. Optimal operation of multireservoir systems: State-of-the-art review[J]. Journal of Water Resources Planning and management,2004,130(2): 93-111.
    [119]M. V. F. Pereira. Optimal stochastic operations scheduling of large hydroelectric systems[J]. Int. J. Elect. Power Energy Syst.,1989,11:161-169.
    [120]Reliability Test System Task Force. The IEEE reliability test syttem-1996[J]. IEEE Transactions on Power Systems,1999,14(3):1010-1020.
    [121]王蓓蓓,刘小聪,李扬.面向大容量风电接入考虑用户侧互动的系统日前调度和运行模拟研究[J].中国电机工程学报,2013,33(22):35-42.
    [122]Jamshid Aghaei, Mohammad-Iman Alizadeh. Critical peak pricing with load control demand response program in unit commitment problem[J]. IET Generation, Transmission and Distribution,2013,7(7):681-690.
    [123]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986:21-25.
    [124]C. Blanco, S. Choi, D. Soronow. Energy price processes:Used for derivatives pricing and risk management[J]. Commodities Now,2001:74-80.
    [125]European Energy Exchange. Power Derivatives-EEX Power Derivatives [EB/OL]. (2013-12-20). https://www.eex.com/en/Download/Market-Data/Pow er%20Derivatives%20Market%20-%20EEX%20Power%20Derivatives.
    [126]Joel Bessis. Risk Management in Banking[M]. United Kingdom:John Wiley & Sons Ltd,2010.
    [127]岳顺民,余贻鑫.配电市场价格监管方法[J].电力系统自动化,2004,28(25):13-18.
    [128]国家发改委[2011]832号,关于印发《有序用电管理办法》的通知[S].北京:发改委,2011.
    [129]Belonogova N, Valtonen P., Tuunanen J, et al. Impact of market-based residential load control on the distribution network business[A].22nd International Conference and Exhibition on Electricity Distribution[C]. Stockholm,2013,6: 1-4.
    [130]Stroock. Probability Theory: An Analytic View[M]. Fourth edition. New York: Cambridge University Press,2011:59-110.
    [131]张晶伟,张粒子,黄弦超.基于遗传拓扑混合算法的配电网多故障抢修策略[J].电力系统自动化,2008,32(22):32-35.
    [132]Javad Lavaei, Steven H. Low. Zero duality gap in optimal power flow problem[J]. IEEE Transactions on Power Systems,2012,27(1):92-106.
    [133]Javier Garcia-Gonzalez, Ernesto Parrilla, Alicia Mateo, et al. Building optimal generation bids of a hydro chain in the day-ahead electricity market under price uncertainty[A].9th International Conference on Probabilistic Methods Applied to Power Systems[C]. Stockholm,2006,6:1-7.
    [134]General Algebraic Modeling System. GAMS on-line documentation[EB/OL]. http://www.gams.com/docs/document.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700