低强度脉冲式超声波(LIPU)对体外兔BMSCs的生物学效应及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节软骨损伤是临床常见疾患,由于其无神经支配、缺乏血液供应、软骨细胞增殖迁移能力低等组织学特点,关节软骨自身修复能力非常有限,损害后易出现不可逆的关节功能障碍,因此关节软骨损伤的治疗是运动医学研究的热点和难点之一。目前实验和临床研究证实应用软骨下骨板钻孔或微骨折等技术,可使骨髓腔内未分化的间充质细胞(BMSCs)迁移到缺损区,并增殖、分化形成类透明软骨组织,尽管远期效果不理想,但也显示了关节软骨组织在特定的条件下具有一定的修复能力。因此提高骨髓间充质干细胞向软骨细胞定向分化能力并进一步改善新生软骨的质量,可能是促进关节软骨损伤修复的有效途径之一。而近年来的研究表明低强度脉冲超声(LowIntensity Pulsed Ultrasound)能促进骨折、骨不连的愈合,其机制是加速了软骨的形成及软骨内骨化。也有动物实验研究报道,低强度脉冲超声波具有促进关节骨-软骨缺损修复的作用。然而目前关于LIPU对BMSCs等生物学效应及作用机制仍缺乏了解,临床应用缺乏足够的理论和实验依据。本课题拟通过构建BMSCs-软骨细胞的藻酸盐三维共培养体系,予以不同强度LIPU刺激,观察BMSCs的增殖能力、细胞表型及合成分泌细胞外特异性基质、细胞调控因子水平的变化,从细胞、分子生物等层面探讨LIPU对BMSCs的生物学效应及可能的作用机制。
     目的:
     构建BMSCs、软骨细胞的藻酸盐三维共培养体系,探讨软骨细胞的体外三维培养微环境对BMSCs增殖、成软骨分化的影响;对体外BMSCs-软骨细胞三维共培养体系施加LIPU刺激,观察细胞生物学改变情况,探讨LIPU对BMSCs的生物学效应及作用机制,为LIPU在临床中的进一步合理应用提供理论和实验依据。
     方法:
     1.采用机械粉碎结合酶消化法获取兔关节软骨细胞,通过体外平面培养扩增、传代,应用细胞形态学、Ⅱ型胶原免疫组化染色鉴定细胞表型。
     2.采用密度梯度离心结合贴壁筛选法从兔骨髓组织中分离、纯化BMSCs,进行体外平面培养扩增,应用免疫组化染色、流式细胞仪分析细胞表面标志物等方法对细胞表型、纯度进行鉴定。
     3.采用藻酸盐凝胶复合软骨细胞、BMSCs构建三维共培养体系,通过细胞计数、绘制生长曲线、H-E染色和Ⅱ型胶原免疫组化染色等观察藻酸盐三维凝胶中细胞生物学性状的变化。
     4.对BMSCs、软骨细胞的藻酸盐凝胶三维共培养体系予以强度为2mW/cm~2、10mW/cm~2、30mW/cm~2的LIPU刺激,观察细胞形态、细胞增殖及表型的变化;应用Ⅱ型胶原免疫组化染色法、甲苯胺蓝染色法检测细胞基质中Ⅰ型、Ⅱ型、Ⅹ型胶原及蛋白多糖蛋白合成分泌情况;应用RT-PCR法检测细胞aggrecan与Ⅰ型、Ⅱ型、Ⅹ型胶原mRNA的表达情况;应用RT-PCR、Western-bloting法检测细胞分化调控因子TGF-β1、IGF-Ⅰ、bFGF的表达情况。
     结果:
     1.原代及第1-3代软骨细胞贴壁后呈多角形,细胞形态、大小相近,融合区细胞呈典型的铺路石状,Ⅱ型胶原免疫组化染色阳性,显示其具有分泌软骨细胞特征性基质Ⅱ型胶原的能力。
     2.培养的BMSCs贴壁能力很强,细胞形态为短梭形或纺锤形,细胞形态、大小相近;采用免疫细胞化学检查发现培养的第1-3代细胞表达细胞表面抗原CD29、CD44、CD105,不表达CD14、CD34、CD45;同时,Ⅱ型、Ⅹ型胶原免疫组化染色阴性,显示所培养的细胞为未分化的BMSCs。
     3.藻酸盐凝胶具有一定的弹性和强度及良好的组织相容性,软骨细胞、BMSCs在藻酸盐凝胶中具有良好的生物学活性;免疫组化鉴定发现与软骨细胞共培养的BMSCs的Ⅱ型胶原染色阳性,而对照组为阴性,说明体外软骨细胞三维培养微环境可诱导BMSCs定向分化成软骨细胞。。
     4.LIPU不影响BMSCs的活性;可促进BMSCs增殖并合成软骨组织特异性细胞外基质,其效应与超声波的强度相关。强度为2mW/cm~2、10mW/cm~2的LIPU促进BMSCs向软骨细胞转化,增加Ⅱ型胶原、蛋白多糖合成分泌,上调TGF-β1、IGF-ⅠmRNA表达。强度为30mW/cm2的LIPU促进BMSCs向肥大软骨细胞转化,增加Ⅱ型、Ⅹ型胶原、蛋白多糖合成分泌增加,上调TGF-β1、IGF-Ⅰ、bFGF mRNA表达。
     结论:
     1.通过机械粉碎酶消化法可获取关节软骨细胞,经单层传代培养扩增可在短时间内获得足量、纯化的、具有良好生物学活性兔关节软骨细胞。
     2.通过密度梯度离心联合贴壁筛选法可分离、纯化骨髓间充质干细胞,经过体外单层培养扩增可获得成分单一、未分化的BMSCs。该方法简便有效,分离、纯化效果较理想,收获的第1至第3代BMSCs可作为后续实验研究的种子细胞。
     3.软骨细胞-藻酸盐凝胶与BMSCs-藻酸盐凝胶在体外共培养可成功诱导BMSCs分化成软骨细胞,提示除了传统添加生长因子的诱导方法以外,与同类细胞共培养的方法可能是更经济而有效的干细胞诱导分化方法。
     4.LIPU具有促进BMSCs增殖的作用,强度为30mW/cm~2LIPU的效应最为明显。LIPU刺激可促进BMSCs向软骨细胞分化。2mW/cm~2组、10mW/cm~2组可促进BMSCs增殖,诱导其分化成软骨细胞,以Ⅱ型胶原明显增加为特征;30mW/cm~2组可明显促进BMSCs增殖,诱导其分化成肥大软骨细胞,以Ⅹ型胶原明显增加为特征,长时间刺激可进一步诱导分化为成骨细胞。
     5.LIPU作用于细胞后产生独特的空泡效应、机械效应和温热效应,通过影响细胞骨架结构、细胞膜的通透性或通过第二信使系统来发挥作用,改变细胞调控因子TGF-β1、IGF-Ⅰ、bFGF等基因表达,再通过细胞自分泌、旁分泌途径诱导BMSCs定向分化成软骨细胞。2mW/cm~2组、10mW/cm~2 LIPU通过上调TGF-β1、IGF-Ⅰ的表达,促进BMSCs定向分化成软骨细胞;30mW/cm~2 LIPU通过同时上调TGF-β1、IGF-Ⅰ、bFGF的表达,促进BMSCs分化成肥大软骨细胞。
The avascularity of the articular cartilage and lack of access to the subchondral vascular supply present two of the factors that limit the ability for spontaneous healing of cartilage defects that do not penetrate the subchon -dral bone plate.This has led to the development of surgical techniques such as abrasion,microfractures and drilling of the subchondral bone plan that introduce a vascular-mediated healing response to the injured cartilage by creating access to the subchondral bone marrow vascular system.These socalled marrow stimulation techniques introduce the classic elements of vascular healing by producing a fibrin-rich clot that contains pluripotential blood and bone marrow mesenchymal stem cells(BMSCs),cytokines,and growth factors.Laboratory investigations have shown that microfracture penetration of the subchondral bone results in the formation of a hybrid fibrohyaline repair cartilage tissue.Although unable to produce predictable and durable clinical improvement,this method indicated articular cartilage had the ability for spontaneous healing.Low-intensity pulsed ultrasound accelerates bone healing via upregulation of cartilage formation and maturation phases of endchondral bone formation.In the animal model,daily low-intensity pulsed ultrasound had a significant positive effect on the healing of osteochondral defects.Although a great deal of research has been conducted on the biologic and biochemical regulation of the behavior of these cells,very little is known about the biological effects and cellular mechanisms of low-intensity pulsed ultrasound on BMSCs.
     Object:To explore the effects of micro-enviroment of chondrocyte culture in alginate bead on BMSCs differentiation.To explore the biologic effects and cellular mechanism of low-intensity pulsed ultrasound(LIPU) on BMSCs viability,proliferation,phenotype,function and gene expression of collagen typeⅡ、aggrecan、TGF-β1、IGF-Ⅰ、bFGF mRNA,which control and/or regulate BMSC to differentiate directionally towards chondrocytes.
     Method:
     1.The chondrocytes were isolated from the articular cartilage of rabbits by mechanical smash and enzyme digestion,and proliferated through monolayer culture in vitro.
     2.The bone marrow mesenchymal stem cells of rabbit were isolated from bone marrow by flowing bone marrow cavity combining with the density gradient centrifugation,purified and proliferated through monolayer culture.
     3.BMSCs and chondrocytes were co-cultured in alginate beads in vitro, whose morphology,viability and proliferation was observed.
     4.LIPU was applied to BMSCs and chondrocyte co-culture system which were divided into 3 groups randomly:2mW/cm~2,10mW/cm~2 and 30mW/cm~2.The cell morpho -logy,viability and proliferation was observed periodically.The synthesis and secretion of collagen typeⅡ,collagen typeⅠ,collagen typeⅩand glycosaminoglycans were tested through immunohistochemistry and toluidine blue method,while the gene mRNA and protein expression of aggrecan,Collagen typeⅡ,Collagen typeⅠ,Collagen typeⅩ,TGF-β1,bFGF and IGF-Ⅰwere determined through RT-PCR and Western-bloting.
     Results:
     1.A large number of seeding cells with high proliferation ability can be harvested by enzyme digestion and monolayer culture,and cells of 1st-3rd generation chondrocytes have the same morphologic features as the primary source,that can be confirmed by immunocytochemical staining of collagen typeⅡ.
     2.Purified BMSCs can be obtained through the method of density gradient acentrifugation combing monolayer culture in vitro,whose phenotype can be examined by flow cytometry.
     3.BMSC and chondrocytes cultured in alginate bead can keep good prolife -ration,and BMSCs which co-cultured with chondrocytes differentiated into chongdrocytes,that was confirmed by positive staining of typeⅡcollagen immunocytochemical stain.
     4.LIPU had significant effect in accelerating BMSCs proliferation but did not affect the cell viability.The biological effects of LIPU varied with its intensity.LIPU of 2mW/cm~2,10mW/cm~2 can induce BMSC to differentiate into chongdrocytes,that were charactered of improvement of the synthesis and secretion of collagen typeⅡand glycosaminoglycans(GAG),which might be realized by upregulated the gene mRNA expression TGF-β1 and IGF-Ⅰ.LIPU of 30mW/cm~2 can induce BMSC to differentiate into hypertrophic chongdrocytes, that were charactered of improvement of the synthesis and secretion of typeⅩcollagen,which might be realized by upregulated the gene mRNA expression of bFGF.
     Conclusion:
     1.The method of mechanical smash combining enzyme digestion and monolayer cultured in vitro can acquire pure and enough isolated rabbits chondrocytes.
     2.Purified BMSCs can be obtained through the method of density gradient acentrifugation combining monolayer culture.Cells of 1st-3rd generation with high proliferation were fit to the further experiment
     3.Alginat scaffold appears to provide the satisfactory 3-dimensional support for BMSCs and chondrocytes,and the micro-enviroment of chondrocyte culture in alginate bead can induce BMSCs differentiated into chongdrocytes without adding cytokine in vitro.
     4.LIPU had significantly positive effects on remaining BMSCs viability, promoting proliferation.The biological effects of LIPU varied with its intensity.LIPU of 2mW/cm~2,10mW/cm~2 can induce BMSC to differentiate direction -ally towards chongdrocytes in vitro,while LIPU of 30mW/cm~2 can induce BMSC to differentiate into hypertrophic chongdrocytes,wbich may differentiate into osteoblasts automatically when cultured for longer time.
     5.Low-intensity pulsed ultrasound,a form of mechanical energy as high frequency acoustic pressure waves can produce micromechanical stresses on cells,that may plays a role in the modulation of cytokine synthesis and parathyroid hormone response in mesenchymal cells and prechondrocytes,which can influence the synthesis and secretion of collagen typeⅡand collagen typeⅩ.
引文
1. Piasecki DP, Sp indler KP,Warren T, et al. Intraarticular injuries associated with anterior cruciate ligament tear: findings at ligament reconstruction in high school and recreational athletes[J]. Am J Sports ged,2003,31: 601-605.
    2. Levy AS, Lohnes,Sculley S, et al. Chondral delamination of the knee in soccer players.Am J Sports Med,1996,24:634-639.
    3. Freddie HF, Volker M. The Treatment of Focal Articular Cartilage Lesions of the Knee:Future Trends and Technologies. SPORTS MEDICINE AND ARTHROSCOPY REVIEW, 2003,11(3):202-212.
    4. Kai Mithoefer. The Microfracture Technique. Techniques in Knee Surgery 2006,5(3):140-148.
    5. Timothy MS, Douglas WJ. Articular Cartilage: Injury Pathways and Treatment Options. Sports Med Arthrosc Rev,2006 ,14(3):146-154.
    6. Steadman JR,Rodkey WG,Singleton SB,et al. Microfracture technique for full-thick Chondral defects: technique and clinical results. Operative Tech Orthop, 1997,7:294-299.
    7. Steadman JR,Briggs KK, Rodrigo JJ, et al. Outcomes ofmicrofracture for traumatic Chondral defects of the knee: average 11-year follow up. Arthroscopy, 2003,19(5):477-484.
    8. Miller BS, Steadman JR, Briggs KK, et al. Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg,2004,17(1):13-17.
    9. Moseley JB,Wray NP, Kukendall D,et al .Arthroscopic treatment of osteoarthritis of the knee: a prospective,randomized,placebo- controlled trial: results of a pilot study .Am J Sports Med,1996, 24:28-34.
    10. Rubin C, Turner AS, Bain S , et al. Low mechanical signals strengthen long bones.Nature, 2001, 412(6847):603-604.
    11. Warden SJ, Bennell KL, Forwood MR, et al. Skeletal effects of low- intensity pulsed ultrasound on the ovariectomized rodent. Ultrasound Med Biol,2001,27(7):989-998.
    12. Warden SJ, Bennell KL, Matthews B, et al. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis of the calcaneum following spinal cord injury. Bone,2001,27:431-436.
    13. Warden SJ , Bennell KL, McMeeken JM, et al. Can conventional therap -eutic ulterasound units be used to accelerate fracture repair ? Phys Ther Rev, 1999,4:117-126.
    14. Welgus HG, Jeffrey JJ , Eisen AZ. Human skin fibroblast Collagenase : assessment of activation energy and deuterium isotope effect with collagen -ase substrates. J Biol Chem ,1981, 256 : 9516-9521.
    15. Chang WH, Sun JS, Chang SP, et al. Study of the thermal effects of ultrasound stimulation on fracture healing.Bio electro magnetics ,2002,23:256-263.
    16. Nyborg WL. Biological effects of ultrasound : development of safety guidelines, general review.Ultrasound Med Biol,2001,27:301-333.
    17. Leung KS , Lee WS , Tsui HF, et al. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol,2004,30 (3):389-395.
    18. Pohl P , Rosenfeld E , Millner R. Effects of ultrasound on the steady -state transmembrane pH gradient and the permeability of acetic acid through bilayer lipid membranes.Biochim Biophys Acta, 1993, 1145 (2):279-283.
    19. Ryaby JT, Bachner EJ , Bendo JA, et al. Low intensity pulsed ultrasound increases calcium incorporation in both differentiating cartilage and bone cell cultures. Trans Orthop Res Soc,1989,14:15.
    20. Rubin C , Bolander M, Ryaby JP ,et al. The use of low-intensity pulsed ultrasound to accelerate the healing of fractures. J Bone Joint Surg , 2001,83A:259-270.
    21. Warden SJ , Bennell KL , McMeeken JM, et al. Acceleration of fresh fracture repair using the Sonic Accelerated Fracture Healing System (SAFHS): a review. Calcif Tissue Int,2000,66:157-163.
    22. Busse JW, Bhandari M, Kulkarni AV , et al. The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: A meta- analysis. CMAJ,2002,166:437-441.
    23. Sun JS,Hong RC,Chang WH,et al.In vitro effects of low intensity ultrasound stimulation on the bone cells. J Biomed Mater Res,2001,57: 449-456.
    24. ShimazakiA, Inui K, Azuma Y, et al. Low intensity pulsed ultrasound accelerates bone maturation distraction osteogenesis in rabbits. J Bone Joint Surg, 2000, 87: 1077-1082
    25. Jamie H,Vehid S, FaresM, et al. Effect of ultrasound on the growth and function of bone and periodontal cells in vitro. Ultrasound Med Biol, 2001,27:579-586.
    26. Mukai S , Ito H , Nakagawa Y, et al. Transforming growth factor -beta1 mediates the effects of low -intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol,2005,31(12):1713-1721.
    27. Parvizi J , Wu CC , Lewallen DG, et al. Low intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res,1999,17(4):488-494.
    28. Nishikori T,OchiM ,Uchio Y, et al. Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in A telocollagen gel. J Biomed Mater Res,2002,59:201-206.
    29. Stephen DC,Samantha LS,Laura SP,et al. Improved Cartilage Repair After Treatment With Low-Intensity Pulsed Ultrasound. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2001,391s:s231-s243.
    30. Lindahl A, Brittberg M, Peterson Lxartilage repair with chondrocytes: clinical and cellular aspects. Nocartis Found Symp,2003.249:175-189.
    31. Huckle J, Dootson G, McTaggart S, et al. Differentiated chondrocytes for cartilage tissue engineering. Novartis Found Symp,2003.249:103-117.
    32. Yang L, Luo ZJ, Hu yy, et al. Dedifferentiation process and rules of articular chondrocyte in vitro. Chin J Clin Rehabil,2002,6:1732-1733.
    33. Lu JH, Li Q, Liu W, et al. Age-related changes of the expression of extracellular matrix in in vitro cultured chondrocytes. Chin J Orthop Trauma,2003,5:225-228.
    34. Temenoff JS, Mikos AG. Tissue engineering for regeneration of articular. Biomaterials, 2002,21;431-440.
    35.司徒镇强,吴军正.细胞培养 第一版,西安:世界图书出版公司,2004年.
    36. Klagsbrum M. Large-scale preparation of chondrocytes. Methods Enzymol,1979,58 (8):560.
    37. Brittberg M , Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes.Clin Orthop, 1996,326:270-283.
    38. Brittberg M , Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England J Med,1994,331:889-895.
    39. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte matrix interactions. Instr course Lect,1998,47:477-486.
    40. John SB. Cell separation: methods and selected applications. Academic Press Inc,1984,3.
    41. Adolphe M , Thenet S. The concept of celluar immortality ,a myth or a reality : Example of immortalized articular chondrocytes[J]. Bull Acad Natl Med,1990,174 (1):139-144.
    42. Watt F. Effect of seeding density on stability of the dedifferentiated pheno type of pig articular chondrocytes in culture[J].J Cell Sci, 1988, 89:373.
    43. Bruckner P ,Vander R. Structure and function of cartilage collagens. Microsc Res Tech,1994, 28:378-384.
    44. Eyre D, Wu J. Collagen structure and cartilage matrix integrity. J Rheumatol,1995,22 :82-85.
    45. Helen M. The chondrocyte , architect of cartilage. Bioessays , 1995,17:1039-1048.
    46. Von der Mark K. Localization of collage types in tissues. Int Rev Connect Tissue Res ,1981, 9:265-324.
    47. Watson WC , Cremer MA, Wooley PH, Townes AS. Assessment of the potential pathogenicity of type II collagen autoantibodies in patients with rheumatoid arthritis. Arthritis Rheum,1986,29:1316-1321.
    48.Michael AC,Edward FR.The cartilage collagens:a review of their structure,organization,and role in the pathogenesis of experimental arthritis in animals and in human rheumatic disease.J Mol Med,1998,76:275-288.
    49.Ryan MC,Sandell LJ.Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type Ⅱ procollagen by alternative splicing of mRNA.J Biolchem,1990,265:10334.
    50.Sandell LJ,Morris N,Robbins JR,et al.Alternatively spliced type Ⅱ procollagen mRNAs Define distinct populations of cells during vertebral development:differential expression of the aminopropep -tide.J Cell Biol,1991,114:1307.
    51.Kulkarni AB.Transforming growth factorβ1 null mutation in mice causes excessive inflammtory response and early death.Proc Natl Acad Sci USA,1993,90:7701.
    52.庞永刚,崔彭城,陈文弦,等.人骨髓间质干细胞作为骨、软骨组织工程种子细胞的实验研究[J].细胞与分子免疫学杂志,2004,20(3):306-309.
    53.Sudeepta A,PittengerM F.Human mesenchymal stem cellsmodulate allogeneic immune cell responses[J].Blood,2005,105:1815-1822.
    54.Bianco P,RiminucciM.Bonemarrow stromal stem cells:nature,biology,and potential applications[J].Stem Cells,2001,19:180-192.
    55.BanfiA,Muraglia A,Dozin B,et al.Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells:imp lications for their use in cell therapy[J].Exp Hem ato,2000,28:707-715.
    56.Shinichi T,Atsushi S,KazukoM,et al.Retention ofmultilineage differentiation potential of mesenchymal cells during proliferation in response to FGF[J].Biochem Biophys Res Commun,2001,288:413-419.
    57.Elisabeth HJ,Kirstin JB,Alan WF.Mesenchymal stem cells:Paradoxes of passaging[J].Exp Hem ato,2004,32:414-425.
    58.Mets T,Verdonk G.In vitro aging of human bonemarrow derived stromal cells[J].Mech Ageing Dev,1981,16:81-89.
    59.Fortier LA,Nixon AJ,Williams J,et al.Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells.Am J Vet Res,1998,59(9):1182-1187.
    60.Lisignoli G,Remiddi G,Cattinil L,et al.An elevated number of differentiated ostelblast clonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure[J].Connect Tissue Res,2001,42:49-57.
    61.Qiu Q,Ducheyne P,Gao H,et al.Formtionand differentiation of three -dimensional rat marrow stromal cell culture on microcarriers in a rotating -wall vessel [J]. Tissue Eng,1998,4(1):19.
    62. Zhhar R,sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood, 1997,90(9):3471 -3481.
    63. Encina NR,Billotte WG,Hofmann MC.Immunomagnetic isolation of osteoprogen -itors from human bone marrow stroma.Lab Invest, 1999,79 (4):449-457.
    64. Ruth FP,Michael DO,Alexey VL,et al.Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with aphenotype of osteogenesis imperfecta. Porc Natl Acad Sci USA,1998, 95:1142-1147.
    65. Colter DC,Class R ,DiGirolamo CM,et al .Rapid expansion of recycling stem cells in cultures of plastic-adherentc ells from human bone marrow. Proc Nail Acad Sci USA .2000,97(7):3213-3218.
    66. Colter DC,Sekiyal ,Prockop DJ,et al .Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001,98(14):7841-7845.
    67. Conget PA,Minguell JJ.Phenotypical and functional properties of human bone ma ror w m esenchymalpr ogenitorce lls[J].JC ellPh ysiol,1999;81(i):67-73.
    68. Martin 1, Padera RF, Vunjak NG, et al.In vitro diferentiation of chick embry obone marrow stromalc ells into cartilaginous and bone-like tissue.J Orthop Res,1998;16(2):181-189.
    69. PITTENGER MF, MACKA YAM , BECK SC ,et al. Multilineage potential of adult human mesenchymal stem cells[J] Science,1999,284:143-147.
    70. Bruder SP,Jaiswa IN ,Haynesworth SE.Growthkinetics,self-renewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation[J].J Cell Biochem1997,64(2):278-294.
    71. Sotiropoulou PA, Perez SA, Salagianni M, et al.Characterization of the optimal culture conditions for clinical scale production of human mesenchymal s tem cells .Stem Cells,2006;24(2):462-471.
    72. Majumdar MK, Banks V, Peluso DP, et al.Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol,2000;185(1):98-106.
    73. Javazon EH, Colter DC, Schwarz EJ, et al.Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell -derived colonies than human marrow stromal cells. Stem Cells, 2001, 19(3):219-225.
    74. Coelho MJ, Cabral AT, Fernande MH.Human bone cell cultures in biocom- patibility tes ting. Part I:osteoblastic differentiation of serially passaged human bone marrow cells cultured in alpha-MEM and in DMEM. Biomaterials,2000,21(11): 1087-1094.
    75. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal s tem cells.Rejuvenation Res 2006;9(1):31-35.
    76.Tennant GB,Truran LN,Bailey-Wood R,et al.Control of pH in human long-term bone marrow cultures with low-glucose medium containing zwitterion buffer lengthens the period of haemopoietic activity.Br J Haematol 2000,109(4):785-787.
    77.WULF GG,JACKSON KA,GOODELL MA.Somatic stem cell plasticity:current evidence and emerging concepts.Exp Hematol,2001,29(12):1361-1370.
    78.Grontho S,Andrew CW,Shelley JH,et al.Molecular and celluar characteri -zation of highly purified stromal stem cells derived from human bone marrow[J].J Cell Sci,2003,116:1827-1835.
    79.Furness SG,McNagny K1 Beyond mere markers:functions for CD34 family of sialomucins in hematopoiesis[J].Immunol Res,2006,34(1):13-32.
    80.Reyes Botella C,Montes MJ,Vallecillo Cap ilia MF,et al.Expression of molecules involved in antigen presentation and T cell activation(HLA-DR,CD80,CD86,CD44 and CD54) by cultured human osteoblasts[J].J Periodontol,2000,71(4):614-617.
    81.BARRY F P.Mesenchynal stem cell therapy in joint disease[J].Novartis Found Symp,2003,249:86-96.
    82.Tsuchiya K,Chen G,Ushida T,et al.The effect of co-culture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro[J].Mater Sci Eng,2004,24:391-396.
    83.Zhou GD,Miao CL,Wang XL,et al.Experimental study of in vitro chondroge -nesis by co-culture of bone marrow stromal cells and chondrocytes[J].Nat Med J China,2004,84:1716-1720.
    84.Sitinger M,Bujia J,Roter N,et al.Tissue engineering and autologous transplant-formation:Practical apporaches with ersorbable biomaterials and new cell culture techniques.J Biomaterials,1996,17:237-245.
    85.Diduch DR,Jordan LC,Mierisch CM,et al.Marrow stromal cells embedded in alginate for repair of osteochondral defects[J].Arthroscopy,2000,16(6):571-577.
    86.Marijnissen WJ,Vanosch GJ,Aigner J,et al.Alginate as a chondrocyte -delivery substance in combination with a non-woven scaffold for cartilage tissue engineering.Biomaterials,2002,23:1511-1517.
    87.何清义,李强,罗飞,等.三维立体培养法诱导去分化软骨细胞Ⅱ型胶原的重新表达.中华实验外科杂志,2007,24(3):307-309.
    88.Schulze M,Kuettner KE,Cole AA.Adult human chondrocytes in alginate culture.Preservation of the phenotype for further use in transplantation models[J].Orthopade,2000,29(2):100-106.
    89.Chalain T,Phillips JH,Hinek A.Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels contain-ing alginate,collagen,and kappaelastin[J]. Biomed Mater Res,1999,44(3):280-288.
    90.Marler J,Guha A,Rowley J,et al.Soft tissue augmentation with injectable alginate and syngeneic fibroblasts.Plast Reconstr Surg,2000,105(6):2049-2058.
    91.Schulze M,Kuettner KE,Cole AA.Adult human chondrocytes in alginate culture[J].World Urol,2000,18(1):2-9.
    92.Mandl EW,Vanderveen SW,Verhaar JA,et al.Multiplication of human chondrocytes with low seeding densing densities accelerates cell yield without losing redifferentiation capacity.Tissue Eng,2004,10:109-118.
    93.Van Osch GJ,Vander Veen SW,VerwoerdVerhoef HL.In vitro redifferen -tiation of culture expanded rabbit and human auricular chondrocytes for cartilage reconstruction[J].Plast Reconstr Surg,2001,107(2):433-440.
    94.Wilke A,Orth J,Lomb M,et al.Biocompatibility analysis of different biomaterials in human bone marrow cell cultures[J].Biomed Mater Res,1998,40(2):301-306.
    95.孙磊,胡蕴玉,窦榆生.等.骨髓基质细胞在藻酸盐凝胶中的生物学行为.中国矫形外科杂志,2002,9(2):158-160.
    96.Makay AM,Beck SC,Murphy JM,et al.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow[J].Tissue Eng,1998,4(4):415-428.
    97.Maniatopiulos C,Sidek J,Melcher AH.Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats.Cell Tissue Res,1998,254(2):317-330.
    98.Pedrozo HA,Schwartz Z,Gomez R,et al.Growth plate chondrocytes store latent transforming growth factor(TGF)-beta 1 in their matrix through latent TGF-beta binding protein-1[J].J Cell Phys,2002,177:343-354.
    99.Tai G,Polak JM,Bishop AE,et al.Differentiation of osteoblasts from murine embryonic stem cells by overexpression of the transcriptional factor osterix[J].Tissue Eng,2004,10(9-10):1456-1466.
    100.Cao L,Lee V,Adams ME,et al.Beta-integrin-collagen interaction reduces chondrocyte apoptosis[J].Matrix Biol,2003,18:343-355.
    101.Kurtis MS,Tu BP,Gaya OA,et al.Mechanisms of chondrocyte adhesion to cartilage:role of betaintegrins,CD44,and annexin V[J].J Orthop Res,2001,19:l122-1130.
    102.NORIYUKI T,MASAAKI K,JIRO S.Accelerates Maturation of Callus in Patients Treated with Opening-Wedge High Tibial Osteotomy by Hemicallotasis.THE JOURNAL OF BONE & JOINT SURGERY[A],2004,86(11):2399-2405.
    103.MICHAEL EH,ALEXANDROS NM,CHARALAMPOS GZ,et al.Low-Intensity Transosseous Ultrasound Accelerates Osteotomy Healing in a Sheep Fracture Model. THE JOURNAL OF BONE & JOINT SURGERY[A],2004,86 (10):2275-2282.
    104. Malaviya P, Nerem RM. Fluid-induced shear stress stimulates chondro -cyte proliferation partially mediated via TGF-131.Tissue Eng 2002, 8:581-590.
    105. Parvizi J, Parpura V, Greenleaf JF, et al. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. Journal of Orthopaedic Research.2002,20(1):51-57.
    106. Massimo S,Philippe P,Frederic DC. Cartilage and Osteoarthritis. France,Humana Press Inc,2004.
    107. Friedman MJ, Berasi CC, Fox JM et al.Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clin Orthop,1984,182-200.
    108. Rand, JA. Role of arthroscopy in osteoarthritis of the knee.Arthro -scopy,1991,7:358.
    109. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte imp lantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am,2004,86:455-464.
    110. Shapiro F, Koide S, Glimcher MJ . Cell origin and differentiation in t he repair of full-thickness defect s of articular cartilage. J Bone Joint Surg (Am),1993,75:532-553.
    111. Wiltink A, Nijweide PJ, Oosterbaan WA, et al. Effect of therapeutic ultrasound on endochondral ossification.Ultrasound Med Biol. 1995,21:121-127.
    112. Barnett SB, Rott HD, TerHaar GR, et al. The sensitivity of biological tissue to ultrasound. Ultrasound Med Biol 1997;23:805-812.
    113. P.A.Nolte, J. Klein-Nulend, G.H.R. Alberts, et al. Low-intensity ultrasound stimulates endochondral ossification in vitro. Journal of Orthop. Res. 2001;19:301-307.
    114. Ryaby JT, Mathew J, Duarte-Alves P. Low-intensity pulsed ultrasound affects adenylate cyclase and TGF-β synthesis in osteoblastic cells. Trans Orthop. Res. Soc. 1992; 17:590.
    115. Zi-Jun Zhang, James Huckle, Clair A. Francomano, et al. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound in Med & Biol 2003;29(11):1645-1651.
    116. Javad Parvizi, Chi-Chuan Wu, David G. Lewallen, et al. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. Journal of Orthop. Res. 1999; 17: 488-494.
    117. Warden SJ, Bennell KL, McMeeken JM, et al. Acceleration of fresh fracture repaire using the sonic accelerated fracture healing system(SAFHS):A review. Calcif Tissue Int 2000;66:157-163.
    118. Huang M, Ding H, Chai C, et al. Effect of sonication on articular cartilage in experimental osteoarthritis. J. Rheumatol.1997;24:1978-1984
    119. SHOGO MUKAI, HIROMU ITO, YASCAKI NAKAGAWA, et al. Transforming Growth Factor-61 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound in Med.&Biol.2005;31(12):1712-1721.
    120. Doan N, Reher P,Meghji S, et al. In vitro effects of therapeutic ultrasound on cell p roliferation, p rotein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Surg, 1999, 57:409-419.
    121. Hill GE , Fenwick S , Matthews BJ ,et al. The effect of low-intensity pulsed ultrasound on repair of epithelial cell monolayers in vitro. Ultrasound Med Biol,2005,31(12):1700-1706.
    122. Miyamoto K, An HS , Sah RL ,et al. Exposure to pulsed low intensity ultrasound stimulates extracellular matrix metabolism of bovine intervertebral disc cells cultured in alginate beads. Spine,2005,30 (21):2398-2405.
    123. Poole A.R., Kojima, T. Yasuda, et al. Composition and structure of articular cartilage, a template for tissue repair. Clin Orthop. 2001; 391 (Suppl):26-33.
    124. T.M. Schmid, D.K. Bonen, L. Luchene et al. Late events in chondrocyte differentiation: hypertrophy, type X collagen synthesis and matrix calcification. In Vivo 1991; 5: 533-540.
    125. Han CW, Adachi N, Usas A, et al. Chondrocyte apoptosis in the regenerated articular cartilage after chondrocyte transplantation in rabbit knee. Proceedings of the 48th Annual Meeting of the Orthopaedic Research Society, Dallas. 2002.
    126. Benya PD, Shaffer SD. Dedifferentiation chondrocytes reexpress the differentiated collagen phenotype when culture in agarose gels [J]. Cell 1982;30:215-224.
    127. Abbott, J. and Holtzer, H. The loss of phenotypic traits by differentiated cells. III.The reversible behavior of chondrocytes in primary cultures. J. Cell Biol. 1966; 28,473-487.
    128. Benya, P. D., Padilla, S. R. and Nimni, M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell (Cambridge, Mass.) 1978;15: 1313-1321
    129. Leung KS, Cheung WH, Zhang C,et al. Low Intensity Pulsed Ultrasound Stimulates Osteogenic Activity of Human Periosteal Cells. Clin Orthop ,2004 ,418,253-259.
    130. Ikeda K,Takayama T,Suzuki N,et al.Effects of low intensity pulsed ultrasound on the differentiation of C2C12 cells.Life Sci,2006,79 (20): 1956-1943.
    131. Schumann D , Kujat R , Zellner J ,et al. Treatment of human mesenchy mal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro.Biorheology , 2006, 43(3-4):431-443.
    132. Zaucke F, Dinser R, Maurer P. Cartilage Oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primarychondrocytes [J]. Biochem. 2001 (15);358(Pt 1):17-24.
    133.Van Osch GJ,Van der Veen SW,Verwoerd Verhoef HL.In vitro redifferentiation of cultureexpanded rabbit and human auricular chondrocytes for cartilage reconstruction[J].Plast Reconstr Surg 2001;107(2):433-440.
    134.Zhang ZJ,Huckle J,Francomano CA,et al.The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation:an explant study.Ultrasound Med Biol.2002;28(11-12):1547-1553.
    135.Yang K-H,Parvizi J,Wang S-J,et al.Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model.J Orthop Res1996;14:802-809.
    136.Sato W.Matsushita T.Nakamura K.Acceleration of increase in bone mineral content by low-intensity ultrasound energy in leg lengthening.Journal of Ultrasound in Medicine.1999;18(10):699-702.
    137.Valcourt U,Gouttenoire J,Moustakas A,et al.Functions of Transforming Growth Factor-β Family Type I Receptors and Smad Proteins in the Hypertrophic Maturation and Osteoblastic Differen -tiation of Chondrocytes.J Biol Chem,2002,277:45-58.
    138.WorsterAA,Nixon AJ,Brower2Toland BD,et al.Effect of transforming growth factor2β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells[J].Am J Vet Res,2000,61(9):1003-1010.
    139.Fukumoto T,Sperling JW,SanyalA,et al.Combined effects of insulin-like growth factor-1 and transforming growth factor-betal on periosteal mesenchymal cells during chondrogenesis in vitro [J].Osteoarthritis Cartilage,2003,11(1):55-64.
    140.Baddoo M,Hill K,Wilkinson R,et al.Characterization of mesenchymal stemcells isolation from murine bone marrowby negative selection[J].J Cell Biochem,2003,89(6):1235-1249.
    141.Tsutsumi S,Shimazu A,Miyazakik,et al.Retention of multineage differ-enttiation potential ofmesenchymal cells during proliferation in response to FGF.B iochem B iophys Res Comm un,2001,288(2):413-419.
    142.Jay RL,Aaron D,Thomas AE.The role of growth factors in the repaire of bone[J].J Bone Joint Surg Am,2002,84(6):1032-1034.
    143.吕昌伟,胡蕴玉,白建萍,等.周期性流体应力刺激对组织工程软骨分化影响的实验研究[J].骨与关节损伤杂志,2003,18(9):620-624.
    144.王刚,刘一,单玉兴,等.不同应力环境对兔骨髓间充质干细胞修复关节软骨缺损的影响[J].中国修复重建外科杂志,2004,18(2):16-19.
    1. Kessler T,Winkler H ,Weiss C ,et al. Ultrasound diagnosis of the elbow joint in fracture of the head of the radius.Orthopade (Germany),2002 ,31(3):268-70.
    2. Munk B, Bolvig L,Kroner K, et al. Ultrasound for diagnosis of scaphoid fractures. J Hand Surg [Br](Scotland),2000,25(4):369-371.
    3. Campbell SE,Adler R,Sofka CM. Ultrasound of muscle abnormalities. Ultrasound Q (United States),2005,21(2):87-94
    4. Rubin C,Bolander M, Ryaby JP,et al. The use of low-intensity pulsed ultrasound to accelerate the healing of fractures. J Bone Joint Surg, 2001,83A:259-270.
    5. Warden SJ , Bennell KL , McMeeken JM, et al. Accelerationof fresh fracture repair using the Sonic Accelerated Fracture Healing System ( SAFHS): a review. Calcif Tissue Int ,2000,66:157-163.
    6. Busse JW,Bhandari M,Kulkarni AV,et al.The effect of low-intensity pulsed ultrasound therapy on time to fracture healing:A meta- analysis.CMAJ,2002, 166:437-441.
    7. Pilla AA, Mont MA, Nasser PR, et al. Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma ,1990,4:246-253.
    8. Azuma Y, Ito M, Harada Y, et al. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res,2001,16:671-680.
    9. Chang WH,Sun JS, Chang SP,et al. Study of the thermal effects of ultrasound stimulation on fracture healing. Bioelectromagnetics,2002,23:256-263.
    10. Gebauer GP , Lin SS , Beam HA , et al. Low-intensity pulsed ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation.J Orthop Res,2002, 20:587-592.
    11. Heckman JD , Ryaby JP , McCabe J , et al. Acceleration of tibial fracture-healing by non-invasive , low-intensity pulsed ultrasound. J Bone Joint Surg Am,1994,76(1):26-34.
    12. Kristiansen TIC, Ryaby JP , McCabe J , et al. Accelerated healing of distal radius fractures with the use of specific, low-intensity ultrasound. J Bone Joint Surg Am,1997 ,79(7):961-973.
    13. Mayr E , Rutzki MM, Rutzki M, et al. Does low intensity ,pulsed ultrasound speed healing of scaphoid fractures ? Handchir Mikrochir Plast Chir ,2000,32(2): 115-122.
    14. Emami A , Petren- Mallmin M, Larsson S. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma ,1999,13(4):252-257.
    15. Leung KS , Lee WS , Tsui HF , et al. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol, 2004 ,30 (3):389-395.
    16. Pigozzi F , Moneta MR , Giombini A , et al. Low intensity pulsed ultrasound in the conservative treatment of pseudoarthrosis. J Sports Med Phys Fitness, 2004 ,44 :173-178.
    17. Chan CW, Qin L , Lee KM, et al. Low intensity pulsed ultrasound accelerated bone remodeling during consolidation stage of distraction osteogenesis. J Orthop Res , 2006 ,24(2):263-270.
    18. Erdogan O , Esen E , Ustun Y, et al. Effects of low-intensity pulsed ultrasound on healing of mandibular fractures : an experimental study in rabbits. J Oral Maxillofac Surg ,2006 ,64(2):180-188.
    19. Jia XL , Chen WZ, Zhou K, et al. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Chin J Traumatol, 2005 ,8(3) :175 -178.
    20. M. Huang, R. Yang, H. Ding and C. Chai, Ultrasound effect on level of stress protein and arthritic histology in experimental arthritis. Arch Phys Med Rehab. 1999;80:551-556.
    21. S.D. Cook, S.L. Salkeld, L.S. Popich-Patron et al., Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop 391 Suppl. 2001, S231-S243.
    22. Takakura Y, Matsui N , Yoshiya S , et al. Low - intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats. J Ultrasound Med , 2002 ,21(3) :283-288.
    23. Karnes JL , Burton HW. Continuous therapeutic ultrasound accelerates repair of contraction -induced skeletal muscle damage in rats. Arch Phys Med Rehabil, 2002 ,83(1):1-4.
    24. Enwemeka CS , Rodriguez O , Mendosa S. The biomechanical effects of low- intensity ultrasound on healing tendons. Ultrasound Med Biol ,1990,16(8):801- 807.
    25. Yeung CK,Guo X,Ng YF. Pulsed ultrasound treatment accelerates the repair of Achilles tendon rupture in rats.J Orthop Res, 2006,24(2):193-201.
    26. Lu H , Qin L , Fok P , et al. Low - Intensity pulsed ultrasound accelerates bone - tendon junction healing : a partial patellectomy model in rabbits. Am J Sports Med , 2006 ,34(8) :1287-1296.
    27. Qin L, Fok P,Lu H, et al. Low intensity pulsed ultrasound increases the matrix hardness of the healing tissues at bone-tendon insertion-a partial patellectomy model in rabbits. Clin Biomech (Bristol, Avon), 2006,21(4):387-394.
    28. Sun JS , Hong RC , Chang WH ,et al. In vitro effects of low - intensity ultrasound stimulation on the bone cells. J Biomed Mater Res ,2001,57(3):449-456.
    29. Warden SJ , Favaloro JM, Bennell KL ,et al. Low - intensity pulsed ultrasound stimulates a bone -forming response in UMR -106 cells. Biochem Biophys Res Commun ,2001, 286 (3) :443-450.
    30. Sena K, Leven RM, Mazhar K,et al. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005;31(5):703-708.
    31. Leung KS,Cheung WH, Zhang C,et al.Low Intensity Pulsed Ultrasound Stimulates Osteogenic Activity of Human Periosteal Cells.Clin Orthop ,2004,418,253-259.
    32. Hill GE, Fenwick S,Matthews BJ,et al .The effect of low-intensity pulsed ultrasound on repair of epithelial cell monolayers in vitro.Ultrasound Med Biol ,2005 ,31(12):1701-1706.
    33. Miyamoto K, An HS , Sah RL ,et al . Exposure to pulsed low intensity ultrasound stimulates extracellular matrix metabolism of bovine intervertebral disc cells cultured in alginate beads. Spine ,2005 ,30 (21) :2398-2405.
    34. Reher P , Doan N , Bradnock B ,et al . Therapeutic ultrasound for osteoradionecrosis : an in vitro comparison between 1 MHz and 45 kHz machines.Eur J Cancer ,1998 ,34 (12): 1962-1968.
    35. Zhang ZJ , Huckle J , Francomano CA ,et al. The influence of pulsed low -intensity ultrasound on matrix production of chondrocytes at different stages of differentiation : an explant study. Ultrasound Med Biol,2002,28(11-12):1547-1553.
    36. Zhang ZJ , Huckle J , Francomano CA ,et al . The effects of pulsed low -intensity ultrasound on chondrocyte viability , proliferation , gene expression and matrix production. Ultrasound Med Biol ,2003 ,29 (11):1645-1651.
    37. Schumann D , Kujat R , Zellner J ,et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro.Biorheology ,2006 ,43(3-4):431-443.
    38. Li JK, Chang WH , Lin JC ,et al . Cytokine release fromosteoblasts in response to ultrasound stimulation. Biomaterials , 2003, 24( 13): 2379-2385.
    39. Reher P , Doan N , Bradnock B ,et al. Effect of ultrasound on the production of IL - 8 , basic FGF and VEGF. Cytokine , 1999 ,11 (6) :416 -423.
    40. Wang FS , Kuo YR , Wang CJ ,et al . Nitric oxide mediates ultrasound -induced hypoxia -inducible factor -1 alpha activation and vascular endothelial growth factor - A expression in human osteoblasts. Bone ,2004 ,35(1) :114 -123.
    41. Ikeda K, Takayama T , Suzuki N ,et al . Effects of low intensity pulsed ultrasound on the differentiation of C2C12 cells.Life Sci ,2006 ,79(20):1956-1943.
    42. Hadjiargyrou M, McLeod K, Ryaby JP , et al. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res , 1998 ,355 :S216-229.
    43. Cook SD , Salkeld SL , Popich - Patron LS , et al. Improved cartilage repair after treatment with low - intensity pulsed ultrasound. Clin Orthop Relat Res , 2001 ,391 :S231-243.
    44. Aynaci O , Onder C , Piskin A , et al.The effect of ultrasound on the healing of muscle-pediculated bone graft in spinal fusion.Spine,2002,27(14):1531-1535.
    45. Rubin C , Turner AS , Bain S , et al. Low mechanical signals strengthen long bones. Nature , 2001 ,412(6847) :603-604.
    46. Warden SJ , Bennell KL, Forwood MR , et al. Skeletal effects of low - intensity pulsed ultrasound on the ovariectomized rodent. Ultrasound Med Biol, 2001,27(7) :989-998.
    47. Warden SJ , Bennell KL , Matthews B , at al. Efficacy of low-intensity pulsed ultrasound in the prevention of osteoporosis of the calcaneum following spinal cord injury. Bone , 2001,27:431-436.
    48. Nyborg WL. Biological effects of ultrasound : development of safety guidelines , Part II: general review. Ultrasound Med Biol,2001,27:301-333.
    49. Parvizi J , Parpura V , Greenleaf JF, et al. Calcium signalingis required for ultrasound - stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res, 2002 ,20(1) :51-57.
    50. Pohl P , Rosenfeld E , Millner R. Effects of ultrasound on the steady - state transmembrane pH gradient and the permeability of acetic acid through bilayer lipid membranes. Biochim Biophys Acta, 1993 ,1145(2) :279-283.
    51. Ryaby JT, Bachner EJ , Bendo JA , et al. Low intensity pulsed ultrasound increases calcium incorporation in both differentiating cartilage and bone cell cultures [abstract] . Trans Orthop Res Soc , 1989 ,14 :15.
    52. Warden SJ,Bennell KL,McMeeken JM,et al.Can conventional therapeutic ulter -asound units be used to accelerate fracture repair? Phys Ther Rev,1999,4:117-126.
    1.Brian J,Tomas M,Arnold CA,et al In vitro chondrogenesis of bone marrow derived mesencymal progenitor cells[J].Experiment Cell Research,1998,238:265-271.
    2.Yoo JU,Barthel TS,Nishimura K,et al.The chondrogenic potential of cultured human bone2marrow2derived mesenchymal progenitor cells[J].J Bone Joint Surg,1998,12:1745-1757.
    3.AlastairM,Mackay,Beck SC,et al.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow[J].Tissue Engineering,1998,4:415-428.
    4.WorsterAA,Nixon AJ,Brower Toland BD,et al.Effect of transforming growth factor betalon chondrogenic differentiation of culture equine mesenchymal stem cells[J].AM J Res,2000,1003-1108.
    5.Seyedin SM,Thomp son AY,Bentz H,et al.Cartilage-inducing factor-A:Apparent indentity to TGF-β1[J].J Biol Chem,1986,13:5693-5695.
    6.Galera P,Vivien D,Pronost S,et al.TGF-β up2regulation of collagen type Ⅱ in primary cultures of rabbit articular chondrocytes(RAC) involves increased mRNA level without affecting mRNA stability and p rocollagen p rocessing[J].J Cell Physiol,1992,3:596-606.
    7.Hiraki Y,Inoue H,Hirai R,et al.Effects of transforming growth factor beta on cell p roliferation and glycosaminoglycan synthesis by rabbit growth2p late chondrocytes in culture[J].Biochem Biophys Acta,1998,969:91-99.
    8.夏万尧,曹谊林,商庆新.骨髓间质干细胞向软骨细胞表型定向诱导分化的实验研究[J].中华整形外科杂志,2002,18(1):35-38.
    9.Ulrich North.In vitro engineered cartilage constructs produced by Press-coating biodegradable polymer with human mesenchymal stem cells[J].Tissue Engineering,2002,1:131-143.
    10.夏万尧,刘伟,刘天一.应用骨髓基质干细胞体外构建组织工程化管状软骨的实验研究[J].中华显微外科杂志,2005,4:241-246.
    11.刘天一,周广东,曲春雷.力学因素影响骨髓基质干细胞体外组织形成的初步研究[J].中华医学杂志,2004,23:1997-2001.
    12.Pedrozo HA,Schwartz Z,Gomez R,et al.Growth p late chondrocytes store latent transforming growth factor(TGF)-beta 1 in their matrix through latent TGF-beta 1 binding protein-1[J].J Cell Physiol,1998,177(2):343-54.
    13.苗春雷,周广东,刘天一.软骨细胞与骨髓基质细胞共培养体外构建软骨组织的初步研究[J].上海第二医科大学学报,2004,4:246-249.
    14.Cao L,Lee V,AdamsME,et al.Beta2Integrin2collagen interaction reduces chondrocyte apop tosis [J].Matrix Biol,1999,18(4):343-355.
    15.WorsterAA,Nixon AJ,Brower TB,et al.Effect of transforming growth factor2β1 on chondrogenic differentiation of cultured equine mesenchymal stem cells[J].Am J Vet Res,2000,61(9):1003-1010.
    16.Barry F,Boynton RE,Liu B,et al.Chondrogenic differentiation ofmesenchymal stem cells from bone marrow:differentiation-dependent gene expression ofmatrix components[J].Exp Cell Res,2001,268(2),189-200.
    17.GoesslerUR,Bugert P,Bieback K,et al.In-vitro analysis of the expression of TGF beta 2superfamily-members during chondrogenic differentiation ofmesenchymal stem cells and chondrocytes during dedifferentiation in cell culture[J].Cell Mol Biol Lett,2005,10(2):345-362.
    18.Schmitt B,Ringe J,Haup 1 T,et al.BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture[J].Differentiation,2003,71(9210):567-577.
    19.Sekiya I,Larson BL,Vuoristo JT,et al.Comparison of effect of BMP-2,24,and 26 on in vitro cartilage formation of human adult stem cells from bone marrow stroma[J].Cell Tissue Res,2005,320(2):269-276.
    20.Sekiya I,Colter DC,Prockop DJ.BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells[J].Biochem Biophys Res Commun,2001,284(2):411-418.
    21.Cook SD,Patron LP,Salkeld SL,et al.Repair of articular cartilage defects with osteogenic p rotein21(BMP-7) in dogs[J].J Bone Joint Surg Am,2003,852A:116-123.
    22.Fukumoto T,Sperling JW,SanyalA,et al.Combined effects of insulin-like growth factor-1 and transforming growth factor-betalon periosteal mesenchymal cells during chondrogenesis in vitro[J].Osteoarthritis Cartilage,2003,11(1):55-64.
    23.Huh YH,Kim SH,Kim SJ,et al.Differentiation status-dependent regulation of cyclooxygenase-2expression and prostagland in E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes[J].J Biol Chem,2003,278(11):9691-9697.
    24.Lui KE,PanchalAS,SanthanagopalA,et al.Ep idermal growth factor stimulates proton efflux from chondrocytic cells[J].J Cell Physiol,2002,192(1):102-112.
    25.吕昌伟,胡蕴玉,白建萍,等.周期性流体应力刺激对组织工程软骨分化影响的实验研究[J].骨与关节损伤杂志,2003,18(9):620-624.
    26.王刚,刘一,单玉兴,等.不同应力环境对兔骨髓间充质干细胞修复关节软骨缺损的影响[J].中国修复重建外科杂志,2004,18(2):16-19.
    27.MOUSSAVI HF,DUWA YRI Y,MARTIN J A,etal.Oxygen effect s on senescence in chondrocytes and mesenchymal stem cells:consequences for tissue engineering[J].Iowa Orthop J,2004,24:15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700