SFRP2通过经典Wnt信号通路调控增生性瘢痕成纤维细胞凋亡及相关功能的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景及研究目的
     创面愈合的理想结果应该是不但恢复皮肤正常的功能和外观,而且没有生长增生性瘢痕。但是严重烧伤和创伤后部分个体经常发生增生性瘢痕,导致功能障碍和外观改变。增生性瘢痕富含有大量的成纤维细胞和细胞外基质(ECM)。尽管增生性瘢痕的形成机制目前还不十分清楚,但是研究表明增生性瘢痕的形成与成纤维细胞的增殖过度和凋亡抑制密切相关。近些年研究发现凋亡相关基因,如bcl-2,fas,smad3和p53等,参与了成纤维细胞的增殖与凋亡的调节。
     前期工作我们利用基因芯片技术研究发现在增生性瘢痕和正常皮肤之间有许多基因表达存在显著差异。在我们发现的97个差异基因中,SFRP2,一种与凋亡相关的基因,在增生性瘢痕组织中高表达。研究显示SFRP2在心肌修复,肿瘤发生过程中参与了细胞的增殖与凋亡的调控。SFRP2是一种分泌型的糖蛋白,被认为是wnt信号的抑制剂,影响细胞的增殖、凋亡和分化。经典Wnt /β-catenin信号通路的基本过程是:配体Wnt蛋白结合细胞表面受体frizzled(Fz)家族蛋白和LRP5、LRP6,经过一系列过程导致β-catenin在胞质内稳定地积累。转位到细胞核内的β-catenin与淋巴细胞增强因子/T细胞因子(LEF / TCF)结合,调节wnt通路靶基因的表达,如c-myc和cyclin D1等。下游的靶基因参与调解细胞的增殖、凋亡和分化等功能。SFRP2在增生性瘢痕形成过程中的作用目前尚不清楚。为此,本实验旨在研究SFRP2在增生性瘢痕组织中高表达的意义和相关wnt信号通路的作用机制。
     2.方法
     2.1组织标本和细胞培养
     成纤维细胞由人的正常皮肤组织和增生性瘢痕组织培养获得。组织标本来自第三军医大学西南医院整形科。患者知情同意,并报西南医院道德委员会批准。
     2.2稳定高表达SFRP2的增生性瘢痕成纤维细胞的建立
     从增生性瘢痕成纤维细胞中获得总RNA,利用RT-PCR技术获得SFRP2的cDNA,将目的基因克隆到真核表达载体pcDNA3.0中。然后,将pcDNA3.0/SFRP2稳定转染到增生性瘢痕成纤维细胞,筛选稳定高表达SFRP2的增生性瘢痕成纤维细胞。
     2.3稳定低表达SFRP2的增生性瘢痕成纤维细胞的建立
     针对SFRP2的基因序列设计三条shRNA,分别命名为shRNA1、shRNA2和shRNA3。将合成的shRNA序列克隆到真核表达载体pSilencer 2.1-U6 neo中。然后,将pSilencer 2.1-U6 neo/SFRP2 shRNA稳定转染到增生性瘢痕成纤维细胞,筛选稳定低表达SFRP2的增生性瘢痕成纤维细胞。
     2.4 SFRP2对增生性瘢痕成纤维细胞增殖及凋亡的影响
     使用构建好的稳定高表达和低表达SFRP2的增生性瘢痕成纤维细胞,利用生长曲线和MTT方法检测SFRP2对增生性瘢痕成纤维细胞细胞活性的影响,进而利用BrdU标记方法检测SFRP2对增生性瘢痕成纤维细胞增殖的影响;利用caspase3活性和Annexin-V FITC/PI分析的方法检测SFRP2对增生性瘢痕成纤维细胞凋亡的影响。
     2.5 SFRP2 shRNA对增生性瘢痕成纤维细胞功能的影响
     使用构建好的稳定低表达SFRP2的增生性瘢痕成纤维细胞,利用realtime PCR技术检测成纤维细胞Ⅰ、Ⅲ前胶原蛋白和肌动蛋白α-SMA的mRNA表达;利用western blot检测α-SMA的蛋白表达水平;利用FPCL体外细胞模型检测SFRP2对成纤维细胞体外收缩功能的影响。
     2.6 SFRP2对增生性瘢痕成纤维细胞经典wnt信号通路的调控
     首先,利用western blot技术检测增生性瘢痕成纤维细胞和正常皮肤成纤维细胞的经典wnt信号上游关键蛋白wnt1,wnt3a和wnt8b的差异表达。其次,利用筛选出来的wnt3a体外干预高表达和低表达SFRP2的增生性瘢痕成纤维细胞,利用caspase3活性和Annexin-V FITC/PI分析的方法检测增生性瘢痕成纤维细胞凋亡的变化。最后,利用western blot方法检测wnt3a干预的高表达和低表达SFRP2的增生性瘢痕成纤维细胞经典wnt信号通路下游关键蛋白β-catenin和c-myc的表达。
     3结果
     3.1从增生性瘢痕成纤维细胞中提取总RNA,利用RT-PCR技术和SFRP2的特异性引物获得SFRP2目的片段,成功构建pcDNA3.0/SFRP2载体,并稳定转染到增生性瘢痕成纤维细胞。与未转染的增生性瘢痕成纤维细胞对比,pcDNA3.0/SFRP2稳定转染的增生性瘢痕成纤维细胞SFRP2的表达水平显著升高(p<0.01)。
     3.2将设计好的3条SFRP2 shRNA成功地构建到pSilencer 2.1-U6 neo载体中。将pSilencer 2.1-U6 neo/SFRP2 shRNA稳定转染到增生性瘢痕成纤维细胞。与其它干扰组和正常增生性瘢痕成纤维细胞对比,shRNA2抑制增生性瘢痕成纤维细胞表达SFRP2的效果最显著(p<0.01)。
     3.3生长曲线结果显示增生性瘢痕成纤维细胞5天达到生长平台期,SFRP2对增生性瘢痕成纤维细胞的生长平台期时间没有显著影响。MTT结果显示正常皮肤成纤维细胞的细胞活性显著弱于增生性瘢痕成纤维细胞(p<0.01),而SFRP2的过表达和低表达对成纤维细胞MTT的结果没有显著影响。此外,利用BrdU标记法进一步验证,也得到了同样的结果。
     3.4 Caspase3结果显示SFRP2 shRNA可以显著地提高增生性瘢痕成纤维细胞的caspase3的活性(p<0.01)。而增生性瘢痕成纤维细胞的SFRP2表达上调后,与未作干预的增生性瘢痕成纤维细胞对比,caspase3的活性差异不显著(p>0.05)。正常皮肤成纤维细胞的caspase3活性显著地高于增生性瘢痕成纤维细胞(p<0.05)。此外,进一步利用Annexin-V FITC/PI分析的方法检测成纤维细胞的早期凋亡水平,也得到了相同的结果。
     3.5与增生性瘢痕成纤维细胞比较,体外FPCL模型结果显示SFRP2低表达的增生性瘢痕成纤维细胞与正常皮肤成纤维细胞的收缩能力显著降低(p<0.01)。Realtime PCR结果显示,SFRP2低表达的增生性瘢痕成纤维细胞和正常皮肤成纤维细胞α-SMA与Ⅰ、Ⅲ前胶原蛋白mRNA的水平显著低于增生性瘢痕成纤维细胞(p<0.01)。利用western blot检测α-SMA的蛋白水平,得到了同样的结果。
     3.6 Western blot结果显示wnt3a在增生性瘢痕成纤维细胞中的表达水平显著高于正常皮肤成纤维细胞(p<0.01),而wnt1和wnt8b差异不显著(p>0.05)。与未受wnt3a干预的增生性瘢痕成纤维细胞对比,wnt3a可以显著上调增生性瘢痕成纤维细胞caspase3的活性(p<0.01)。shRNA下调增生性瘢痕成纤维细胞的SFRP2表达后,wnt3a诱导成纤维细胞caspase3的活性显著提高(与各对照组相比,p<0.01)。SFRP2过表达后明显地抑制了wnt3a诱导成纤维细胞caspase3的活性(p<0.01)。采用Annexin-V FITC/PI分析的方法检测增生性瘢痕成纤维细胞的凋亡水平,得到了相近的结果。
     3.7在体外,用wnt3a分别刺激过表达和低表达SFRP2的增生性瘢痕成纤维细胞。与未受wnt3a干预的增生性瘢痕成纤维细胞对比,western blot结果显示wnt3a可以显著上调成纤维细胞胞浆和胞核β-catenin和全细胞的c-myc的表达水平(p<0.01)。shRNA下调SFRP2的表达后,wnt3a进一步地显著提高了成纤维细胞胞浆和胞核的β-catenin和全细胞的c-myc的表达(与各对照组相比,p<0.01)。SFRP2过表达后,wnt3a诱导成纤维细胞胞浆和胞核的β-catenin和全细胞的c-myc的表达水平显著地受到抑制(p<0.01)。
     4结论
     4.1成功获得了高表达和低表达SFRP2的增生性瘢痕成纤维细胞。
     4.2在体外,SFRP2 shRNA促进增生性瘢痕成纤维细胞的凋亡,对增生性瘢痕成纤维细胞的增殖没有显著作用。而SFRP2过表达对增生性瘢痕成纤维细胞的凋亡和增殖的影响均没有显著作用。提示SFRP2参与调控增生性瘢痕成纤维细胞的凋亡,可能是增生性瘢痕形成的机制之一。
     4.3在体外,SFRP2 shRNA抑制增生性瘢痕成纤维细胞Ⅰ、Ⅲ型胶原蛋白mRNA的表达,在基因和蛋白水平抑制α-SMA的表达,从而抑制体外FPCL模型收缩。提示SFRP2参与调控增生性瘢痕成纤维细胞ECM的形成,影响增生性瘢痕的增生与挛缩。
     4.4 wnt3a在增生性瘢痕成纤维细胞中的表达显著高于正常皮肤成纤维细胞。SFRP2抑制wnt3a诱导增生性瘢痕成纤维细胞的caspase3活性和凋亡率。进一步研究表明SFRP2能够显著地抑制增生性瘢痕成纤维细胞经典wnt信号通路下游关键蛋白β-catenin和c-myc的表达。提示SFRP2可能通过抑制wnt3a/β-catenin信号通路,调节靶基因c-myc的表达,从而影响增生性瘢痕成纤维细胞的凋亡。
     4.5本实验的结果初步表明SFRP2调控增生性瘢痕成纤维细胞的凋亡作用与wnt3a-β-catenin- Tcf/Lef-c-myc信号密切相关。SFRP2 shRNA可能是干预增生性瘢痕成纤维细胞凋亡新的策略。
1. Introduction
     The ideal outcome of human wounding is functional and scarless healing. However, hypertrophic scar(HS) often occurs following cutaneous injury, such as burns and traumas which often result in contractures, severe functional and esthetic defects, and even permanent disability.
     HS is characterized by abnormal accumulation of a large number of fibroblasts and excessive deposition of extracellular matrix (ECM) components which result from abnormal fibroblast apoptosis and proliferation. Additionally, the differentiation from fibroblasts to myofibroblasts in HS plays an important role in the contracture of scars. Although the mechanism of HS remains unclear, it has been recognized that the inhibition of fibroblast apoptosis and proliferation promotion are key processes in the formation of HS.
     It is well known that wound healing is regulated by a delicate balance between cell proliferation and cell apoptosis. It was reported that a variety of genes including Bcl-2, Fas, smad3 and p53, were associated with the regulation of fibroblast apoptosis and proliferation. Previously, we screened genes that were differentially expressed in HS and normal skin of burn patients using cDNA microarray and then identified 97 differentially expressed genes. Among these genes, only one anti-apoptotic gene named secreted frizzled-related protein 2 (SFRP2) was conspicuously up-regulated in HS tissue.
     SFRP2 is a secreted glycoprotein and it has been considered a modulator of Wnt signaling and involved in apoptosis, proliferation and differentiation. Kobayashi et al. confirmed that SFRP2 induced the cardiomyoblast apoptosis and favored collagen deposition and fibrosis. Further, up-regulation of SFRP2 in retinas of patients with retinitis pigmentosa suggested an anti-apoptotic role of SFRP2 in some degree. The role of SFRP2 in the HS formation is not clarified yet. In the present study we inspected the role and mechanim of SFRP2 in HS formation.
     2. Materials and methods
     2. 1 Patient specimens and primary cell culture
     HSFBs were established as primary cell lines either from normal skin or from HS tissue obtained from patients whom were recovering from severe burn. Individuals knew and signed informed consents. This study was also approved by the Ethnic Committee of Southwest Hospital of the Third Military Medical University (Chongqing, China).
     2.2 upregulating of SFRP2 by pcDNA3.0/SFRP2
     Obtaining cDNA of SFRP2 from HSFBs,and then establishing pcDNA3.0/SFRP2. HSFBs were transfected with pcDNA3.0/SFRP2 plasmids. The transfection efficiency was confirmed by immunoflurescence density of SFRP2. The expression levels of SFRP2 were measured by western blot.
     2.3 Silencing of SFRP2 by shRNA
     Three pairs of shRNAs targeting different regions of the human SFRP2 transcript (accession number in GenBank: NM_003013) and one control shRNA were designed and synthesized. shRNA fragments were annealed and cloned into the pSilencer 2.1-U6 neo plasmid (Ambion, USA). HSFBs were transfected with SFRP2 shRNA plasmids. The transfection efficiency was confirmed by immunoflurescence density of SFRP2. The expression levels of SFRP2 were measured by western blot at the second days after the transfection. After the examination, shRNA2 was selected as the most efficient sequence to block the expression of SFRP2.
     2.4 Cell proliferation assay
     Using Cellular growth curve, MTT and BrdU Proliferation assay methods to evaluate the proliferation of HSFBs.
     2.5 Cell apoptosis assay
     Using caspase3 activity and fluorescence-activated cell sorting (FACS) methods to detect the apoptosis of HSFBs.
     2.6 Cell function assay
     Using Fibroblast populated collagen lattice (FPCL) model to evaluate the contractility of HSFbs. Further, real-time PCR and western blot were used to measure the mRNA and protein expression ofα-SMA in HSFb. In addition, mRNA levels of typesⅠandⅢprocollagen were assayed by quantitative real-time PCR.
     2.7 Wnt proteins assay
     Using Western blot to measure expression of Wnt1, wnt3a and wat8b of HSFBs. And then apoptosis of HSFBs treated with wnt3a was measured by caspase3 activity and fluorescence-activated cell sorting (FACS).β-catenin and c-myc was detected by western blot.
     3. Results
     3.1 upregulating of SFRP2 by pcDNA3.0/SFRP2
     pcDNA3.0/SFRP2 is the most efficient to upregulate the expression of SFRP2 of HSFBS,and obtain HSFBs transfected with pcDNA3.0/SFRP2(versus HSFBs,p<0.01).
     3.2 Silencing of SFRP2 by shRNA
     shRNA2 is the most efficient interference sequence to suppress the expression of SFRP2 of HSFBs, and obtain HSFBs transfected with psilencer 2.1-U6./SFRP2(versus HSFBs and shRNA1, shRNA3,p<0.01).
     3.3 Cell proliferation assay
     MTT and BrdU results suggested that Upregulating and downregulating SFRP2 in HSFBs had no significant effect on HSFB proliferation (p>0.05).
     3.4 Cell apoptosis assay
     Upregulating SFRP2 in HSFBs had no significant effect on HSFBs apoptosis. But compared with normal HSFBs, SFRP2 shRNA promoted cell caspase3 activity (p<0.01). The results of FACS were same.
     3.5 Cell function assay
     Compared with normal HSFBs, the suppression of SFRP2 expression decreasdα-SMA mRNA and protein levels and resulted in loss of contractile ability of HSFBs (p<0.01). SFRP2 shRNA2 downregulated the mRNAs of typesⅠandⅢprocollagen of HSFBs (p<0.01).
     3.6 wnt proteins assay
     Controlled with NSFBs, the results of WB suggested expression of Wnt3a was upregulated in HSFBs (p<0.01); The level of apoptosis of HSFBs treated with wnt3a was suppressed by SFRP2 and SFRP2 suppressed expression ofβ-catenin and c-myc of HSFBs (p<0.01).
     4. Conclusion
     4.1 Obtaining the HSFBs of overexpressing and downexpressing SFRP2.
     4.2 In vitro, SFRP2 had no effect on proliferation of HSFBS.
     4.3 In vitro, SFRP2 shRNA promoted HSFB apoptosis, but upregulating SFRP2 didn’t.
     4.4 SFRP2 suppressed apoptosis of HSFBs by influencing wnt3a/β-catenin.β-catenin and C-myc may be key factors in this progress.
     4.5 SFRP2 shRNA may be a novel treatment strategy.
引文
1. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10):738–46.
    2. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127(3):526–37.
    3. Wassermann RJ, Polo M, Smith P, Wang X, Ko F, Robson MC. Differential production of apoptosis-modulating proteins in patients with hypertrophic burn scar. J Surg Res 1998; 75(1):74–80.
    4. Linge C, Richardson J, Vigor C, Clayton E, Hardas B, Rolfe K. Hypertrophic scar cells fail to undergo a form of apoptosis specific to contractile collagen-the role of tissue transglutaminase. J Invest Dermatol 2005; 125(1):72–82.
    5. Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Valle CA, Roy M. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol 2004; 198(3):350–8.
    6. Akasaka Y, Fujita K, Ishikawa Y, Asuwa N, Inuzuka K, Ishihara M, et al. Detection of apoptosis in keloids and a comparative study on apoptosis between keloids, hypertrophic scars, normal healed ?at scars, and dermatofibroma. Wound Repair Regen 2001; 9(6):501–6.
    7. Tanaka A, Hatoko M, Tada H, Iioka H, Niitsuma K, Miyagawa S. Expression of p53 family in scars. J Dermatol Sci 2004; 34(1):17–24.
    8.王珍祥;李世荣;吴军等.分泌的凋亡相关蛋白基因在增生性瘢痕中的分布与作用.中国美容整形外科杂志,2008,19(3):175-179.
    9. W. Chen, X. Fu, X. Sun et al (2003) Analysis of differentially expressed genes in keloids and normal skin with cDNA microarray. J Surg Res 113: 208-216Melkonyan HS, Chang WC, Shapiro JP, etc. SARPs: a family of secreted apoptosis-related proteins, Proc Natl Acad Sci U S A 1997, 94:13636-13641.
    10. Nojima M, Suzuki H, Toyota M, etc. Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer, Oncogene, 2007, 26(32): 4699-713.
    11. Mirotsou M, Zhang Z, Deb A, etc. Secreted frizzled related protein 2 (Sfrp2) is the keyAkt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair, Proc Natl Acad Sci U S A 2007, 104:1643-1648.
    12. Lee JL, Chang CJ, Chueh LL, etc. Secreted Frizzled Related Protein 2 (sFRP2) Decreases Susceptibility to UV-Induced Apoptosis in Primary Culture of Canine Mammary Gland Tumors by NF-kappaB Activation or JNK Suppression, Breast Cancer Res Treat, 2006, 100:49-58.
    13. Lee HX, Ambrosio AL, Reversade B, De Robertis EM: Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases, Cell 2006, 124:147-159.
    14. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T: Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2, Blood 2005, 106:3160-3165.
    15. Muller HM, Oberwalder M, Fiegl H, Morandell M, Goebel G, Zitt M, Muhlthaler M, Ofner D, Margreiter R, Widschwendter M: Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 2004, 363:1283-1285.
    16. Oppenheim Rw. Neurotrophic suvival molecules for motoneurons: an embarrassment of riches. Neuron, 1996; 17:195-7.
    17. Gabbiani G. Evolution and clinical implications of the myofibroblast concept. Cardiovasc Res, 1998; 38: 545-8.
    18. http://www.molecularinfo.com/MTM/K/K2/K2-1/pcdna3.pdf
    19. http://www.ambion.com/techlib/misc/vectors/2.1_neo.html
    20. Scott PG, Ghahary A, Tredget EE. Molecular and cellular aspects of fibrosis following thermal injury, Hand Clin 2000; 16:271–287.
    21. Breasted JH: The Edwin Smith Surgical Papyrus, Vol I: Hieroglyphic Transaction and Commentary, Chicago, IL, University of Chicago Press, 1970, pp 403-406.
    22. Sheridan, R. L., and Tompkins, R. G. What’s new in burns and metabolism. J. Am. Coll. Surg. 2004, 198: 243–263.
    23. Greenhalgh DG. The role of apoptosis in wound healing.Int J Biochem Cell Biol 1998; 30(9):1019–30.
    24. Lu F, Gao J, Ogawa R, Hyakusoku H. Variations in gap junctional intercellular communication and connexin expression in fibroblasts derived from keloid andhypertrophic scars. Plast Reconstr Surg 2007; 119(3):844–51.
    25. Wassermann RJ, Polo M, Smith P, Wang X, Ko F, Robson MC. Differential production of apoptosis-modulating proteins in patients with hypertrophic burn scar. J Surg Res 1998; 75(1):74–80.
    26. Huang, H. & He, X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr. Opin. Cell Biol. 2008, 20:119–125.
    27. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease.Annu. Rev. Cell Dev. Biol. 2004, 20:781–810.
    28. Jones, S. E. & Jomary, C. Secreted frizzled-related proteins: searching for relationships and patterns. Bioessays 2002, 24: 811–820.
    29. Leyns, L., et al. 30. Leyns, L., et al. Cell 1997, 88: 747–756.Cell 1997, 88: 747–756.
    30. Andriessen,-M-P; Niessen,-F-B; Van-de-Kerkhof,-P-C;Schalkwijk,-J. Hypertrophic scarring is associated with epidermal abnormalities: an immunohistochemical study. J Pathol. 1998, 186(2): 192-200.
    31. Maria P. Alfaroa, Matthew Pagni etc. The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. PNAS, 2008, 25(105): 4718366–18371.
    32. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol, 2007; 127(3):526–37
    33. Desmouliere,-A; Redard,-M; Darby,-I; Gabbiani,-G..Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am-J-Pathol. 1995 Jan; 146(1): 56-66.
    34. Sorrell JM, Baber MA, Caplan AI. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cell Physiol 2004; 200:134–145.
    35. Harper RA, Grove G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science, 1979; 204:526–527.
    36. Azzarone B, Macieira-Coelho A. Heterogeneity of the kinetics of proliferation within human skin fibroblastic cell populations. J Cell Sci, 1982; 57:177–187.
    37. Schafer IA, Pandy M, Ferguson R, et al. Comparative observation of fibroblasts derived from the papillary and reticular dermis of infants and adults: growth kinetics,packing density at confluence and surface morphology. Mech Ageing Dev, 1985; 31:275–293.
    38. Kischer,-C-W. Contributions of electron microscopy to the study of the hypertrophic scar and related lesions. Scanning Microsc. 1993, 7(3): 921-930.
    39. Freiberg RA, Spencer DM, Choate KA, Duh HJ, Schreiber SL, Crabtree GR, Khavari PA. Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J-Invest-Dermatol. 1997 Feb; 108(2): 215-9.
    40. Rachel A Freiberg1, David M Spencer2, Keith A Choate1. Fas Signal Transduction triggers either proliferation or apoptosis in human fibroblasts.J Invest Dermatol 1997, 2:215-9.
    41. Ladin DA, Hou Z, Patel D, McPhail M, Olson JC, Saed G, Fivenson DP.p53 and apoptosis alterations in keloids and keloid fibroblasts.Wound Rep Reg 1998, 6:28-37.
    42. Messadi DV, Jewett A, Berg S, Le A, Bertolami CN.Role of apoptosis in keloid formation.Int J Oral Biol 1998;23:31.
    43. Richard Marcottea, Chantale Lacelleb, Eugenia Wang. Senescent fibroblasts resist apoptosis by downregulating caspase-3. Mechanisms of Ageing and Development. 2004, 125: 777–783.
    44. Lu F, Gao J, Ogawa R, Hyakusoku H. Variations in gap junctional intercellular communication and connexin expression in fibroblasts derived from keloid and hypertrophic scars. Plast Reconstr Surg 2007; 119 (3):844–51.
    45. Wassermann RJ, Polo M, Smith P, Wang X, Ko F, Robson MC. Differential production of apoptosis-modulating proteins in patients with hypertrophic burn scar. J Surg Res 1998; 75(1):74–80.
    46. Desmouliere A, Badid C, Bochaton-Piallat ML, Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol 1997; 29(1):19–30.
    47. Linge C, Richardson J, Vigor C, Clayton E, Hardas B, Rolfe K. Hypertrophic scar cells fail to undergo a form of apoptosis specific to contractile collagen-the role of tissue transglutaminase. J Invest Dermatol 2005; 125(1):72–82.
    48. Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Valle CA, Roy M. Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic.J-Cell-Physiol. 2004 Mar; 198(3): 350-8.
    49. Aarabi S, Bhatt K, Shi Y, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 2007; 21:3250.
    50. Akasaka Y, Ishikawa Y, Ono I, et al. Enhanced expression of caspase-3 in hypertrophic scars and keloid: Induction of caspase-3 and apoptosis in keloid fibroblasts in vitro. Lab Invest 2000; 80:345.
    51. Phan TT, Sun L, Bay BH, et al. Dietary compounds inhibit proliferation and contraction of keloid and hypertrophic scar-derived fibroblasts in vitro: therapeutic implication for excessive scarring. J Trauma. 2003; 54: 1212-1224.
    52. Raymond Tse, Jeffrey howard, yan Wu, et al. Enhanced upuytren’s disease fibroblast populated collagen lattice contraction is independent of endogenous active TGF-beta2. BMC Musculoskelet Disord. 2004, 5(1):41.
    53. S.M. Elbashir, J. Harborth, W. Lendeckel, et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature 2001, 411:494–498.
    54. A. Fire, S. Xu, M.K. Montgomery, et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature 1998, 391:806–811.
    55. G.J. Hannon, RNA interference, Nature 418 (2002) 244–251.
    56. Q. Wang, Z. Peng, S. Xiao, et al., RNAi-mediated inhibition of COL1A1 and COL3A1 in human skin fibroblasts, Exp. Dermatol. 16 (2007) 611–617
    57. H. Nakamura, S.S. Siddiqui, X. Shen, et al., Interference targeting transforming growth factor-beta type II receptor suppresses ocular in?ammation and fibrosis, Mol. Vis. 10 (2004) 703–711.
    58. Z. Wang, Z. Gao, Y. Shi, et al., Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts, J. Plast. Reconstr. Aesthet. Surg. 60 (2007) 1193–1199.
    59. Edgar D, Brereton M. Rehabilitation after burn injury. BMJ. 2004; 329:343–5.
    60. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10):738–46.
    61. Peacock Jr EE: Wound Repair. 3rd Ed. W.B. Saunders, Philadelphia, 1984, pp. 12- 14.
    62. Martin GR, Peacock EEJ: Current perspectives in wound healing, in Wound Healing: Biochemical and Clinical Aspects. Edited by IK Cohen, RF Diegelmann, W J Lindblad. W.B. Saunders, Philadelphia, 1992, pp. 1-4.
    63. Desmoulie ` re A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13(1):7–12.
    64. Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 2003; 14(5):538–46.
    65. Werner S, Grose R. Regulation of wound healing by growth actors and cytokines. Physiol Rev 2003; 83(3):835–70.
    66. Gareth J. BROWNE, Margarida FARDILHA, Senga K. SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein. Biochem. J. 2007, 402: 187–196.
    67. Yoshiaki Kawano and Robert Kypta. Secreted antagonists of the Wnt signalling pathway. Journal of Cell Science 2003, 116:2627-2634.
    68. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127(3):526–37.
    69. Nedelec B, Shankowsky H, Scott PG, Ghahary A, Tredget EE. Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b. Surgery 2001; 130(5):798–808.
    70. Guidry, C., and Grinnel, F. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J Cell Sci. 79: 67, 1985.
    71. Montesano, R., and Orci, L. Transforming growth factor-b stimulates collagen–matrix contraction by fibroblasts. Implications for wound healing. Proc. Natl. Acad. Sci. 1988, 85: 4894.
    72. Bettinger, D. A., Yager, D. R., Diegelmann, R. F., et al. The effect of TFG-b on keloid fibroblast proliferation and collagen synthesis. Plast. Rec. Surg. 1996, 98: 827.
    73. Garner, W., Rittenberg, T., Ehrlich, P., et al. Hypertrophic scar fibroblasts accelerate collagen gel contraction. Wound Rep. Reg. 1995, 3: 185.
    74. Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 1999; 104(5):1435–58.
    75. Friedman DW, Boyd CD, Norton P, et al. Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. Ann Surg 1993; 218:754-60.
    76. Hurme T, Kalimo H, Sandberg M, et al. Localization of type I and III collagen and fibro-nectin production in injured gastrocnemius muscle. Lab Invest 1991; 64:76-84.
    77. Hayakawa T, Hashimoto Y, Myokei Y, Aoyama H, Izawa Y. Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta 1979; 93(1):119–25.
    78. Kobayashi,-K; Luo,-M; Zhang,-Y; Wilkes,-D-C; Ge,-G. Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat-Cell-Biol. 2009, 11(1): 46-55.
    79. Roth, W., Wild-Bode, C., Platten, M., Grimmel, C., Melkonyan, H. S., Dichgans, J., and Weller, M. Oncogene 2000, 19: 4210–4220.
    80. Botstein GR, Sherer GK, Leroy EC. Fibroblast selection in scleroderma. An alternative model of fibrosis. Arthritis Rheum 1982; 25:189–195.
    81. Borrello MA, Phipps RP. Differential Thy-1 expression by splenic fibroblasts defines functionally distinct subsets. Cell Immunol,1996; 173:198–206.
    82. Hue H. Luu1, Ruiwen Zhang, Rex C. Haydon1, Elizabeth Rayburn, Quan Kang. Wnt/β-Catenin Signaling Pathway as Novel Cancer Drug Targets. Current Cancer Drug Targets, 2004, 4:653-671.
    83.孙志成,曹川,王珍祥等.耳垂痕疙瘩分泌型卷曲相关蛋白2的表达及意义.中华整形外科杂志,2010,26(5):369-372.
    84. Esteve,-P; Bovolenta,-P. The advantages and disadvantages of sfrp1 and sfrp2 expression in pathological events. Tohoku-J-Exp-Med. 2010; 221(1): 11-7.
    85. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004, 20:781–810.
    86. Okuse T, Chiba T, Katsuumi I, Imai K. Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen, 2005, 13:491–497.
    87. P. Bhanot, M. Brink, C.H. Samos, J.C. Hsieh, Y. Wang, J.P. Macke, D. Andrew, J. Nathans, R. Nusse, A new member of the Frizzled family from Drosophila functions as a wingless receptor, Nature, 1996, 382(6588): 225-30.
    88. G. Schulte, V. Bryja, The Frizzled family of unconventional G-protein-coupled 359 receptors, Trends Pharmacol. Sci. 2007, 28:518–525.
    89. X. He, M. Semenov, K. Tamai, X. Zeng, LDL receptor-related proteins 5 and 6 in 361 Wnt/beta-catenin signaling: arrows point the way, Development 2004, 362: 1663–1677.
    90. Umbhauer,M., Djiane, A., Goisset, C., Penzo-Mendez, A., Riou, J. F., Boucaut, J. C.,and Shi, D. L. EMBO J. 2000, 19:4944–4954.
    91. Davies JA, Fisher CE. Genes and proteins in renal development. Exp Nephrol 2002; 10:102–113.
    92. Davies JA. Do different branching epithelia use a conserved developmental mechanism? Bioessays 2002; 24:937–948.
    93. S. Rubin, M. Barshishat-Kupper, F. Feroze-Merzoug, Z.F. Xi, Secreted WNT 372 antagonists as tumor suppressors: pro and con, Front. Biosci. 2006, 11: 2093–2105.
    94. Okuse T, Chiba T, Katsuumi I, Imai K Differential expression and localization of WNTs in an animal model of skin wound healing. Wound Repair Regen, 2005, 13:491–497.
    95. Boer, D., Wang, H. J. and Blitterswijk, C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng. 2004, 10: 393-401.
    96. Kim K, Pang KM, Evans M, Hay ED. Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell; 2000 11(10):3509–3523.
    97. Olmeda D, Castel S, Vilaro S, Cano A. Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell; 2003 14(7):2844–2860.
    98. Cheon SS, Cheah AY, Turley S, et al. Beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci USA 2002; 99:6973.
    99. Cheon S, Poon R, Yu C, et al. Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Invest 2005; 85:416.
    100. Danuta Wawrzak, Mourad Me tioui, Erik Willems, Marijke Hendrickx, Erwin de Genst, Luc Leyns. Wnt3a binds to several sFRPs in the nanomolar range. Biochemical and Biophysical Research Communications , 2007,357:1119–1123.
    101. Zhongyan Zhang, Arjun Deb, Zhiping Zhang, Alok Pachori, Wei He, Jian Guo, Richard Pratt, and Victor J Dzau. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol. 2009, 46(3): 370–377.
    102. Lee, J. L., Chang, C. J., Chueh, L. L., and Lin, C. T. In Vitro Cell Dev. Biol. Anim. 2003, 39: 221–227.
    103. Mirotsou,M., Zhang, Z.,Deb,A., Zhang, L.,Gnecchi,M.,Noiseux,N.,Mu, H., Pachori, A.,and Dzau, V. Proc. Natl. Acad. Sci. U. S. A. 2007, 104: 1643–1648.
    104. Maria Mirotsou, Zhongyan Zhang, Arjun Deb, Lunan Zhang, Massimiliano Gnecchi, Nicolas Noiseux, Hui Mu, Alok Pachori, and Victor Dzau. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. PNAS, 2007, 104( 5): 1643–1648.
    105. Jimenez B, Arends M, Esteve P, Perona R, anchez R,Ramon y Cajal S, Wyllie A, and Lacal JC. Induction ofapoptosis in NIH3T3 cells after serum deprivation by overexpression of rho-p21, a GTPase protein of the ras superfamily. Oncogene 1995, 10:811–816.
    106. Evan,-G-I; Wyllie,-A-H; Gilbert,-C-S; Littlewood,-T-D; Land,-H; Brooks,-M; Waters, -C-M; Penn,-L-Z; Hancock,-D-C. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992 ; 69(1): 119-28.
    107. Greenwet P, Inagaki Y, Hu W, Walsh M, Ramirez F. Sp1 is required for the early response of a2(I) collagen to TGF-b1. J Biol Chem 1997; 272:19738-45.
    108. Chung KY, Agarwal A, Uitto J, Mauviel A. An AP-1 binding sequence is essential for regulation of the human a2(I) collagen (COL1A2) promoter activity by transforming growth factor-b. J Biol Chem, 1996; 271:3272-8.
    109. Piek E, Heldin CH, Ten Dijke P. Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J, 1999; 13:2105-24.
    110. Attisano JL. Smads as transcriptional co-modulators. Curr Opin Cell Biol, 2000; 12:235-43.
    111. Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000; 19:1745-54.
    112. Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem 2001; 276:6983-92.
    113. Subramanian SV, Polliandriotis JA, Kelm RJ Jr, David JJ, Orosz CG, Strauch AR. Induction of vascular smooth muscle a-actin gene transcription in TGF-b1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad co-activators. Mol Biol Cell, 2004, 15(6): 2593-605.
    114. Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-b-induced a-smooth muscle actin expression. Am J Respir Cell Mol Biol 2003; 29:397-404.
    1. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341(10):738–46.
    2. Atiyeh BS, Costagliola M, Hayek SN. Keloid or hypertrophic scar: the controversy: review of the literature. Ann Plast Surg 2005; 54(6):676–80.
    3. Ehrlich HP, Desmouliere A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, et al. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 1994; 145(1):105–13.
    4. Niessen FB, Spauwen PH, Schalkwijk J, Kon M. On the nature of hypertrophic scars and keloids: a review. Plast Reconstr Surg 1999; 104(5):1435–58.
    5. Santucci M, Borgognoni L, Reali UM, Gabbiani G. Keloids and hypertrophic scars of Caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch 2001; 438(5):457–63.
    6. Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 2005; 31(6):674–86.
    7. Martin P. Wound healing—aiming for perfect skin regeneration. Science 1997; 276(5309):75–81.
    8. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3):835–70.
    9. Ghosh K, Ren XD, Shu XZ, Prestwich GD, Clark RA. Fibronectin functional domains coupled to hyaluronan stimulate adult human dermal fibroblast responses critical for wound healing. Tissue Eng 2006; 12(3):601–13.
    10. Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost 2006; 4(5):932–9.
    11. Kischer CW, Wagner HN, Pindur J, Holubec H, Jones M, Ulreich JB, et al. Increased fibronectin production by cell lines from hypertrophic scar and keloid. Connect Tissue Res 1989; 23(4):279–88.
    12. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol 2005; 129(3):307–21.
    13. Li WY, Huang EY, Dudas M, Kaartinen V, Warburton D, Tuan TL. Transforing growthfactor-beta3 affects plasminogen activator inhibitor-1 expression in fetal mice and modulates fibroblast-mediated collagen gel contraction. Wound Repair Regen 2006; 14(5):516–25.
    14. Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 2006; 117(7 Suppl):143S–9S.
    15. Kro tzsch-Go mez FE, Furuzawa-Carballeda J, Reyes-Ma rquez R, Quiro z-Herna ndez E, D? az de LeonL. Cytokine expression is downregulated by collagen- polyvinylpyrrolidone in hypertrophic scars. J Invest Dermatol 1998; 111(5):828–34.
    16. Niessen FB, Andriessen MP, Schalkwijk J, Visser L, Timens W. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol 2001; 194(2):207–16.
    17. Atkins FM, Clark RA. Mast cells and fibrosis. Arch Dermatol 1987; 123(2):191–3.
    18. Gruber BL. Mast cells in the pathogenesis of fibrosis. Curr Rheumatol Rep 2003; 5(2):147–53.
    19. Smith CJ, Smith JC, Finn MC. The possible role of mast cells (allergy) in the production of keloid and hypertrophic scarring. J Burn Care Rehabil 1987; 8(2):126–31.
    20. Tredget EE, Shankowsky HA, Pannu R, Nedelec B, Iwashina T, Ghahary A, et al. Transforming growth factor-beta in thermally injured patients with hypertrophic scars: effects of interferon alpha-2b. Plast Reconstr Surg 1998; 102(5):1317–28.
    21. Rothe MJ, Kerdel FA. The mast cell in fibrosis. Int J Dermatol 1991; 30(1):13–6.
    22. Pesci A, Bertorelli G, Gabrielli M, Olivieri D. Mast cells in fibrotic lung disorders. Chest 1993; 103(4):989–96.
    23. Beer TW, Baldwin H, West L, Gallagher PJ, Wright DH. Mast cells in pathological and surgical scars. Br J Ophthalmol 1998; 82(6):691–4.
    24. Niessen FB, Schalkwijk J, Vos H, Timens W. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J Pathol 2004; 202(1):121–9.
    25. Grose R, Werner S. Wound-healing studies in transgenic and knockout mice. Mol Biotechnol 2004; 28(2):147–66.
    26. Hang L, Frendeus B, Godaly G, Svanborg C. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acutepyelonephritis. J Infect Dis 2000; 182(6):1738–48.
    27. Svensson M, Irjala H, Alm P, Holmqvist B, Lundstedt AC, Svanborg C. Natural history of renal scarring in susceptible mIL-8Rh mice. Kidney Int 2005; 67(1):103–10.
    28. Ishida Y, Gao JL, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 2008; 180(1):569–79.
    29. Elias JA, Gustilo K, Baeder W, Freundlich B. Synergistic stimulation of fibroblast prostaglandin production by recombinant interleukin 1 and tumor necrosis factor. J Immunol 1987; 138(11):3812–6.
    30. Postlethwaite AE, Raghow R, Stricklin GP, Poppleton H, Seyer JM, Kang AH. Modulation of fibroblast functions by interleukin 1: increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin 1 alpha and beta. J Cell Biol 1988; 106(2):311–8.
    31. Heckmann M, Adelmann-Grill BC, Hein R, Krieg T. Biphasic effects of interleukin-1 alpha on dermal fibroblasts: enhancement of chemotactic responsiveness at low concentrations and of mRNA expression for collagenase at high concentrations. J Invest Dermatol 1993; 100(6):780–4.
    32. Bock O, Yu H, Zitron S, Bayat A, Ferguson MW, Mrowietz U. Studies of transforming growth factors beta 1–3 and their receptors I and II in fibroblast of keloids and hypertrophic scars. Acta Derm Venereol 2005; 85(3):216–20.
    33. Rodland KD, Muldoon LL, Magun BE. Cellular mechanisms of TGF-beta action. J Invest Dermatol 1990; 94(6 Suppl): 33S–40S.
    34. Roberts AB, Russo A, Felici A, Flanders KC. Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci 2003; 995:1–10.
    35. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004; 85(2):47–64.
    36. Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002; 160(3):1057–68.
    37. Kopp J, Preis E, Said H, Hafemann B, Wickert L, Gressner AM, et al. Abrogation oftransforming growth factor-beta signaling by SMAD7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 2005; 280(22): 21570–6.
    38. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214(2):199–210.
    39. Castagnoli C, Trombotto C, Ariotti S, Millesimo M, Ravarino D, Magliacani G, et al. Expression and role of IL-15 in post-burn hypertrophic scars. J Invest Dermatol 1999; 113(2):238–45.
    40. Wynn TA. Fibrotic disease and the T (H)1/T (H)2 paradigm. Nat Rev Immunol 2004; 4(8):583–94.
    41. Tredget EE, Yang L, Delehanty M, Shankowsky H, Scott PG. Polarized Th2 cytokine production in patients with hypertrophic scar following thermal injury. J Interferon Cytokine Res 2006; 26(3):179–89.
    42. Ueyama M, Maruyama I, Osame M, Sawada Y. Marked increase in plasma interleukin-6 in burn patients. J Lab Clin Med 1992; 120(5):693–8.
    43. Yeh FL, Lin WL, Shen HD, Fang RH. Changes in circulating levels of interleukin 6 in burned patients. Burns 1999; 25(2):131–6.
    44. Doucet C, Brouty-Boye′D, Pottin-Cle′menceau C, Jasmin C, Canonica GW, Azzarone B. IL-4 and IL-13 specifically increase adhesion molecule and in?ammatory cytokine expression in human lung fibroblasts. Int Immunol 1998; 10(10):1421–33.
    45. Fertin C, Nicolas JF, Gillery P, Kalis B, Banchereau J, Maquart FX. Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol 1991; 37(8):823–9.
    46. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1(1):71–81.
    47. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and in?ammatory cytokines by peripheral blood fibrocytes. J Immunol 1998; 160(1):419–25.
    48. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005; 304(1):81–90.
    49. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 2001; 166(12):7556–62.
    50. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003; 171(1):380–9.
    51. Yang L, Scott PG, Dodd C, Medina A, Jiao H, Shankowsky HA, et al. Identification of fibrocytes in postburn hypertrophic scar. Wound Repair Regen 2005; 13(4): 398–404.
    52. Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE. Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 2002; 2(9):1183–92.
    53. Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J. Hypertrophic burn scars: analysis of variables. The Journal of trauma 1983; 23(10):895–8.
    54. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 102(4):451–61.
    55. Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 2007; 127(5):998–1008.
    56. Graves DT, Nooh N, Gillen T, Davey M, Patel S, Cottrell D, et al. IL-1 plays a critical role in oral, but not dermal, wound healing. J Immunol 2001; 167(9):5316–20.
    57. Maas-Szabowski N, Szabowski A, Stark HJ, Andrecht S, Kolbus A, Schorpp-Kistner M, et al. Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J Invest Dermatol 2001; 116(5):816–20.
    58. Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal- epidermal interaction in skin. Cell 2000; 103(5):745–55.
    59. Daniel RJ, Groves RW. Increased migration of murine keratinocytes under hypoxia is mediated by induction of urokinase plasminogen activator. J Invest Dermatol 2002; 119(6):1304–9.
    60. Kirfel G, Herzog V. Migration of epidermal keratinocytes: mechanisms, regulation, and biological significance. Protoplasma 2004; 223(2–4):67–78.
    61. Myers SR, Leigh IM, Navsaria H. Epidermal repair results from activation of follicular and epidermal progenitor keratinocytes mediated by a growth factor cascade. WoundRepair Regen 2007; 15(5):693–701.
    62. Wilgus TA, Matthies AM, Radek KA, Dovi JV, Burns AL, Shankar R, et al. Novel function for vascular endothelial growth factor receptor-1 on epidermal keratinocytes. Am J Pathol 2005; 167(5):1257–66.
    63. Hakvoort TE, Altun V, Ramrattan RS, van der Kwast TH, Benner R, van Zuijlen PP, et al. Epidermal participation in post-burn hypertrophic scar development. Virchows Arch 1999; 434(3):221–6.
    64. Ong CT, Khoo YT, Tan EK, Mukhopadhyay A, Do DV, Han HC, et al. Epithelial- mesenchymal interactions in keloid pathogenesismodulate vascular endothelial growth factor expression and secretion. J Pathol 2007; 211(1):95–108.
    65. Xia W, Phan TT, Lim IJ, Longaker MT, Yang GP. Complex epithelial-mesenchymal interactions modulate transforming growth factor-beta expression in keloid derived cells. Wound Repair Regen 2004; 12(5):546–56.
    66. Khoo YT, Ong CT, Mukhopadhyay A, Han HC, Do DV, Lim IJ, et al. Upregulation of secretory connective tissue growth factor (CTGF) in keratinocyte-fibroblast coculture contributes to keloid pathogenesis. J Cell Physiol 2006; 208(2):336–43.
    67. Funayama E, Chodon T, Oyama A, Sugihara T. Keratinocytes promote proliferation and inhibit apoptosis of the underlying fibroblasts: an important role in the pathogenesis of keloid. J Invest Dermatol 2003; 121(6): 1326–31.
    68. Lim IJ, Phan TT, Bay BH, Qi R, Huynh H, Tan WT, et al. Fibroblasts cocultured with keloid keratinocytes: normal fibroblasts secrete collagen in a keloidlike manner.. Am J Physiol Cell Physiol 2002; 283(1):C212–22.
    69. Bellemare J, Roberge CJ, Bergeron D, Lopez-Valle CA, Roy M, Moulin VJ. Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars. J Pathol 2005; 206(1):1–8.
    70. Castagnoli C, Trombotto C, Ondei S, Stella M, Calcagni M, Magliacani G, et al. Characterization of T-cell subsets infiltrating post-burn hypertrophic scar tissues. Burns journal of the International Society for Burn Injuries 1997; 23(7–8):565–72.
    71. Desmoulie re A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 2005; 13(1):7–12.
    72. Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts.Curr Opin Biotechnol 2003; 14(5):538–46.
    73. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127(3):526–37.
    74. Nedelec B, Shankowsky H, Scott PG, Ghahary A, Tredget EE. Myofibroblasts and apoptosis in human hypertrophic scars: the effect of interferon-alpha2b. Surgery 2001; 130(5):798–808.
    75. Su CW, Alizadeh K, Boddie A, Lee RC. The problem scar. Clin Plast Surg 1998; 25(3):451–65.
    76. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen 1999;7(2):79–89.
    77. Li L, Asteriou T, Bernert B, Heldin CH, Heldin P. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J 2007; 404(2):327–36.
    78. West DC, Shaw DM, Lorenz P, Adzick NS, Longaker MT. Fibrotic healing of adult and late gestation fetal wounds correlates with increased hyaluronidase activity and removal of hyaluronan. Int J Biochem Cell Biol 1997; 29(1):201–10.
    79. Croce MA, Dyne K, Boraldi F, Quaglino D, Cetta G, Tiozzo R, et al. Hyaluronan affects protein and collagen synthesis by in vitro human skin fibroblasts. Tissue Cell 2001; 33(4): 326–31.
    80. Hu M, Sabelman EE, Cao Y, Chang J, Hentz VR. Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds. J Biomed Mater Res Part B Appl Biomater 2003; 67(1):586–92.
    81. Mehra TD, Ghosh K, Shu XZ, Prestwich GD, Clark RA. Molecular stenting with a crosslinked hyaluronan derivative inhibits collagen gel contraction. J Invest Dermatol 2006; 126(10):2202–9.
    82. Igarashi A, Nashiro K, Kikuchi K, Sato S, Ihn H, Fujimoto M, et al. Connective tissue growth factor gene expression in tissue sections from localized scleroderma, keloid, and other fibrotic skin disorders. J Invest Dermatol 1996; 106(4):729–33.
    83. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 2002; 5(3): 153–65.
    84. Duncan MR, Frazier KS, Abramson S, Williams S, Klapper H, Huang X, et al.Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. FASEB J 1999; 13(13):1774–86.
    85. Frazier K,Williams S, Kothapalli D, Klapper H, Grotendorst GR. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 1996; 107(3):404–11.
    86. Bataller R, Sancho-Bru P, Gines P, Brenner DA. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal 2005; 7(9-10):1346–55.
    87. Yahata Y, Shirakata Y, Tokumaru S, Yang L, Dai X, Tohyama M, et al. A novel function of angiotensin II in skin wound healing Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J Biol Chem 2006; 281(19):13209–16.
    88. Rodgers KE, Ellefson DD, Espinoza T, Roda N, Maldonado S, Dizerega GS. Effect of NorLeu3-A (1–7) on scar formation over time after full-thickness incision injury in the rat. Wound Repair Regen 2005; 13(3):309–17.
    89. Rodgers KE, Espinoza T, Felix J, Roda N, Maldonado S, Dizerega GS. Acceleration of healing, reduction of fibrotic scar, and normalization of tissue architecture by an angiotensin analogue NorLeu3-A (1–7). Plast Reconstr Surg 2003; 111(3):1195–206.
    90. Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Iwai M, Horiuchi M, et al. Anti-fibrogenic function of angiotensin II type 2 receptor in CCl4-induced liver fibrosis. Biochem Biophys Res Commun 2006; 346(3):658–64.
    91. Young DM, Greulich KM, Weier HG. Species-specific in sit hybridization with ?uorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil 1996; 17(4):305–10.
    92. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc 2000; 5(1):40–6.
    93. Niessen FB, Spauwen PH, Robinson PH, Fidler V, Kon M. The use of silicone occlusive sheeting (Sil-K) and silicon occlusive gel (Epiderm) in the prevention of hypertrophi scar formation. Plast Reconstr Surg 1998; 102(6):1962–72.
    94. Kresse H, Scho¨nherr E. Proteoglycans of the extracellular matrix and growth control. J Cell Physiol 2001; 189(3): 266–74.
    95. Scott PG, Dodd CM, Ghahary A, Shen YJ, Tredget EE. Fibroblasts from post-burnhypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts. Clin Sci 1998; 94(5):541–7.
    96. Zhang Z, Li XJ, Liu Y, Zhang X, Li YY, Xu WS. Recombinant human decorin inhibits cell proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts. Burns 2007; 33(5):634–41.
    97. Wess TJ. Collagen fibril form and function. Adv Protein Chem 2005; 70:341–74.
    98. Hayakawa T, Hashimoto Y, Myokei Y, Aoyama H, Izawa Y. Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta 1979; 93(1):119–25.
    99. Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendonmatures. Dev Dyn 1997; 208(3):291–8.
    100. Moriguchi T, Fujimoto D. Crosslink of collagen in hypertrophic scar. J Invest Dermatol 1979; 72(3):143–5.
    101. Mercer DK, Nicol PF, Kimbembe C, Robins SP. Identification, expression, and tissue distribution of the three rat lysyl hydroxylase isoforms. Biochem Biophys Res Commun 2003; 307(4):803–9.
    102. Pornprasertsuk S, Duarte WR, Mochida Y, Yamauchi M. Lysyl hydroxylase-2b directs collagen cross-linking pathways in MC3T3-E1 cells. J Bone Miner Res 2004; 19(8):1349–55.
    103. van der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C, Pruijs HE, Sillence DO, et al. Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an Important Enzyme in Fibrosis. J Biol Chem 2003; 278(42):40967–72.
    104. Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30(9):1019–30.
    105. Wassermann RJ, Plo M, Smith P, Wang X, Ko F, Robson MC. Differential production of apoptosis-modulating proteins in patients with hypertrophic burn scar. J Surg Res 1998; 75(1):74–80
    106. Tanaka A, Hatoko M, Tada H, Iioka H, Niitsuma K, Miyagawa S. Expression of p53 family in scars. J Dermatol Sci 2004; 34(1):17–24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700