基于MEMS技术的细胞破碎微流控芯片系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞破碎的目的是对初级样品实施细胞破碎处理以获得其中的内容物,例如蛋白质、脱氧核糖核酸(Deoxyribonucleic acid,简称DNA)、核糖核酸(RiboNucleic Acid,简称RNA),这对大多数细胞内物质的反应和检测进行研究的微流控芯片是必不可少的。近几年来电场法促使细胞破碎逐渐受到研究者们的关注,关于电子细胞破碎微流控芯片研究的报导数量也在逐渐上升。采用电场的方法进行细胞破碎是因为电场破碎法相对于传统的机械法、化学法、生物法等简化了样品提纯的过程、而且不会使蛋白质发生变性等,并且因为该方式采用了微型化,能较容易和其他芯片进行集成
     本文基于微机电系统(Micro-Electro-Mechanical Systems,简称MEMS)加工技术,设计并制备了一种运用较低的脉冲电压来实现细胞破碎的微流控芯片系统。该微流控芯片系统的主要任务是实现微流控系统的样品预处理,为生物、化学的后续的研究和分析奠定基础。
     本论文中细胞破碎微流控芯片的制作是运用了微机电系统加工技术中的剥离工艺,采用标准光刻胶处理方法,以玻璃为基底,在玻璃上制作了Ti/Pt微电极。将外部的施加低脉冲电压施加在6对微电极上,使微电极产生细胞破碎所需的高场强。同时,本论文还设计了专用的细胞破碎信号发生器,该信号发生器是以C8051F020单片机为核心的硬件电路组成的。该信号发生器能实现对芯片施加外部电压信号,该电压信号可实现脉冲宽度、脉冲周期、脉冲电压幅度的调节。设计了细胞破碎效果检测系统,运用电荷耦合器件(Charge Coupled Device,简称CCD)将采集到的细胞图片传输到计算机,利用图像处理技术对细胞进行计数,可以计算出细胞破碎率。分别运用八邻域边界跟踪法和梯度Hough变换法对预处理后的细胞图像进行计数,结果表明利用八邻域边界跟踪标号进行细胞计数,对没有粘连细胞图像计数效果较好;但是当细胞图像中存在粘连情况时,对计数结果影响较大。本文提出了利用梯度Hough变换法实现显微细胞自动计数。梯度Hough变换在标准Hough变换基础上提高了对细胞计数的速度,并且结果显示其计数的准确率较八邻域边界跟踪法高。分别采用BHK21(幼仓鼠肾细胞),C2C12(小鼠成肌细胞)对芯片进行了细胞破碎实验检测。在倒置显微镜下在线观察BHK21、C2C12细胞破碎的过程,实验结果表明低脉冲电压形成的电场使这两种细胞都完全破碎了,并且对从破碎物进行了DNA质量检测。
     由于该系统制作了电极距离为微米级的微小电极,3V的低脉冲电压就实现了细胞破碎。实验表明,低电压脉冲信号的宽度不同,其细胞破碎所需的电压和破碎率关联性。细胞破碎率和低电压脉冲信号的宽度、电压幅度和细胞悬浮液的电导率均有关系。通过实现发现干净的聚甲基丙烯酸甲酯(polymethyl methacrylate,简称PMMA)与芯片的玻璃衬底间形成了半封闭沟道,该沟道可以较好的防止施加低脉冲电压时产生气泡,实验表明产生的气泡与细胞悬浮液的电导率有关联。
     本论文基于MEMS技术设计的细胞破碎微流控芯片系统,实现了在低电压脉冲信号的作用下使细胞以较高的破碎率进行了破碎,并且实现了在线检测细胞破碎率。该系统具有操作简单、所需破碎的脉冲电压低、制作成本低、微型化等优势。
The purpose of cell lysis is to break primary samples and to obtain inner contents (such as protein, DNA, RNA). Microfluidic chip is indispensable for the majority of studies on cellular reaction and detection. In recent years, electronic ways of cell lysis have been paid more attention by researchers and the number of relative reports is rising gradually. Compared with chemical ways and pyrogenation, electronic ways greatly simplify the purifying steps and don't change the protein properties. And its micromation can be conveniently integrated into other biochip samples.
     Based on Micro-Electro-Mechanical Systems (abbreviation MEMS), a new microfluidic chips system for cell lysis under low voltage is designed and made in this thesis. It is used for the pretreatment in microfluidic system and this sets the base for later chemical and biological research and analysis. In this thesis the new system is made with the standard light-sensitive lacquer method of stripping technology and Ti/Pt microelectrodes on glass substrate. High field intensity can be obtained by pulsed voltage exerted by 6 pairs of microelectrodes. Meantime impulse signal generators especially for cell lysis is designed. It is composed of C8051F020 singlechip computer and applied circuit and imitated output circuit. This generator can justify impulse width, impulse cycle and impulse voltage extent. The new microfluidic chips system also included a cell lysis detecting effect system.
     With charge coupled device, the detecting system transports the collected cell images to computers and count cells. Cell lysis rate can be calculated through image processing technology. With 8-connected boundary track and grads hough transform to count cells, the result shows that 8-connected boundary track is better and the effect is also better for non-conglutination cell images. But it matters greatly if there exists conglutination in images. This thesis put forward calculating cells with grads hough transform automatically. Grads hough transform is faster in calculating based on standard grads hough transform. The results shows that this method is more accurate than 8-connected boundary track in calculating. BHK21 and C2C12 are respectively used in the cell lysis experiments to test the chip. They are observed through inverted microscope. The observing result shows that impulse electrical field made these two kinds of cells completely broken and extracted DNA from broken cells successfully.
     Since the distance between electrodes are measured by micron, the voltage needed for cell lysis declines to 3v. The experiment also shows that there is subtle difference between the needed voltage and cell lysis rate under the effect of different impulse signals. Cell lysis rate is relative with impulse width, impulse voltage and electrical conductivity of cell suspending liquid. Researches show that the semi-closed passage between clean polymethyl methacrylate and chips can effectively prevent the production of bubbles. The production of bubbles is also relative with electrical conductivity of cell suspending liquid.
     In brief, this cell lysis microfluidic chips can break cells under a low voltage at a high breaking rate. It can be conveniently integrated into microfluidic systems or chip experiments for the pretreatment of samples. This system also has advantages, such as low impulse voltage, low cost and micromation etc.
引文
[1]吴梧桐.生物制药工艺学(第二版)[M].北京:中国医药科技出版社,2006:120-121
    [2]李从军,罗世炜,汤文浩.生物产品分离纯化技术[M].武汉:华中师范大学出版社,2009:29-30
    [3]Huang G M, Miao G H. The dawn of the post-genome era, seen from the ocean front[J]. Trends Biotechnol,1997,15(6):200-202
    [4]Patterson S D. Identification of low to subpicomolar quantities of electrophoretically separated proteins:towards protein chemistry in the post-genome era[J]. Biochem Soc Trans,1997,25(1):255-262
    [5]Workman P. Towards intelligent anticancer drug screening in the post-genome era[J]. Anticancer Drug Des,1997,12(7):525-531
    [6]Gaston S M, Loughlin K R. Now what do we do with all these genes? Yeast-based two-hybrid analysis:an emerging technology for molecular urology in the post-genome era[J]. Urology,1999,53(4):835-842
    [7]Seoighe C, Wolfe K H. Yeast genome evolution in the post-genome era. Curr Opin Microbiol,1999,2(5):548-554
    [8]Uchida K. Recent advances in the gene chip and its role in the post-genome era[J]. Seikagaku,1999,71(2):119-124
    [9]Xu Z R, Yang C G, Liu C H, et al. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture[J]. Talanta,2010,80(3):1088-1093
    [10]Liu Z, Zhang Y, Yu J, et al. A microfluidic chip with poly(ethylene glycol) hydrogel microarray on nanoporous alumina membrane for cell patterning and drug testing[J]. Sensors and Actuators B:Chemical,2010,143(2):776-783
    [11]Daud S S, Ibrahim K, Choong S S, et al. Microfluidic chip-based assay for post-hematopoietic stem cell transplantation chimerism monitoring using polymorphic tandem repeat markers[J]. Analytical Biochemistry,2010,397(2): 181-185
    [12]Glawdel T, Ren C L. Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips[J]. Mechanics Research Communications,2009,36(1): 75-81
    [13]Zhao H, Gao L, Luo J, et al. Massively parallel display of genomic DNA fragments by rolling-circle amplification and strand displacement amplification on chip[J]. Talanta,2010,82(2):477-482
    [14]House D L, Chon C H, Creech C B, et al. Miniature on-chip detection of unpurified methicillin-resistant Staphylococcus aureus (MRSA) DNA using real-time PCR[J]. Biotechnol,2010,146(3):93-99
    [15]Iwano S, Ichikawa M, Takizawa S, et al. Identification of AhR-regulated genes involved in PAH-induced immunotoxicity using a highly-sensitive DNA chip, 3D-Gene Human Immunity and Metabolic Syndrome 9k[J]. Toxicol In Vitro,2010, 24(1):85-91
    [16]Basu S, Sharma S, Kar S, et al. DNA chip-assisted diagnosis of a previously unknown etiology of intermediate uveitis-Toxoplasma gondii[J]. Indian J Ophthalmol,2010,58(6):535-537
    [17]Nazar R N, Chen P, Dean D, et al. DNA chip analysis in diverse organisms with unsequenced genomes[J]. Mol Biotechnol,2010,44(1):8-13
    [18]Asbach B, Kolb M, Liss M, et al. Protein microarray assay for the screening of SH3 domain interactions [J]. Anal Bioanal Chem,2010,398(5):1937-1946
    [19]Khanna P, Ramachandran N, Yang J, et al. Nanocrystalline diamond microspikes increase the efficiency of ultrasonic cell lysis in a microfluidic lab-on-a-chip[J]. Diamond and Related Materials,2009,18(4):606-610
    [20]Song S, Lee H, Min Y H, et al. Electromagnetic microfluidic cell labeling device using on-chip microelectromagnet and multi-layered channels[J]. Sensors and Actuators B:Chemical,2009,141(1):210-216
    [21]Yeh C H, Lin P W, Lin Y C. Chitosan microfiber fabrication using microfluidic chips of different sheath channel angles and its application on cell culture[J]. Procedia Chemistry,2009,1(1):357-360
    [22]Zhu L, Lu M, Yin X. Ultrasensitive determination of intracellular superoxide in individual HepG2 cells by microfluidic chip electrophoresis[J]. Talanta,2008,75(5): 1227-1233
    [23]Ota H, Yamamoto R, Deguchi K, et al. Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow[J]. Sensors and Actuators B:Chemical, 2010,147(1):359-365
    [24]Sikanen T, Pedersen-Bjergaard S, Jensen H, et al. Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications[J]. Analytica Chimica Acta,2010,658(2):133-140
    [25]Hultstrm J, Manneberg O, Dopf K, et al. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip[J]. Ultrasound in Medicine & Biology,2007,33(1):145-151
    [26]Sun Y, Lim C S, Liu A Q, et al. Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting[J]. Sensors and Actuators A: Physical,2007,133(2):340-348
    [27]Nie F, Yamada M, Kobayashi J, et al. On-chip cell migration assay using microfluidic channels[J]. Biomaterials,2007,28(27):4017-4022
    [28]Yue S, Xue-Feng Y. Novel multi-depth microfluidic chip for single cell analysis[J]. Journal of Chromatography A,2006,1117(2):228-233
    [29]Lee S W, Tai Y C. A micro cell lysis device[J]. Sensors and Actuators A:Physical, 1999,73(1):74-79
    [30]Wang H Y, Bhunia A K, Lu C. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage[J]. Biosens Bioelectron,2006,22(5):582-588
    [31]Lee D W, Cho Y H. A continuous electrical cell lysis device using a low dc voltage for a cell transport and rupture[J]. Sensors and Actuators B:Chemical,2007,124(1): 84-89
    [32]He H, Chang D C, Lee Y K. Micro pulsed radio-frequency electroporation chips[J]. Bioelectrochemistry,2006,68(1):89-97
    [33]Sowa M B, Chrisler W B, Zens K D, et al. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2010,687(1):78-83
    [34]Chrysanthopoulos P K, Goudar C T, Klapa M I. Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering[J]. Metabolic Engineering,2010,12(3):212-222
    [35]Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media-Replacing fetal bovine serum in mammalian in vitro methods[J]. Toxicology in Vitro,2010,24(4):1053-1063
    [36]Gibbons H M, Dragunow M. Adult human brain cell culture for neuroscience research[J]. The International Journal of Biochemistry & Cell Biology,2010,42(6): 844-856
    [37]Hijjawi N. Cryptosporidium:New developments in cell culture[J]. Experimental Parasitology,2010,124(1):54-60
    [38]Yamazoe H, Okuyama T, Suzuki H, et al. Fabrication of patterned cell co-cultures on albumin-based substrate:Applications for microfluidic devices[J]. Acta Biomaterialia,2010,6(2):526-533
    [39]Qi X, Shao M, Peng H, et al. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system[J]. Journal of Clinical Neuroscience,2010,17(7):908-913
    [40]Azarin S M, Palecek S P. Development of scalable culture systems for human embryonic stem cells[J]. Biochemical Engineering Journal,2010,48(3):378-384
    [41]Agrawal A A, Nehilla B J, Reisig K V, et al. Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture[J]. Biomaterials,2010,31(20):5408-5417
    [42]Kotnik T, Bobanovic F, Miklavc Caron Ic Caron D. Sensitivity of transmembrane voltage induced by applied electric fields--A theoretical analysis[J]. Bioelectrochemistry and Bioenergetics,1997,43(2):285-291
    [43]Kotnik T, Miklavcic D, Slivnik T. Time course of transmembrane voltage induced by time-varying electric fields--a method for theoretical analysis and its application[J]. Bioelectrochemistry and Bioenergetics,1998,45(1):3-16
    [44]王江,於卫春,乔宇等.外加电场下细胞膜电穿孔的不对称性分析[J].天津职业技术师范学院学报,2003(01):5-9
    [45]王平.细胞传感器[M].北京:科学出版社,2007:25-26
    [46]姚陈果,莫登斌,孙才新等.细胞内外膜跨膜电位频率响应的仿真研究[J].高电压技术,2007(02):86-89
    [47]Daud S S, Ibrahim K, Choong S S, et al. Microfluidic chip-based assay for post-hematopoietic stem cell transplantation chimerism monitoring using polymorphic tandem repeat markers[J]. Analytical Biochemistry,2010,397(2): 181-185
    [48]Wang Y, He Q, Dong Y, et al. In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose[J]. Sensors and Actuators B:Chemical, 2010,145(1):553-560
    [49]Ou J, Ren C L, Pawliszyn J. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications[J]. Analytica Chimica Acta,2010,662(2):200-205
    [50]Aoyama T, Takahata N. Development of the automatic positioning system of microtool edge in micromachining of glass plate for microfluidic chips. CIRP Annals-Manufacturing Technology,2010,59(1):551-554
    [51]Huang Y, Liu S, Yang W, et al. Surface roughness analysis and improvement of PMMA-based microfluidic chip chambers by CO2 laser cutting. Applied Surface Science,2010,256(6):1675-1678
    [52]Northrup V A, Backhouse C J, Glerum D M. Development of a microfluidic chip-based plasmid miniprep. Analytical Biochemistry,2010,402(2):185-190
    [53]Yu J, Liu Z, Liu Q, et al. A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection. Sensors and Actuators A: Physical,2009,154(2):288-294
    [54]Lee C, Lee S, Kim Y, et al. A method of binding kinetics of a ligand to micropatterned proteins on a microfluidic chip[J]. Biosensors and Bioelectronics, 2007,22(6):891-898
    [55]Wang H, Liu Y, Liu C, et al. Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin[J]. Electrochemistry Communications, 2010,12(2):258-261
    [56]Anema S G. The use of "lab-on-a-chip" microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins[J]. International Dairy Journal,2009,19(4):198-204
    [57]Chen Z, Li O, Liu C, et al. Electromagnetic induction detector with a vertical coil for capillary electrophoresis and microfluidic chip[J]. Sensors and Actuators B: Chemical,2009,141(1):130-133
    [58]Rob T, Wilson D J. A Versatile Microfluidic Chip for Millisecond Time-Scale Kinetic Studies by Electrospray Mass Spectrometry[J]. Journal of the American Society for Mass Spectrometry,2009,20(1):124-130
    [59]Yeh C H, Lin P W, Lin Y C. Chitosan microfiber fabrication using microfluidic chips of different sheath channel angles and its application on cell culture[J]. Procedia Chemistry,2009,1(1):357-360
    [60]Garca-Alonso J, Greenway G M, Hardege J D, et al. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds[J]. Biosensors and Bioelectronics,2009,24(5):1508-1511
    [61]Liu J, Qiao H, Liu C, et al. Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes[J]. Sensors and Actuators B:Chemical,2009,141(2):646-651
    [62]Feng X, Du W, Luo Q, et al. Microfluidic chip:Next-generation platform for systems biology[J]. Analytica Chimica Acta,2009,650(1):83-97
    [63]Li Q, Zhang H, Wang Y, et al. Versatile programmable eight-path-electrode power supply for automatic manipulating microfluids of a microfluidic chip[J]. Sensors and Actuators B:Chemical,2009,136(1):265-274
    [64]Chen W, Peng C, Jin Z, et al. Ultrasensitive immunoassay of 7-aminoclonazepam in human urine based on CdTe nanoparticle bioconjugations by fabricated microfluidic chip[J]. Biosensors and Bioelectronics,2009,24(7):2051-2056
    [65]Bedder M.54 Patient selection for rechargeable pulse generators (RPG)[J]. European Journal of Pain Supplements,2010,4(1):16-17
    [66]Walckiers G, Fuchs B, Thiran J, et al. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation[J]. Journal of Neuroscience Methods,2010,186(1):90-96
    [67]Gil A, Castro E, Daz J, et al. Custom pulse generator for RPC testing[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,602(3):801-804
    [68]Kostas J, Foucaut J M, Stanislas M. The effects of pulse frequency and duty cycle on the skin friction downstream of pulsed jet vortex generators in an adverse pressure gradient turbulent boundary layer[J]. Aerospace Science and Technology, 2009,13(1):36-48
    [69]Gwilliam J C, Horch K. A charge-balanced pulse generator for nerve stimulation applications[J]. Journal of Neuroscience Methods,2008,168(1):146-150
    [70]Yannopoulos D, Lurie K G, Sakaguchi S, et al. Reduced Atrial Tachyarrhythmia Susceptibility After Upgrade of Conventional Implanted Pulse Generator to Cardiac Resynchronization Therapy in Patients With Heart Failure[J]. Journal of the American College of Cardiology,2007,50(13):1246-1251
    [71]Hauser R G, Hayes D L, Epstein A E, et al. Multicenter experience with failed and recalled implantable cardioverter-defibrillator pulse generators[J]. Heart Rhythm, 2006,3(6):640-644
    [72]Krsmanovic L Z, Hu L, Leung P, et al. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms[J]. Trends in Endocrinology & Metabolism,2009, 20(8):402-408
    [73]Gil A, Castro E, Daz J, et al. Custom pulse generator for RPC testing[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2009,602(3):801-804
    [74]Jahan M P, Wong Y S, Rahman M. A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator[J]. Journal of Materials Processing Technology,2009,209(4):1706-1716
    [75]Butson C R, Mcintyre C C. Differences among implanted pulse generator waveforms cause variations in the neural response to deep brain stimulation[J]. Clinical Neurophysiology,2007,118(8):1889-1894
    [76]Moon J. A compact high-voltage pulse generator using a rotary airhole sparkgap[J]. Journal of Electrostatics,2007,65(8):527-534
    [77]Hauser R G, Hayes D L, Kallinen L M, et al. Clinical experience with pacemaker pulse generators and transvenous leads:An 8-year prospective multicenter study[J]. Heart Rhythm,2007,4(2):154-160
    [78]Kunieda M, Hayasaka A, Yang X D, et al. Study on Nano EDM Using Capacity Coupled Pulse Generator[J]. CIRP Annals-Manufacturing Technology,2007,56(1): 213-216
    [79]Zei P C, Eckart R E, Epstein L M. Modified Temporary Cardiac Pacing Using Transvenous Active Fixation Leads and External Re-Sterilized Pulse Generators[J]. Journal of the American College of Cardiology,2006,47(7):1487-1489
    [80]Knobil E. Discovery of the hypothalamic gonadotropin-releasing hormone pulse generator and of its physiologic significance[J]. American Journal of Obstetrics and Gynecology,2005,193(5):1765-1766
    [81]Gonzalez J, Milbouw G. Site alternatif d'implantation du botier de neurostimulation cordonale postrieure[J]. Neurochirurgie,2005,51(5):489-491
    [82]Matsuyama S, Ohkura S, Sakurai K, et al. Activation of melanocortin receptors accelerates the gonadotropin-releasing hormone pulse generator activity in goats[J]. Neuroscience Letters,2005,383(3):289-294
    [83]Gornick C C, Hauser R G, Almquist A K, et al. Unpredictable implantable cardioverter-defibrillator pulse generator failure due to electrical overstress causing sudden death in a young high-risk patient with hypertrophic cardiomyopathy[J]. Heart Rhythm,2005,2(7):681-683
    [84]Roth C, Schmidberger H, Lakomek M, et al. Reduction of[gamma]-aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing-hormone-pulse generator leading to precocious puberty in female rats[J]. Neuroscience Letters,2001,297(1):45-48
    [85]Kirk M M, Shorofsky S R, Gold M R. Comparison of the effects of active left and right pectoral pulse generators on defibrillation efficacy[J]. The American Journal of Cardiology,2001,88(11):1308-1311
    [86]Funabashi T, Jinnai K, Sano A, et al. Pentobarbital stimulates the activity of the GnRH pulse generator interacting with opioid neurons in rats in proestrus[J]. Psychoneuroendocrinology,2000,25(3):277-287
    [87]Chen S X, Wang J Z, Van Kessel J S, et al. Effect of somatic cell count in goat milk on yield, sensory quality, and fatty acid profile of semisoft cheese[J]. Journal of Dairy Science,2010,93(4):1345-1354
    [88]Green M J, Bradley A J, Medley G F, et al. Cow, Farm, and Herd Management Factors in the Dry Period Associated with Raised Somatic Cell Counts in Early Lactation[J]. Journal of Dairy Science,2008,91(4):1403-1415
    [89]Mazal G, Vianna P C B, Santos M V, et al. Effect of Somatic Cell Count on Prato Cheese Composition[J]. Journal of Dairy Science,2007,90(2):630-636
    [90]Green M J, Bradley A J, Newton H, et al. Seasonal variation of bulk milk somatic cell counts in UK dairy herds:Investigations of the summer rise[J]. Preventive Veterinary Medicine,2006,74(4):293-308
    [91]Berry D P, O'Brien B, O'Callaghan E J, et al. Temporal Trends in Bulk Tank Somatic Cell Count and Total Bacterial Count in Irish Dairy Herds During the Past Decade[J]. Journal of Dairy Science,2006,89(10):4083-4093
    [92]Calus M P L, Janss L L G, Veerkamp R F. Genotype by Environment Interaction for Somatic Cell Score Across Bulk Milk Somatic Cell Count and Days in Milk[J]. Journal of Dairy Science,2006,89(12):4846-4857
    [93]Connor M A, Jaso-Friedmann L, Leary Iii J H, et al. Role of nonspecific cytotoxic cells in bacterial resistance:Expression of a novel pattern recognition receptor with antimicrobial activity[J]. Molecular Immunology,2009,46(5):953-961
    [94]Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells[J]. Current Opinion in Immunology,2008,20(5): 530-537
    [95]苑玮琦,张田文.血细胞图像的计数方法研究[J].计算机应用与软件,2000,17(5):61-64
    [96]刘俊丽,薛河儒.基于图像处理的牛奶体细胞计数方法的研究[J].内蒙古农业大学学报:自然科学版,2006,27(4):140-144
    [97]Lee E, Fahimian B P, Iancu C V, et al. Radiation dose reduction and image enhancement in biological imaging through equally-sloped tomography[J]. Journal of Structural Biology,2008,164(2):221-227
    [98]Paunesku T, Ke T, Dharmakumar R, et al. Gadolinium-conjugated TiO2-DNA oligonucleotide nanoconjugates show prolonged intracellular retention period and T1-weighted contrast enhancement in magnetic resonance images[J]. Nanomedicine: Nanotechnology, Biology and Medicine,2008,4(3):201-207
    [99]Fischer F, Gudgin Dickson E F, Pottier R H. In vivo fluorescence imaging using two excitation and/or emission wavelengths for image contrast enhancement[J]. Vibrational Spectroscopy,2002,30(2):131-137
    [100]Shang X, Han D. Application of the variational iteration method for solving nth-order integro-differential equations[J]. Journal of Computational and Applied Mathematics,2010,234(5):1442-1447
    [101]Chen X, Wang L. The variational iteration method for solving a neutral functional-differential equation with proportional delays[J]. Computers & Mathematics with Applications,2010,59(8):2696-2702
    [102]Yildirim A, Zis T. Solutions of singular IVPs of Lane-Emden type by the variational iteration method[J]. Nonlinear Analysis:Theory, Methods & Applications,2009, 70(6):2480-2484
    [103]Dehghan M, Shakeri F. Application of He's variational iteration method for solving the Cauchy reaction-diffusion problem[J]. Journal of Computational and Applied Mathematics,2008,214(2):435-446
    [104]Wang N, Li X, Chen X. Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm[J]. Pattern Recognition LettersMeta-heuristic Intelligence Based Image Processing,2010,31(13):1809-1815
    [105]Min T, Park R. Eyelid and eyelash detection method in the normalized iris image using the parabolic Hough model and Otsu's thresholding method[J]. Pattern Recognition Letterslmage/video-based Pattern Analysis and HCI Applications,2009, 30(12):1138-1143
    [106]Huang D, Wang C. Optimal multi-level thresholding using a two-stage Otsu optimization approach[J]. Pattern Recognition Letters,2009,30(3):275-284
    [107]Datta A, Soundaralakshmi S. Fast and scalable algorithms for the Euclidean distance transform on a linear array with a reconfigurable pipelined bus system[J]. Journal of Parallel and Distributed Computing,2004,64(3):360-369
    [108]Bruno O M, Costa L D F. A parallel implementation of exact Euclidean distance transform based on exact dilations[J]. Microprocessors and Microsystems,2004, 28(3):107-113
    [109]Jang J, Hong K. Linear band detection based on the Euclidean distance transform and a new line segment extraction method[J]. Pattern Recognition,2001,34(9): 1751-1764
    [110]Boxer L, Miller R. Efficient Computation of the Euclidean Distance Transform[J]. Computer Vision and Image Understanding,2000,80(3):379-383
    [111]Haschke H, Heinrichs W. Splitting Techniques with Staggered Grids for the Navier-Stokes Equations in the 2D Case[J]. Journal of Computational Physics,2001, 168(1):131-154
    [112]Barcelos C A Z, Pires V B. An automatic based nonlinear diffusion equations scheme for skin lesion segmentation[J]. Applied Mathematics and Computation, 2009,215(1):251-261
    [113]Hu L, Cheng H D, Zhang M. A high performance edge detector based on fuzzy inference rules[J]. Information Sciences,2007,177(21):4768-4784
    [114]Zhang Y, Rockett P I. The Bayesian operating point of the Canny edge detector[J]. IEEE Trans Image Process,2006,15(11):3409-3416
    [115]Kempczynski A, Grzegorzewski B. Estimation of red blood cell aggregate velocity during sedimentation using the Hough transform[J]. Optics Communications,2008, 281(21):5487-5491
    [116]Surat S, Das P K. Fuzzy Hough transform and an MLP with fuzzy input/output for character recognition[J]. Fuzzy Sets and Systems,1999,105(3):489-497
    [117]Chatzis V, Pitas I. Fuzzy cell Hough transform for curve detection[J]. Pattern Recognition,1997,30(12):2031-2042
    [118]Ker J, Frank Chen F, Lu J. A Quick Hough Transform Parameter Search algorithm for flexible part inspection[J]. Journal of Manufacturing Systems,1996,15(6): 404-418
    [119]Klviinen H, Hirvonen P, Xu L, et al. Probabilistic and non-probabilistic Hough transforms:overview and comparisons[J]. Image and Vision Computing,1995, 13(4):239-252
    [120]Atiquzzaman M, W Akhtar M. Complete line segment description using the Hough transform[J]. Image and Vision Computing,1994,12(5):267-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700