纳米氧化钛/β-环糊精膜光电化学传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电化学型半导体传感器是一种利用半导体的光电特性来检测与光生电流或光生电压相关的待测物质浓度及生化过程参数的分析新技术。随着新型半导体功能材料及相关加工技术的不断涌现,光电化学型半导体传感器已在微型化、集成化、多点及多参数测量方面显现出优势,将纳米半导体材料应用于光电化学传感器领域的研究,有望在复杂体系中实现在线高灵敏、快速测定,在生物、医药、环境监测、食品等领域显示出更加广阔的应用前景。本研究将纳米材料技术与光电化学传感器结合在一起,主要做了以下三方面的工作:
     1、采用溶胶-凝胶法在金电极上逐层自组装了纳米TiO_2/β-CD膜,利用石英晶体微天平现场技术(QCM)、电子能谱图扫描、电镜扫描、红外光谱等手段考察了纳米氧化钛与环糊精自组装过程,证明了β-CD羟基与TiO_2表面羟基存在分子间缔合;对纳米TiO_2与β-CD组装机理进行了推断,根据β-CD上伯羟基活性较高和TiO_2表面吸附羟基的作用原理,提出了β-CD与TiO_2组装膜的结构形式。
     2、以甲基橙为目标物,采用电化学体系在纳米TiO_2/β-CD膜电极上进行光电催化降解反应研究,比较了复合薄膜在电催化、光催化、光电催化体系中光电催化降解效率;在光电催化体系中考察了电压、pH值、β-CD的掺入对光电催化降解效率的影响。实验结果表明:随着外加电压的增加,甲基橙的降解率在100min内从53.4%提高到91.8%,但是偏电压也不是越高越好,当外加电压达到一定值时,光生载流子已达到充分分离,形成饱和的光电流。因此,在光电流接近饱和状态时,继续增加电压对光电催化反应速率提高幅度不大;溶液的pH值对光电催化反应有较大的影响,酸性条件有助于光电催化降解有机物;由于β-CD的包合作用,改善了TiO_2的表面特性,增加了包合物的客体与TiO_2的相互作用,提高了TiO_2对包合物中的有机物催化降解效率。
     3、制备了基于逐层自组装纳米TiO_2/β-CD膜光电化学传感器,并将其用于水体化学需氧量(COD)的测定。实验证明纳米TiO_2/β-CD膜电极比单纯的TiO_2膜电极具有更好的光电催化作用,能提高水体有机物的降解率,使该传感器具有更高的灵敏度及更宽的线性范围。COD值在4.6~138.0mg·L~(-1)浓度范围内与传感器的光电流感应信号成良好的线性关系。将该方法用于实际水样的测定,测定结果与重铬酸钾标准分析法有较好的一致性,且具有操作简单、响应快速、无二次污染等优点,具有广阔的应用前景。
Photoelectrochemical semiconductor sensor is a new kind of analytical technology for the detection of the concentration of analytes and the parameters of biochemical processes related to photocurrent or photopotential.Photoelectrochemical semiconductor bioseneors have advantages in the aspects of micromation、intergration、multipoint and multiparameter measurement along with the appearance of new semiconductor functional materials and related technologys.It is hopeful to achive high sensitivity and rapid detection online in the complicated systems and to find wide applications in the fields of biology、medicine、environment monitoring、foodstuff and so on.We combined nano-material technique with photoelectrochemical semiconductor sensor and the main research contents and conclusions are as follows:
     (1)A nanometer TiO_2/β-CD films photoelectrochemical sensor was prepared by a sol-gel layer-by-layer self-assembly method.In-situ quartz crystal microbalance(QCM)、scanning electron microscope(SEM)、electronic energy spectrogram,FT-IR spectra were employed to prove the molecule combination between-OH ofβ-CD and-OH of TiO_2;the combination mechanism of nano-TiO_2 andβ-CD was deduced and the structural style of nano-TiO_2 andβ-CD assembly film was superior according to the high activity of C_1-OH ofβ-CD and principle of adsorption on the surface of TiO_2.
     (2)The methyl orange(MO)was used as detected material to study the photoelectrical catalytic degradation reaction on the nano-TiO_2 andβ-CD film electrode in the electrochemical system.The efficiency of photoelectrical catalytic degradation of composite film was compared with those of the systems of electrical catalytic degradation,photic catalytic degradation and photoelectrical catalytic degradation reaction; the influence of voltage、pH and addition ofβ-CD was studied in the system of photoelectrical catalytic degradation.The results showed that the degradation rate of MO was improved from 53.4%to 91.8%in 100 min.When the voltage achieved a certain value,photo-induced carriers separated adequately and formed saturated photo electricity.So increasing voltage can not improve the degradation rate obviously when photo electricity was saturated;the pH value of solution had great influence on photoelectrical catalytic degradation reaction,acidity is helpful to photoelectrical catalytic degradation of organics;the surface characteristic of TiO_2 was ameliorated、the mutual action between object of inclusion compound and TiO_2 was enhanced and the degradation rate of organics in the inclusion compound was improved because of the inclusion action ofβ-CD.
     (3)A nanometer TiO_2/β-CD films photoelectrochemical sensor was prepared by a layer-by-layer self-assembly method and applied to the detection of chemical oxygen demand(COD)of water.The results showed that nanometer TiO_2/β-CD film electrode had better photoelectrical catalytic degradation affection than TiO_2 electrode which can improved the sensitive and expanded the linear range of sensor.The photo electricity of sensor responded linearly to the COD in the range of 4.6~138.0 mg·L~(-1).Its application in practical water analysis has achieved results in good agreement with those from the conventional dichromate method;meanwhile,the process required easy operation、less analysis time and no hyper toxic reagents,suggesting that it would have a good prospect of application.
引文
[1]金利通,鲜跃仲.基于纳米材料的化学与生物传感器研究进展[J].化学传感器,2006,26(1):4-10.
    [2]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002:3-8.
    [3]范崇政,肖建平,丁健伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001,46(4):256-273.
    [4]张志勇,陈兴梧,牛文成,等.光寻址电位传感器测量系统的研究[J].仪表技术与传感器,2003,12:34-36.
    [5]Hafeman D J,Parce J W,McConnell H M.Light addressable potentiometric sensor for biochemical systems[J].Science,1988,240:1182-1185.
    [6]Nakao M,Yoshinobu T,Iwasaki H.Scanning-laserbeam semiconductor pH imaging sensor[J].Sensors and Actuators B,1994,20:119-123.
    [7]王平,蔡华,徐莹,等.基于微透镜阵列的多通道光寻址电位传感器研究[J].传感技术学报,2007,20(1):58-63.
    [8]Schoning M J,Wager T,Rao C,et al."LAPS Card"—A novel chip card-based light-addressable potentiometric sensor(LAPS)[J].Sensors and Actuators B,2006,118:33-40.
    [9]秦利锋,许改霞,李蓉,等.基于光寻址电位传感器的单细胞传感器设计[J].浙江大学学报,2005,39(9):1404-1408.
    [10]Wang P,Xu G X,Ye X S,et al.Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring[J].BiosensorsandBioelectronics ,2005,20:1757-1763.
    [11]Feng X Z,Jia Y F,Li X,et al.Direct Electrochemistry of Glucose Oxidase and Electrochemical Biosensing of Glucose on Quantum Dots/Carbon Nanotubes Electrodes[J].Biosensors and Bioelectronics,2007,22:3261-3266.
    [12]Lent C S,Isaksen B,Lieberman M.Simulation of random cell displacements in QCA[J].J.Am.Chem.Soc.,2003,125:1056-1063.
    [13]Sasaki S,Franceschi S,Kouwenhovern L P.Kondo effect in quantum dots and molecular devices[J].Nature,2000,405:764-767.
    [14]Chan W,Nie S.Quantum dot bioconjugates,for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018.
    [15]Bruchez J M,Moronne M,Gin P,et al.Semiconductor Nanocrystals as Fluorescent Biological Labels[J].Science,1998,281:2013-2016.
    [16]Willner I,Baron R,Willner B.Integrated nanoparticle-biomolecule systems forbiosensing and bioelectronics[J].Biosensors and Bioelectronics,2007,22(9):1841-1852.
    [17]Willner I,Willner B,Katz E.Biomolecule-nanoparticle hybrid systems for bioelectronic applications[J].Bioelectrochemistry,2007,71(1):2-11.
    [18]Katz E,Wasserman J Willner I,et al.Potential-induced switching of electrical contact by controlling droplet shapes at hydrophilic/hydrophobic interfaces[J].J.Am.Chem.Soc,2003,125:122-123.
    [19]Gill R,Patolsky F,Willner I,et al.Amplified Electrochemical and Photoelectrochemical Analysis of DNA[J].Angew.Chem.Int.Ed,2005,44:455-457.
    [20]Katz E,Wasserman J,Willner I,et al.Analysis of NAD(P)+-cofactors by redox-functionalized ISFET devices[J].J.Am.Chem.Soc,2003,125:622-623.
    [21]Vastarella W,Nicatri R.Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensors[J].Talanta,2005,66:627-633.
    [22]Curri M L,Cosma P,Della Monica M,et al.Development of a novel enzyme/emiconductor nanoparticles system for biosensor application[J].Materials Science and Engineering C,2002,22:449-452.
    [23]Chee G J,Nomura Y,Karube Isao,et al.Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand[J].Biosensors and Bioelectronics,2005,21:67-73.
    [24]金利通,陈俊水,张继东,等.The Development of Fast COD Detection Instrument[J].Water Research,2005,39:1340-1346.
    [25]Zen J M,Song Y S,Kumar A S,et al.Enhancement of operational stability of an enzyme biosensor for glucose and sucrose using protein based stabilizing agents [J].Analytical Chemistry,2002,74(23):6126-6130.
    [26]Zen J M,Chung H H,Sue J W,et al.Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats[J].Analytical Chemistry,2003,75(24):7020-7025.
    [27]Kusior E,Radecka M,Zakrzewska K,et al.Visible photocurrent response of TiO_2 anode[J].Surface Science,2006,600(18):3964-3970.
    [28]Mikhail V L.Surface modification of:Ⅲ-Ⅴ semiconductors chemical processes and electronic Properties[J].Progress in Surface Science,2002,70(8):153-186.
    [29]Xagas A P,Bernard M C,Falaras P,et al.Surface modification and photosensitisation of TiO_2 nanocrystalline films with ascorbic acid[J].Journal of Photochemistry and Photobiology A,2000,132:115-120.
    [30]郝彦忠,王伟.量子点PbS修饰纳米结构TiO_2复合膜的光电化学研究[J].无机化学学报,2006,22(11):2071-2074.
    [31]李达钱,陈金嫒.碳纳米管/TiO_2电极光电催化测定耐兰方法探讨[J].浙江工业大学学报,2006,34(4):369-372.
    [32]Willner I,Zayats M,Katz E,et al.Potential-induced switching of electrical contact by controlling droplet shapes at hydrophilic/hydrophobic interfaces[J].J.Am.Chem.Soc,2003,125(51):16006-16014.
    [33]Zen J M,Song Y S,Kumar A S,et al.Multianalyte sensor for the simultaneous determination of hypoxanthine,xanthine and uric acid based on a preanodized nontronite-coated screen-printed electrode[J].Analytical Chemistry,2002,74(23):6126-6130.
    [34]Misiakos K,Kakabakos S E,Petrou P S,et al.A monolithic silicon optoelectronic transducer as a real-time affinity biosensor[J].Analytical Chemistry,2004,76(5):1366-1373.
    [35]He J X,Hisako S,Yasushi U,et al.Sensing of Molecular Chirality on an Electrode Modified with a Clay-Metal Complex[J].J.Phys.Chem.B,2005,109(10):4679-4683.
    [36]Zen J M,Chung H H,Sue J W,et al.Photoelectrocatalytic Oxidation of o-Phenols on Copper-Plated Screen-Printed Electrodes[J].Analytical Chemistry,2003,75(24):7020-7025.
    [37]Lowe L B,Brewer S H,Feldheim D L.Self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid)nanospheres for fabrication of a mediatorless biosensor[J].J.Am.Chem.Soc.,2003,125(47):14258-14259.
    [38]Lee K H,Fang Y K,Liao K C,et al.Novel electrochromic devices(ECD)of tungsten oxide(WO_3)thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor[J].Sensors and Actuators B,2000,69:96-99.
    [39]Bouchtalla S,Auret L,Seta P,et al.In situ AFM Study of the Electropolymeriz ation of Polypyrrole/Gold Nanocomposite[J].Materials Science and Engineering C,2002,21:125-129.
    [40]Dong D,Dong Z,Yang X Q,et al.Quantitative photoelectrochemical detection of biological affinity reaction:the biotin-avidin interaction[J].Analytical Chemistry,2004,76(2):499-501.
    [41]Ye J S,Cui H F,Sheu F S,et al.Study on electrochemical behavior of a diphtheria immunosensor based on silica/silver/gold nanoparticles and polyvinyl butyral as matrices[J].Electrochemistry Communications,2005,7(2):177-182.
    [42]Ismail A B M,Tatsuo Y,Hirokazu S,et al.A novel low-noise measurement principle for LAPS and its application to faster measurement of pH[J].Sensors and Actuators B,2001,74:112-116.
    [43]Jiang D L,Zhao H,Zhang S Q,et al.Two modes of the light-induced phytochrome A decline-with and without changes in the proportion of its isoforms(phyA′ and phyA″):evidence from fluorescence investigations of mutant phyA-3D pea[J].Journal of Photochemistry and Photobiology A,2003,156:201-206.
    [44]国家环保总局.水和废水监测分析方法[M].北京:中国环境科学出版社,1989:1125-1128.
    [45]余沪明,林怡,忻奕璐,等.分光光度法测定水质中低COD值[J].化学世界,2006,11:655-661.
    [46]刘莹,李兆新,耿霞,等.分光光度法测定海水样品化学耗氧量的研究[J].海洋水产研究,2006,27:62-67.
    [47]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:1130-1132.
    [48]刘海强,陈志军.库仑法测定COD的改进[J].环境监测管理与技术,2001,13:28-37.
    [49]陈志军,刘海强.库仑法测定COD_((Cr))的改进[J].理化检验—化学分册,2001,37:324-332.
    [50]朱俊杰,胡娟,郑建斌,等.示波电位滴定法测定COD的研究[J].分析科学学报,1994,10:44-49.
    [51]魏林恒,董学芝,等.电位滴定法测定工业废水中铬[J].理化检验:化学分册 2004,40(8):462-464.
    [52]田东梅,邓桂春,张渝阳,等.COD测定方法的进展与发展趋势[J].分析化学,2002,5(5):522-526.
    [53]袁洪志.COD的极谱法研究[J].环境科学与技术,1994,2:26-31.
    [54]D Dan,F Dou,D xiu et al.,A Set Up of a Modern Analytical Laboratory for Wastewaters from Pulp and Paper Industry[J].Anal.Chim.Acta.2000,420:39-45.
    [55]谢振伟,于红,但德忠,等.电化学法直接快速测定COD初步研究[J].环境工程,2004,22:62-65.
    [56]S.Anandan,M.Yoon.Photocatalytic degradation of Nile red using TIO_2-βcyclodextrin colloids[J].Catalysis Communications,2004,5:271-275.
    [57]皇林华.锑白在钛白生产中应用探讨[J].无机盐工业,1997,3:31-33.
    [58]蒋子铎,刘安华.二氧化钛表面化学改性[J].现代化工,1991,5(5):14-18.
    [59]张淑霞,李建保,张波.TiO_2表面无机包裹的研究进展[J].化学通报,2001,(2):7174-7178.
    [60]童林荟.环糊精化学[M].北京:科学出版社,2001:54-55.
    [61]F.W.Lchtenthaler,S.Immel.Controlled release of drugs from CD polymers substituted with ionic groups.J.Inclusion Phenom.Mol[J].Recognit.Chem.,1996,25:185-189.
    [62]J.Szejtli.Comprehensive Supramolecular Chemistry[J].J.Cbem.Phys.,1996,6:36-41.
    [63]J.Scejtli.Cyleodextrin Technology[J].J.Chem.Phys.,1988:12-16.
    [64]Brus L E.Solid-state perspectives of the photoelectrochemistry of semiconductor electrolyte junctions[J].J.Chem.Phys.,2000,83:5566-5571.
    [65]C.M.Li,S.L.Mu.Synthesis and Characterization of Electroactive Films Deposited from Aniline Dimers[J].Synth.Met,,2005,149:143-149.
    [66]Murakoshi K.,Kogure R.,Wada Y.et al.Fabrication of Solid State Dye-sensitized TiO_2 Solar Cell Combined with Polypyrrole[J].Sol.Energy Mater.Sol.Cells,1998,55:113-125.
    [67]Han M.G.,Armes S.P.Preparation- and characterization of polypyrrolesilicacolloidal nanocomposites,in watermethanol mixtures[J].J.Colloid Interface Sci.,2003,262:418-423.
    [68]Tian B.,Zerbi G.Lattice dynamics and vibrational spectra of polypyrrole [J].J.Chem.phys.,1990,92:3886-3892.
    [69]Yan C.H.,Dong S.Electrochemical behavior and its electrocatalytic activity of chemically modified electrode with AuMo heteropoly anion film [J].J.Electroanalysis,1998,10(14):985-987.
    [70]Decher G.Fuzzy nanoassemblies:Toward layered polymeric multi-composites [J].Science,1997,277:1232-1240.
    [71]王永慧.层接层自组装无机—有机纳米功能复合膜:[博士学位论文].长春:东北师范大学,2003.
    [72]Ichinose L.,Senzu H.,Kunitake T.Layer-by-layer assembly of aqueous bilayer membranes on charged surfaces[J].Chem.Lett.,1996:831-837.
    [73]Ichinose L.,Senzu H.,Kunitake T[J].Chem.Lett.,1997:1296-1298.
    [74]Ichinose L.,Kawakami T.Kunitake T[J].Adv.Mater.,1998,10:535-540.
    [75]廖川平.电化学聚合[J].化学通报,2000,2:37-40.
    [76]Fujishima A.,Honda K.Electrochemical Photolysis Water at a Semiconductor electrode[J].Natrue,1972,238:37-38.
    [77]Bard A J.Photoelectrochemistry[J].Science,1980,207:139-143.
    [78]李晓平,徐宝琨,刘国范,等.纳米TiO_2光催化降解水中有机污染物的研究与发展[J].功能材料,1999,30:242-245.
    [79]陶耀武,赵梦月,陈士夫,等.空气中有害物质的光催化去除[J].催化学报,1997,18:345-347.
    [80]孙奉玉,吴鸣,李文钊等.二氧化钛表面光学特性与光催化活性的关系[J].催化学报,1998,19:121-122.
    [81]Okamoto K I.,Yamamoto Y.,Tanaka H.,et al.Association of inclusion compounds of cyclodextrin in aqueous solution.Bull[J].Chem.Soc.Jan,1985,58:2015-2022.
    [82]Zhang Q H,Gao L,Guo J.Partial wave analysis of J/Ψ-γ(π~+π~-π~+π~-)[J].Appl.Catal.B:Environ,2000,26:207-215.
    [83]Frank S N,Bard A J.Prevalence and presentation of hyperprolactinemia in patients with "Functionless" pituitary tumours[J].J.Phys.Chem.,1977,81:1484-1486.
    [84]Rosenberg L,Brock J R,Heller A.Collection optics of TiO_2 photocatalyst on hollow galss microbeads floating on oil slicks[J].J.phys.Chem.,1992,96:3423-3426.
    [85]Word A.Photo-catalytic properties of TiO_2[J].Chem.Mater.,1993,5:280-287.
    [86]Jimmy C,et al.Coronary hemodynamics and myocardial perfusion after reestablishing coronary flow in experimental myocardial infarction[J].Bull Chem.Soc.,1974,147:1064-1069.
    [87]Dong Hyun Kim,Anderson A.Time-domain solutions of unsteady-state mass transfer models for biporous catalyst in a continuous-flow gradientless reactor[J].Enviom.Sci.Technol.1994,28(10):479-483.
    [88]Salvade P,Gonzalez Garcia M L,Munoz F.Development of aluminum first surface mirrors for solar energy applications[J].Journal of physical chemistry.,1992,96(25):10249-10353.
    [89]Munroe,Melpolder et al.Phase Transformations in TiO2/SiO2 Sol-Gel Films as a Function of Compositions and Heat-Treatment[J].J.of Materials Science,1991,26:3585-3592.
    [90]Vinodgopal K,Hotchandani S,Kamat P V.Photocrosslinking studies of S-acryloylO-ethyl xanthate copolymers[J].J.phys.Chem.,1993,97(35):9040-9047.
    [91]J.Anthony Byrne,Brian R.,Eggins,et al.Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metals from waste waters[J].Applied Catalysis B:Environmental,1999,20(3):85-89.
    [92]J.Anthony Byrne,Brian R,Eggins.Photoelectrochemistry of oxalate on particulate TiO_2 electrodes.Journal of Electroanalytical Chemistry[J].Applied Catalysis B:Environmental,1998,457(3):61-72.
    [93]冷文华,张昭,成少安,等.直接热氧化制备氧化钛薄膜电极的研究、制备、结构和电化学性质[J].化学物理学报,2001,14(6):705-710.
    [94]刘惠玲,周定,李湘中,等.网状Ti/TiO_2电极光电催化氧化若丹明B[J].环境科学,2002,23(4):47-51.
    [95]果玉忱.半导体物理学[M].北京:国防工业出版社,1988:45-47.
    [96]陶跃武,赵梦月,陈士夫.太阳光TiO_2薄层光催化降解有机磷农药的研究[J].太阳能学报,1995,16:234-237.
    [97]成英之.WO_3-TiO_2薄膜型复合光催化剂的制备和性能:[硕士学位论文].广州:暨南大学,2000.
    [98]Dong Hyun Kim,Anderson A.Time-domain solutions of unsteady-state mass transfer models for biporous catalyst in a continuous-flow gradientless reactor[J].Enviom.Sci.Technol.,1994,28(10):479-483.
    [99]Willner I,Eichen Y.Solar hydrogen production through photobiological,photochemical and photoelectrochemical assemblies[J].J.Am.Chem.Soc.,1987,107(22):6862-6863.
    [100]Guang hui W,Feng Wu,Nansheng Deng.pore size of TiO_2-loaded activated carbon fiber onits photocatalytic activity[J].Journal of photochemistry and photobiology A:chemistry,2006,,79:49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700