细胞阻抗和电位检测复合传感器及其在药物分析中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞电分析,包括细胞活性及细胞生长状态的确定,在细胞研究、药物作用、细胞工程、医学卫生以及环境监测中具有重要作用。本论文从细胞阻抗传感和胞外电位测量背景现状出发,引出了多参数集成芯片在细胞生理分析和药物研究中的重要意义,结合细胞阻抗测试技术和胞外电位测试技术设计了基于平面微结构的多参数分析的高内涵复合传感器及系统,主要工作如下:
     理论设计部分,重点深入研究了叉指电极细胞贴附阻抗模型,分析了细胞阻抗的特征频谱响应。本文首次提出了基于等效电路的最优化设计准则,并利用细胞-电极单元模型描述了细胞在电极上的空间分布对阻抗的影响。然后用有限元仿真电极电场以及细胞-电极模型验证了前面的模型的分析,更深入理解了电极尺寸对传感器性能的影响。基于细胞-电极点接触模型分析了用于胞外电位测量的微电极系统的传递函数,在此基础上重点分析了电极几何尺寸和噪声源对测得胞外信号质量的影响,提出了在微电极设计中的优化准则。基于以上的理论分析,给出了叉指电极与微电极复合芯片ExCELL的布局和整体设计。
     芯片系统部分,基于以上的设计方案,按照溅射金属层,光刻电极图案,沉积绝缘层,光刻绝缘层图案的微加工工艺顺序制作了芯片并且完成了生物相容性封装。与之匹配的传感器测试底座包括金属屏蔽盒和电学和力学性能良好的压针式接口,保证信号传输质量。集成在底座上的温控系统以及自动流动控制系统能保证细胞正常生长并提供自动化实验分析。32通道高增益低噪声生物信号放大器提供了输入噪声为5.5μVRMs,增益1000的信号调理,然后通过高速采集卡数字化记录;多通道阻抗测试系统能提供带宽为100Hz-10KHz的频谱扫描和时间分辨率为10ms的单频率长时测试。
     实验分析部分,基于复合芯片系统,评价了PC12细胞生长过程中的细胞阻抗频率特性以及阻抗随时间的动态变化;利用波形提取和聚类的方法分析了从心肌细胞系HL-1测得的胞外电位信号。最后结合阻抗和胞外电位记录这两种参数综合评价了阿霉素对心肌细胞系HL-1的急性和慢性毒性的心衰模型,验证了芯片和测试系统能为电兴奋性细胞的分析提供高内涵分析方法。
Cell electroanalysis, including the cell activity observation and cell growth state determination, plays an important role in cellular research, drug effects, cell engineering, medicine and health, as well as environmental monitoring. This thesis proposing the importance of integrated chip in cell physiological analysis and drug development, provides a High-Content Screening Platforms for Multi-Parameter Studies integrating the electrical cell impedance sensing and extracellular potential recording techniques. The work mainly consists of three parts as follows:
     In the part of theory and design, the interdigitated electrodes type was chosen to in-depth study of the cell-electrode adhesion impedance model. The optimization was firstly derived from the equivalent circuit, further supplemented by the cell spatial distribution on unit electrode model. Infinite element simulation of electric field of electrode further explored electrode geometry on sensor performance. Based on cell-electrode point-contact model, the transfer function of extracellular recording system was deduced. Based on the electrode size effect and noise source effect on the detected signal, some rules were proposed in microelectrode design. Given the optimization design rules of these two sensing technology, the layout and packaging of integrated chip named "ExCELL" was designed.
     For the integrated chip system, interdigitated electrodes and micro-electrode integrated chip were fabricated following the processes of metal layer sputtering, electrode pattern photoetching, insulating layer deposition and another photoetching to expose the electrode, finally packaged biocompatibly. Corresponding test station consisted of pogo pins of electric and mechanical property and shielding box, which could ensure the quality of signal condition. Temperature condition system integrated on the station and fluid control automation guaranteed the cell growth and automation experiments.32-channel bio-signal high-gain low-noise amplifier was designed to provide a signal condition of 5.5μVRMS inPut noise and 1000 gain; A multi-channel impedance test system were developed to implement a impedance spectroscopy scan of 100Hz-10KHz bandwidths and long term measurement under single frequency of 10ms time resolution.
     Using the integrated chip-based system, the process of cell growth of PC 12 cells was monitored and evaluated by analyzing the frequency characteristics and dynamic changes of cell impedance over time. Waveform extraction and clustering method were exploited for the analysis of extracellular potential signal measured from the cardiac cell line HL-1. At last, the simultaneous recording of cell impedance and extracellular potential was realized. The incorporation of these two parameters provided a comprehensive evaluation the acute and chronic toxicity of of adriamycin on cardiac cell line HL-1 in the heart failure model.
引文
[1]Reyes, D.R., Iossifidis, D., Auroux, P.-A., et al., Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical Chemistry,2002.74(12):2623-2636.
    [2]Foster KR, S.H., Dielectric properties of tissues and biological materials:a critical review. Critical Review in Biomedical Engineering,1989.17(1):25-104.
    [3]Giaever, I. and Keese, C.R., Monitoring fibroblast behavior in tissue culture with an applied electric field. Proceedings of the National Academy of Sciences of the United States of America, 1984.81(12):3761-3764.
    [4]Ehret, R., Baumann, W., Brischwein, M., et al., Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosensors and Bioelectronics,1997.12(1): 29-41.
    [5]Baumann, W.H., Lehmann, M., Schwinde, A., et al., Microelectronic sensor system for microphysiological application on living cells. Sensors and Actuators B:Chemical,1999.55(1): 77-89.
    [6]Wegener, J., Keese, C.R., and Giaever, I., Electric Cell-Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces. Experimental Cell Research,2000.259(1):158-166.
    [7]Ciambrone, G.J., Liu, V.F., Lin, D.C., et al., Cellular Dielectric Spectroscopy:A Powerful New Approach to Label-Free Cellular Analysis. Journal of Biomolecular Screening,2004.9(6):467-480.
    [8]Solly, K., Wang, X., Xu, X., et al., Application of Real-Time Cell Electronic Sensing (RT-CES) Technology to Cell-Based Assays. ASSAY and Drug Development Technologies,2004.2(4): 363-372.
    [9]Panke, O., Balkenhohl, T., Kafka, J., et al., Impedance Spectroscopy and Biosensing, in Biosensingfor the 21st Century.2008.195-237.
    [10]Lodish, H., Molecular cell biology.2003:WH Freeman.
    [11]Zeck, G. and Fromherz, P., Repulsion and Attraction by Extracellular Matrix Protein in Cell Adhesion Studied with Nerve Cells and Lipid Vesicles on Silicon Chips. Langmuir,2003.19(5): 1580-1585.
    [12]Cuvelier, D., ry, M.T., Chu, Y.-S., et al., The Universal Dynamics of Cell Spreading. Current Biology,2007.17(8):694-699.
    [13]LeBaron, R.G. and Athanasiou, K.A., Extracellular Matrix Cell Adhesion Peptides:Functional Applications in Orthopedic Materials. Tissue Engineering,2000.6(2):85-103.
    [14]Gallant, N., Capadona, J., Frazier, A., et al., Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir,2002.18(14):5579-5584.
    [15]Grimnes, S., Martin,Φ.G., Bioimpedance and Bioelectricity Basic,2nd Edition.2008:Academic Press.
    [16]McGrath, J.L., Cell Spreading:The Power to Simplify. Current Biology,2007.17(10): R357-R358.
    [17]Kataoka, N., Iwaki, K., Hashimoto, K., Mochizuki, S., Ogasawara, Y., Sato, M., Tsujioka, K., Kajiya, F., Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America,2002.99(24):15638-15643.
    [18]Guan, J.-L., Chen, H.-C., Ballestrem, C., et al., Cell Migration:Developmental methods and protocols. Methods in Molecular Biology. Vol.294.2005, Totowa:Humana Press.
    [19]Noiri, E., Hu, Y., Bahou, W.F., et al., Permissive Role of Nitric Oxide in Endothelin-induced Migration of Endothelial Cells. J. Biol. Chem.,1997.272(3):1747-1752.
    [20]Keese, C.R., Wegener, J., Walker, S.R., et al., Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences of the United States of America,2004.101(6): 1554-1559.
    [21]Wang, L., Zhu, J., Deng, C., et al., An automatic and quantitative on-chip cell migration assay using self-assembled monolayers combined with real-time cellular impedance sensing. Lab on a Chip, 2008.8(6):872-878.
    [22]Linderholm, P., Braschler, T., Vannod, J., et al., Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab on a Chip,2006.6(9):1155-1162.
    [23]Yu, N., Atienza, J.M., Bernard, J., Blanc, S., Zhu, J., Wang, X.B., Xu, X., Abassi, Y.A., Real-Time Monitoring of Morphological Changes in Living Cells by Electronic Cell Sensor Arrays: An Approach To Study G Protein-Coupled Receptors. Anal. Chem.,2006.78(1):35-43.
    [24]Keese, C., Karra, N., Dillon, B., et al., Cell-substratum interactions as a predictor of cytotoxicity. In Vitro & Molecular Toxicology,1998.11(2):183-192.
    [25]Xu, X., and Wang, X. B., Impedance based devices and methods for use in assays.2005:US Patent.
    [26]Xing, J.Z., Zhu, L., Jackson, J.A., et al., Dynamic Monitoring of Cytotoxicity on Microelectronic Sensors. Chemical Research in Toxicology,2005.18(2):154-161.
    [27]Xing, J.Z., Zhu, L., Gabos, S., et al., Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicology in Vitro,2006.20(6):995-1004.
    [28]Biao Xi, N.Y., Xiaobo Wang, Xiao Xu, Yama Abassi,, The application of cell-based label-free technology in drug discovery. Biotechnology Journal,2008.3(4):484-495.
    [29]Halbach, M.D., Egert, U., Hescheler, J., et al., Estimation of Action Potential Changes from Field Potential Recordings in Multicellular Mouse Cardiac Myocyte Cultures. Cell Physiol Biochem, 2003.13:271-284
    [30]Geisler, T., Ressler, J., Harz, H., et al., Automated multiparametric platform for high-content and high-Throughput Analytical screening on living cells. Automation Science and Engineering, IEEE Transactions on,2006.3(2):169-176.
    [31]Korn D, Stanski D.R., Drug Development Science-Obstacles and opportunities for collaboration academic, industry and government. Washington DC (USA),2005.
    [32]Robitzki, A. and Rothermel, A., Integrative Nanobioengineering:Novel Bioelectronic Tools for Real Time Pharmaceutical High Content Screening in Living Cells and Tissues.2008.231-249 Springer Berlin Heidelberg.
    [33]曹楚南,张鉴清,电化学阻抗谱导论.2002:科学出版社.
    [34]Wegener, J., Sieber, M., and Galla, H.-J., Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. Journal of Biochemical and Biophysical Methods,1996.32(3): 151-170.
    [35]Nguyen, D.D., Huang, X.Q., Greve, D.W., et al., Fibroblast growth and H-7 protein kinase inhibitor response monitored in microimpedance sensor arrays. Biotechnology and Bioengineering, 2004.87(2):138-144.
    [36]Hong, J., Yoon, D.S., Kim S.K., et al., AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip,2005.5:270-279.
    [37]Franks, W., Schenker, I., Schmutz, P., et al., Impedance characterization and modeling of electrodes for biomedical applications. Biomedical Engineering, IEEE Transactions on,2005.52(7): 1295-1302.
    [38]Cho, S. and Thielecke, H., Electrical characterization of human mesenchymal stem cell growth on microelectrode. Microelectronic Engineering,2008.85(5-6):1272-1274.
    [39]Price, D., Rahman, A., and Bhansali, S., Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosensors and Bioelectronics,2009.24(7): 2071-2076.
    [40]Ahuja, A., Behrend, M., Whalen, J., et al., The dependence of spectral impedance on disc microelectrode radius. IEEE transactions on bio-medical engineering,2008.55(4):1457.
    [41]Wang, L., Wang, H., Mitchelson, K., et al., Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosensors and Bioelectronics,2008.24(1):14-21.
    [42]Asphahani, F., Thein, M., Veiseh, O., et al., Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors. Biosensors and Bioelectronics,2008.23(8): 1307-1313.
    [43]Prado, J., Margo, C., Kouider, M., et al. Impedance of electrolytes using microelectrodes coplanar. COMSOL.2005.
    [44]Gabrielli, C., Keddam, M., Rousseau, P., et al., Numerical Simulation of the Electrochemical Impedance of a Microelectrode using FEMLAB. ratio,2005.500:2.
    [45]Butler, P. and Ferko, M. Solid Modeling of Living Endothelial Cells. COMSOL.2005.
    [46]Morgan, H., Sun, T., Holmes, D., et al., Single cell dielectric spectroscopy. Journal of Physics D: Applied Physics,2007.40(1):61-70.
    [47]Malleo, D., Nevill, J., Lee, L., et al., Continuous differential impedance spectroscopy of single cells. Microfluidics and Nanofluidics,2009.
    [48]Buitenweg, J.R., Rutten, W.L.C., and Marani, E., Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. Biomedical Engineering, IEEE Transactions on,2003.50(4):501-509.
    [49]Xiaoqiu, H., Duc, N., Greve, D.W., et al., Simulation of microelectrode impedance changes due to cell growth. Sensors Journal, IEEE,2004.4(5):576-583.
    [50]Giebel, K., Bechinger, C., Herminghaus, S., et al., Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophysical journal,1999.76(1):509-516.
    [51]Fromherz, P., Neuroelectronic interfacing:Semiconductor chips with ion channels, nerve cells, and brain. Nanoelectronics and information technology,2003:781-810.
    [52]Brittinger, M. and Fromherz, P., Field-effect transistor with recombinant potassium channels: fast and slow response by electrical and chemical interactions. Applied Physics A:Materials Science & Processing,2005.81(3):439-447.
    [53]Massobrio, P., Massobrio, G., and Martinoia, S., Multi-program approach for simulating recorded extracellular signals generated by neurons coupled to microelectrode arrays. Neurocomputing,2007.70(13-15):2467-2476.
    [54]Schoen, I. and Fromherz, P., The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophysical journal,2007.92(3):1096-1111. [55] Joye, N., Schmid, A., and Leblebici, Y., Electrical modeling of the cell-electrode interface for recording neural activity from high-density microelectrode arrays. Neurocomputing,2009.
    [56]Hodgkin, A. and Huxley, A., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. Journey of Physiology,1952.117:500-544.
    [57]Newman, J., Resistance for flow of current to a disk. Journal of the Electrochemical Society, 1966.113:501.
    [58]Braun, D. and Fromherz, P., Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophysical journal,2004.87(2):1351-1359.
    [59]Hunter, R., Foundations of colloid science.2001, New York:Oxford University Press.
    [60]Bockris, J., Reddy, A., and Gamboa-Aldeco, M., Modern electrochemistry.2000:Plenum Publiser Corporation.
    [61]Wattanapanitch, W., Fee, M., and Sarpeshkar, R., An energy-efficient micropower neural recording amplifier. IEEE Transactions on Biomedical Circuits and Systems,2007.1(2):136-147.
    [62]Ozkan, C.S., Ozkan, M., Yang, M., et al., Cell Based Sensing Technologies, in BioMEMS and Biomedical Nanotechnology.2007.55-92.
    [63]Ozkan, M., Ozkan, C.S., Prasad, S., et al., Microarray and Fluidic Chip for Extracellular Sensing, in BioMEMS and Biomedical Nanotechnology.2007.47-102.
    [64]Imfeld, K., Neukom, S., Maccione, A., et al., Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity. IEEE Transactions on Biomedical Engineering,2008.55(8):2064-2073.
    [65]Eversmann, B., Jenkner, M., Hofmann, F., et al., A 128×128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits,2003.38(12):2306-2317.
    [66]Weber, S., Signal-to-noise ratio in microelectrode-array-based electrochemical detectors. Analytical chemistry,1989.61(4):295.
    [67]Hassibi, A., Navid, R., Dutton, R., et al., Comprehensive study of noise processes in electrode electrolyte interfaces. Journal of Applied Physics,2004.96:1074.
    [68]Mohseni, P. and Najafi, K., A fully integrated neural recording amplifier with DC input stabilization. IEEE Transactions on Biomedical Engineering,2004.51(5):832-837.
    [69]Voelker, M. and Fromherz, P., Nyquist noise of cell adhesion detected in a neuron-silicon transistor. Physical review letters,2006.96(22):228102.
    [70]Wang, X.B., Xu, X., Impedance based apparatuses and methods for analyzing cells and particles.2005:US Patent.
    [71]王小波,徐晓,基于阻抗的检测装置和方法,美国艾森生物科学公司,2005:中国专利.
    [72]Giaever, I. and Keese, C.R., Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences of the United States of America,1991.88(17): 7896-7900.
    [73]Urdapilleta, E., Bellotti, M., and Bonetto, F.J., Impedance analysis of cultured cells:A mean-field electrical response model for electric cell-substrate impedance sensing technique. Physical Review E,2006.74(4):1539-3755.
    [74]Abdur Rahman, A.R., Price, D.T., and Bhansali, S., Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors and Actuators B:Chemical,2007.127(1): 89-96.
    [75]Borkholder, D., Cell based biosensors using microelectrodes, in Dept. of Electrical Engineering 1998, Stanford University.
    [76]DeBusschere, B.D., Portable Cell-based Biosensors, in Electrical Engineering.2002, Stanford University,
    [77]Ji, J. and Wise, K., An implantable CMOS circuit interface for multiplexedmicroelectrode recording arrays. IEEE Journal of Solid-State Circuits,1992.27(3):433-443.
    [78]Ye, X., Wang, P., Liu, J., et al., A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals. Journal of Neuroscience Methods,2008.
    [79]Wattanapanitch, W., An Ultra-Low-Power Neural Recording Amplifier And Its Use in Adaptively-Biased Multi-Amplifier Arrays.2007, Massachusetts Institute of Technology.
    [80]Gilchrist, K., Characterization and Validation of Cell-based Biosensors.2003, Stanford University.
    [81]Whittington, R., Real-time control of electrical stimulation:A novel tool for compound screening and electrophysiologic analysis.2006, Stanford University.
    [82]Liu, J., Fruhauf, U., and Sch necker, A., Accuracy improvement of impedance measurements by using the self-calibration. Measurement,1999.25(3):213-225.
    [83]Wang, X., Abassi, Y., Biao, X., et al., Label-Free Monitoring of Excitation-Contraction Coupling and Excitable Cells Using Impedance Based Systems with Millisecond Time Resolution. 2010:US Patent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700