神经生物传感微阵列读出电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经生物传感微阵列是以探测大脑内部神经信号的生物传感器,是微电子技术与神经生物学科重要结合。论文针对1×4神经传感微阵列的微弱电压信号,对CMOS读出电路以及神经微电极的制作进行了研究,为读出电路和神经微电极的系统集成打下基础。
     以神经生物传感微阵列为研究对象,了解神经微电极的基本结构及植入式方式,分析其电压输出信号的特点,根据探针电极的反应特性,建立微电极的电学模型。
     前置放大电路在读出电路中是非常重要的一部分。设计了基于前馈补偿技术的运算放大器。采用前馈补偿技术,避免了片上集成米勒补偿电容,同时也克服传统电路设计当中增益、带宽和相位裕度相互制约的问题,满足微电极信号低压、低功耗的要求。分析电阻反馈网络和电容反馈网络各自优缺点,选用电容反馈网络作为闭环反馈结构。
     由于前置放大电路放大倍数不足以对信号进行放大,故设计二次放大电路。二次放大电路采用轨对轨结构运算放大器,分析电路的基本结构,得到模拟仿真结果。同时采用电容反馈网络作为闭环反馈结构。
     分析读出电路的各种噪声,针对神经微电极读出电路的噪声,设计一种相关双采样电路,分析其双采样的原理,并进行模拟仿真。
     针对传感微阵列,需要设计数据选通器来控制微电极传感阵列单元。数据选通器由移位寄存器、反相器和传输门三部分组成。移位寄存器作为数据选通的核心部件,采用准静态CMOS移位寄存器电路结构,该结构具有使用元件少、功耗低等优点。最后给出了准静态CMOS移位寄存器和数据选通器的仿真结果。
     设计了一种结构简单的带隙基准电路,分析带隙基准电路的原理,并给出了仿真结果。
     在对读出电路进行模拟仿真之后,介绍了版图设计过程中应该注意的问题。采用0.5μm标准CMOS工艺规范,给出各个单元模块版图,设计了读出电路版图,并对版图进行DRC、LVS验证。
     最后,采用表面牺牲层技术对神经微电极的制作工艺流程进行探讨。
The neurobiology sensing microarray for the biological sensors is used to detect brain nerve signals. It is combined with microelectronics technology and neural biology. This paper targeted on the 1×4 neural sensor micro array weak voltage signal, studied the CMOS readout circuit and the fabrication of neural micro probe. It can do some prepare for integratting CMOS readout circuit and neural micro probe.
     This paper targeted on the neural bio-sensor micro array, introduced the basic structure of neural micro probe, and analyzed the characteristic of voltage output signal, based on the response of electrode probe, built the electrical model of micro electrode.
     Preamplifier circuit is an important part of readout circuit. This paper designed a preamplifier based on the feed-forward compensation technology. Because of tooking the feed-forward compensation technology, the amplifier not only avoided the influence of integrating Miller compensation capacitor on the chip, but also solved the interaction problem during gain, bandwidth and phase margin in traditional circuit design. It is satisfied the need of low voltage, low power consumption of micro electrode signal. After analyzed the advantage and disadvantage of resistance feedback network and capacitor feedback network, this paper took the capacitor feedback network as the closed loop feedback structure.
     Because the feed-forward amplifier is not sufficient to process the signal, this paper also designed a second stage amplify circuit. The second stage circuit took the rail to rail structure operational amplifier. After analyzing the basic structure of circuit, it got the result of simulation. The second stage took the capacitor feedback network as closed loop feedback structure.
     This paper analyzed various noise of readout circuit, took an Correlate Double Sample structure, analyzed the theory of double sample, and simulated the structure.
     For the micro sensor array, it is necessary to design data selective gate to control the unit of micro probe sensor array. The data selective gate was made of shift register, inverter and transmission gate. The shift register as the key part of data selective gate, took quasi-static CMOS shift register, which had the advantage of using less devices and low power consumption. At last, this paper exhibited the simulation results of quasi-static CMOS shift register and data selective gate.
     It is designed a band gap circuit with simple structure, analyzed the theory of band gap circuit, and gave the simulation result.
     After the simulation of the circuit, this paper introduced the problems needed to pay attention to during layout. It took 0.5μm standard CMOS procedure specification, and gave the layout of each unit, designed the layout, and had the DRC, LVS test to layout.
     At last, the paper discussed the fabricate process chart of neural micro probe by tooking surface sacrifice layer technology.
引文
[1]张先恩.生物传感器[M].北京:化学工业出版社, 2006:5~10.
    [2] Christina Nickolas.生物传感芯片拓展神经科学[J],Electronic Products China,2003, 6.
    [3] Liu, Jie. Huang, JinLin. Lieber, Charles M. et al. Probing complex low‐ dimensional solids with scanning probe microscopes: From charge density waves to high‐temperature superconductivity[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,1996, 14(2):1964~1969.
    [4]张震宇.植入式中枢神经修复系统及其刺激电路的设计[D].东南大学,2006.
    [5]张雪.基于MEMS技术的硅微神经电极阵列的设计与制造[D].天津大学,2008:43~50.
    [6]张先恩.生物传感技术原理与应用[M].吉林科学技术出版社,1990:6~8.
    [7]李静.生物传感器的进展综述[J].理工科研,2007,8:204.
    [8]高志勇.生物传感器研究进展[J].华西医学, 2008, 23(6):1517~1518.
    [9]李交友,鲍素敏,韦朝领.淡水湖泊富营养化的微生物全细胞传感器的构建和应用[J].安徽大学学报(自然科学版), 2006, 30(5):83~86.
    [10]王光伟,曹继华,宋延民等.CMOS技术的现状与展望综述[J].天津工程师范学院学报, 2005, 15(1):10~12.
    [11] I.B.莱维坦,L.K.卡茨玛克等.神经元:细胞核分子生物学[M],科学出版社, 2003:5~8.
    [12] J.G.尼克尔斯,A.R.马丁等著.杨雄里等译.神经生物学-从神经元到脑[M].北京:科学出版社,2003,11~22.
    [13] R. j.Vetter, J. C. Williams,E. A.Nunamaker, et al. Chronic Neural Recording Using Silicon-Substrate Microelectrode Arrays Implanted in Cerebral Cortex[J]. IEEE Trans. On Biomedical Engineering, 2004, 51:896~904.
    [14] M. D. Johnson, J. C. Wiliams, M. Holecko, et al. Chemical Sensing Capability of MEMS Implantable Multichannel Neural Microelectrode[J]. Proceeding of the IEEE Engineering in Medical and Biology Society, 2003, 4:3333~3336.
    [15] Jin Ji and Kensall D. Wise. An Implantable CMOS Circuit Interface for Multiplexed Microelectrode Recording Arrays[J]. IEEE Journal of Solid-State Circuits, 1992, 27(3):433~443.
    [16] Arnold C.Hoogerwerf,Kensall D.Wise.A Three-Dimensional Microelectrode Array for Chronic Neural Recording.IEEE Transactions on Biomedical Engineering. 1994,41(12): 1136~1145.
    [17]程正喜,黄维宁,周嘉. MEMS神经元微电极研究[J].传感技术学报, 2006, 19(5):1388~1394.
    [18]隋晓红,张若昕,裴为华.适用于神经接口的硅微电极制作[J].半导体学报, 2006, 27(10):1703~1706.
    [19] Ming-Fang Wang. A Three-Demensinal Si-Based Microelectrode for Neural Recording[D]. Purdue University, 2007.
    [20]孔谋夫.自组装膜生物传感微阵列的读出电路研究[D].重庆大学, 2008.
    [21] Rakesh Kumar Singh, Dr. R. K. Nagaria. A New Performance Enhancement Technique ofthe Current Feedback Amplifier[C], 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2009.
    [22]梁帮立,王志功,王余峰等.一种用于神经信号检测的低压前馈补偿运算跨导放大器[J].中国生物医学工程学报, 2006, 26(2):192~196.
    [23]付永朝,杨银堂等.一种基于前馈补偿技术的高性能运算放大器[J].电子器件, 2004, 27(1):27~30.
    [24] Willy, Sansen, Z. Y. Chang. Feedforward Compensation Technology for High-Frequency CMOS Amplifier[J], IEEE. Journal of Solid-State Circuit, 1990, 25(6):1590~1595.
    [25] B. K. Thandri, J. Silva-Martinez. A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors [J]. IEEE Journal of Solid-State Circuit, 2003, 38(2):237~243.
    [26] B. S. Kumar Thandri, J. Silva-Martinez, F. Maloberti. A Feedforward Compensation Scheme for High Gain Wideband Amplifier[C], The 8th IEEE International Conference in Electronics, Circuits and Systems, 2001.
    [27] M. S. Wang, T. L. Mayhugh, S. H. K. Embabi, et al. Constant-gm Rail-to-Rail CMOS Opamp Input stage with Overapped Transition Regions[J]. IEEE Journal Solid-State Circuits, 1999, 34(2):148~156.
    [28]程梦璋.一种轨对轨CMOS运算放大器的设计[J].微电子学与计算机, 2007, 24(11):124~130.
    [29]嵇楚,叶凡,任俊彦等.一种宽带恒定跨导轨对轨运算放大器的设计[J].微电子学, 2003, 33(6):550~553.
    [30] S. A. kurai, M. I. smail. Robust design of rail-to-rail CMOS operational amplifiers for a low power supply voltage[J]. IEEE J.Solid-State Circuits, 1996, 31(2):146~156.
    [31] Thomas Kaulberg. A CMOS Current-Mode Operational Amplifier [J]. IEEE Journal of solid-state circuits,1993,28(1):849~852.
    [32] R. Sarpeshkar, T. Delbruck, and C. A. mead. White noise in MOS transistors and resistors[J], IEEE Trans. Circuits Devices, 1993,9(6):23~29.
    [33]刘成康,袁祥辉,张晓飞.CMOS读出电路中的噪声及抑制[J].半导体光电,2002, 23(3):170~173.
    [34]毕查德.拉扎维.模拟CMOS集成电路设计[M].西安:西安交通大学出版社,2006,12~15, 257~258.
    [35]李云飞,李敏杰,司国良,等.TDI2CCD图像传感器的噪声分析与处理[J].光学精密工程,2005,15(8):1196~1202.
    [36] Chen Xu, Shen Chao, Mansun Chan. A New Correlated Double Sampling (CDS) Technique for Low Voltage Design Environment in Advanced CMOS Technology [J]. Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th European, ESSCIRC, 2002,9:117~120.
    [37]袁祥辉,吕果林,黄友恕.采用电流镜放大读出电路的CMOS高灵敏度图像传感器[J].半导体光电(增刊),2005,26:9~11.
    [38]许秀贞,李自田,薛利军. CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4): 343~347.
    [39]张仁富.自组装膜生物传感微阵列数字读出电路研究[D].重庆大学, 2008.23~30.
    [40]王光怀,谭晓春.CMOS传输门的应用[J].吉林师范大学学报(自然科学版), 2005, 4:83~84. [41) M. Belkadi, H.T. Mouftah. Modelling and test generation for MOS transmission gate stuck-open faults[J]. Circuits, Devices and Systems, IEE Proceedings G, 1992, 139(1):12~22.
    [42]李文石,唐璞山,许杞安,等.集成电路时间延迟优化分析与模拟[J].微电子学,2004,34(6): 655~657.
    [43] Xiang Liang Jin,Jie Chen. Analysis of novel low-power quasi-dynamic ratioless readout scanning shift register for CMOS imagers [J]. ASIC, 2003. Proceedings. 5th International Conference, 2003,1:595~598.
    [44]潘银松.像素级CMOS数字图像传感器的研究[D].重庆大学博士学位论文,2005:61~62.
    [45] Andrea Boni. Opamps and Startup Circuits for CMOS Bandgap Reference with near 1V Supply[J]. IEEE Solid-State Circuits, 2002(37):1339~1343.
    [46] K. N. Leung, K. P. T. Mok, C. Y. Leung. A 2V 23μA 5.3 ppm/℃Curvature Compensated CMOS Bandgap Voltage Reference[J]. IEEE Joural of Solid-State Circuits, 2003, 38(3):561~564..
    [47]何荣,吕坚,蒋亚东.一种低温漂低功耗的带隙基准源的设计[J].现代电子技术,2009,4:4~7.
    [48]杨卫力,王西川.一种低功耗差动带隙基准源[J].微电子学与计算机,2005,21(7):257~258.
    [49] Dan Clein著,邓红辉,王晓蕾等译. CMOS集成电路版图-概念、方法与工具[M].北京:电子工业出版社. 2006:2~3,175~180.
    [50]曹华锋.协处理器版图设计及验证[D].合肥工业大学硕士学位论文,2003:85~86.
    [51]程未,冯勇建,杨涵.集成电路版图(layout)设计方法与实例[J].现代电子技术,2003,3:75~78.
    [52] Alan Hastings著,张为译.模拟电路版图设计艺术[M].北京:电子工业出版社. 2008:253~259, 454~456.
    [53] Khalil Najafi, Jamille F. Hetke. Strength Characterization of Silicon Microprobes in Neurophysiological Tissues[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(5):474~481
    [54] Babak Ziaie, M. D. Nardin, A. R. Coghlan. A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation[J]. IEEE Transactions On Biomedical Engineering, 1997 ,44(10):909~920.
    [55]郑修军,张键,陈中伟等.纵行神经束内微电极的制作与动物实验[J].中华康复医学杂志,2002,17(6):8~10
    [56]张若昕,隋晓红,裴为华等.神经记录用硅基多通道微电极探针的设计与制造[J].半导体技术, 2006, 19(5):1404~1406.
    [57]王迪,张国雄,李醒飞.无源多通道神经硅微电极的设计方法[J].纳米技术与精密工程,2005, 3(2):101~105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700