E2F1在肿瘤中的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性炎症或病毒感染所致Rb基因突变或上游信号缺失是肿瘤的标志之一,导致靶蛋白E2F1的活性异常。临床检测显示,E2F1与肝、肺、胶质瘤、淋巴细胞白血病和生殖系统等多种肿瘤的发生、发展及转移相关。基因敲除或转基因小鼠生命晚期均发生肿瘤,并表现出组织特异性。相对E2F1诱导细胞凋亡的分子机制已有大量研究和认识,E2F1作为肿瘤基因的分子机制仍不清楚,特别是诱导组织特异性肿瘤的分子基础和机制缺乏了解。最近研究表明,E2F1除参与细胞凋亡和细胞周期调控外,在不同细胞中还可分别与NF-κB、PI3K及ERK等主要信号通路有相互作用。据此推测,E2F1促肿瘤作用,特别是其功能的细胞特异性,可能和E2F1与不同细胞中特定信号通路的相互作用有关。为此,我们从E2F1与NF-κB、ERK及PI3K等主要细胞通路在内的相互作用入手,尝试发现和阐述E2F1诱导肿瘤发生和发展的分子基础和机制。项目研究过程中取得以下结果:
     ⑴发现E2F1/NF-κB复合物通过调节EGR-1及细胞生长因子促肿瘤增生及抗凋亡的新机制和信号通路:
     对其中EGR-1的转录调节的分子机制研究证实,E2F1通过与NF-κB蛋白结合,并利用EGR-1启动子上的NF-κB调控子序列调节EGR-1的基因转录。而EGR-1的持续表达,促进了多种细胞生长因子的表达,这些生长因子包括IGF,PDGF和TNF等是维持肿瘤增生、抗药和扩散等肿瘤特征的重要和必须因素。另外,还发现EGR-1可显著增强IL-8表达,促进肿瘤增生和扩散。部分研究成果已分别发表在Cancer Res. 2009 Mar 15;69(6):2324-31和JBC. 2006;281(15), 10508–10515。
     ⑵发现E2F1/NF-κB复合物抑制ICAM-1表达促肿瘤免疫逃逸新功能:
     对ICAM-1的转录调控机制研究发现,E2F1可通过与NF-κB结合来抑制ICAM-1的转录,从而达到肿瘤的免疫逃逸。ICAM-1是免疫细胞识别并杀伤靶细胞所必须的表面分子,在肿瘤细胞中往往表达下降从而逃脱免疫杀伤攻击。此部分研究论文正在投稿审稿中。
     上述研究以前列腺癌为模型,深入、系统的发现和阐述了E2F1作为细胞信号网络的重要节点分子,通过与包括NF-κB在内的其它信号通路对话,参与部分重要基因的转录调控,发挥对肿瘤细胞功能影响的新功能及分子机制。
Chronic inflammation or infection-induced mutations or deficiency of pRB is a hallmark of tumors, and that led to disregulation of E2F1. It has been demonstrated from clinical tests that E2F1 is associated with tumorigenesis, development and migrations in a number of tumors including liver, lung, glioma brain, lymphoma and reproduction tumors. Knock-out and transigene mice developed tissue-specific tumors in the later of life. In contrast to the mechanisms of inducing apoptosis by E2F1 have been largely studied., the molecular mechanisms of tumorigenesis of E2F1 are still under investigations. Recent studies showed that, addition to promot cell cycle, E2F1 also crosstalk with some important signaling pathways such as NF-κB, PI3K and ERK in a cell-content dependent fasion. These suggesting that the tumorigenesis role of E2F1 is tissue specific that may involveing signaling crosstalk between E2F1 and major signaling pathways. In this study, we focused on some fundemental mechanisms and functions of E2F1 in tumorigenesis from the view of signaling crosstalks, the results are listed below:
     (1) Elucidated a novel signaling pathway that E2F1/NF-κB complex transcriptional regulats EGR-1 expression and promotes prostate cancer cell proliferation and antiapoptosis
     We showed that E2F1 interacts with NF-κB to form a protein-protein complex and facilities the NF-κB binding site within promoter region of EGR-1 and induces expression of EGR-1. The consistent expression of EGR-1 induces the productions of a panel of growth factors including IGF, PDGF and TNF et al, which promtes cell proliferation and anti-apoptosis in prostate cancers. Futhermore, we also showed that EGR-1 promotes the expression of IL-8 that induces cell growth and metastasis. The results from this studies have published on Cancer Res. 2009 Mar 15;69(6):2324-31 and JBC. 2006;281(15), 10508–10515。
     (2) The protein–protein complex E2F1/NF-κB suppresses the expression of ICAM-1 that induces immune scapping in prostate cancers
     In the study of transcriptional regulation of ICAM-1, we find that E2F1/NF-κB complex is directly binding to the NF-κB site within ICAM-1 promoter and suppresses the expression of ICAM-1 that promote tumor immunescapping in prostate cancer cells. The results in in preperation for publishing on peer-review journals.
     The studies described in this thesis have elucidated that E2F1/NF-κB crosstalk is a important node in cell signaling pathway, which plays critical roles in tumors through regulating the downstream gene’s expression.
引文
[1]Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell. 2002 May;9(5):1017-29.
    [2]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002 Apr;109 Suppl:S81-96.
    [3]Matthew S. Hayden and Sankar Ghosh. Signaling to NF-kappaB. Genes Dev. 2004 Sep 15;18(18):2195-224.
    [4]Zhanguo Gao, Paul Chiao, Xia Zhang, Xiaohong Zhang, Mitchell Lazar, Edward Seto, Howard A Young and Jianping Ye1. Coactivators and Corepressors of NF-kB in IkB-alpha gene promoter. J Biol Chem. 2005 Jun 3;280(22):21091-8. Epub 2005 Apr 4
    [5]Ginsberg D. E2F1 pathways to apoptosis. FEBS Lett. 2002 Oct 2;529(1):122-5
    [6]Ma Y, Cress WD, Haura EB. Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1. Mol Cancer Ther. 2003 Jan;2(1):73-81.
    [7]DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7245-50.
    [8]Knezevic D, Brash DE. Role of E2F1 in apoptosis: a case study in feedback loops. Cell Cycle. 2004 Jun;3(6):729-32. Epub 2004 Jun 6. Review.
    [9]Halaban R. Rb/E2F: a two-edged sword in the melanocytic system. Cancer Metastasis Rev. 2005 Jun;24(2):339-56.
    [10]Adamson E, de Belle I, Mittal S, Wang Y, Hayakawa J, Korkmaz K, O'Hagan D, McClelland M, Mercola D. Egr1 signaling in prostate cancer. Cancer Biol Ther. 2003 Nov-Dec;2(6):617-22. Review.
    [11]Penninkhof F, Grootegoed JA, Blok LJ. Identification of REPS2 as a putative modulator of NF-kappaB activity in prostate cancer cells. Oncogene. 2004 Jul 22;23(33):5607-15.
    [12]Jang HD, Yoon K, Shin YJ, Kim J, Lee SY. PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit. J Biol Chem. 2004 Jun 4;279(23):24873-80. Epub 2004 Mar 26.
    [13]Xiao W, Hodge DR, Wang L, Yang X, Zhang X, Farrar WL. Co-operative functions between nuclear factors NFkappaB and CCAT/enhancer-binding protein-beta (C/EBP-beta)regulate the IL-6 promoter in autocrine human prostate cancer cells. Prostate. 2004 Dec 1;61(4):354-70.
    [14]Libertini SJ, Tepper CG, Guadalupe M, Lu Y, Asmuth DM, Mudryj M. E2F1 expression in LNCaP prostate cancer cells deregulates androgen dependent growth, suppresses differentiation, and enhances apoptosis. Prostate. 2006 Jan 1;66(1):70-81.
    [15]W. K. Aicher·K. M. Sakamoto·A. Hack·H. Eibel Analysis of functional elements in the human Egr-1 gene promoter Rheumatol Int (1999) 18: 207–214
    [16]Soon Young Shin, Young Yil Bahk, Jesang Ko, Il-Yup Chung, Young Seek Lee, Julian Downward, Hermann Eibel5, Prem M Sharma, Jerrold M Olefsky, Young-Ho Kim, Bonghee Lee and Young Han Lee1 Suppression of Egr-1 transcription through targeting of the serum response factor by oncogenic H-Ras The EMBO Journal (2006) 25, 1093–1103
    [17]Nevins JR. The Rb/ E2F pathway and cancer. Hum Mol Genet 2001,Oct. (7) :6992703.
    [18]Baron V, Adamson ED, Calogero A, Ragona G, Mercola D (2005) The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFb1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006 Feb;13(2):115-24.
    [19]Matsumura I, Tanaka H, Kanakura Y. E2F1 and c-Myc in cell growth and death. Cell Cycle. 2003 Jul-Aug;2(4):333-8. Review.
    [20]Dai Y, Rahmani M, Grant S. An intact NF-kappaB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle. 2003 Sep-Oct;2(5):467-72.
    [21]Ma XY, Wang H, Ding B, Zhong H, Ghosh S, Lengyel P. The interferon-inducible p202a protein modulates NF-kappaB activity by inhibiting the binding to DNA of p50/p65 heterodimers and p65 homodimers while enhancing the binding of p50 homodimers. J Biol Chem. 2003 Jun 20;278(25):23008-19. Epub 2003 Apr 3.
    [22]Melnick M, Chen H, Min Zhou Y, Jaskoll T. The functional genomic response of developing embryonic submandibular glands to NF-kappa B inhibition. BMC Dev Biol. 2001;1:15. Epub 2001 Oct 25.
    [23]Chapman NR, Perkins ND. Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1. J Biol Chem. 2000 Feb 18;275(7):4719-25.
    [24]Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D, Virolle T. NF-kappaB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 2005 Jan 12;24(1):128-37.
    [25]Brik S. Knudsen. Editorial Review. Current Molecular Medicine, 2006, Vol. 6, No. 7 703-4
    [26]W. Goodrich. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene (2006) 25, 5233–5243
    [27]David G. Johnson*,1 and James DeGregori. Putting the Oncogenic and Tumor Suppressive Activities of E2F into Context. Current Molecular Medicine 2006, 6, 731-738
    [28]David G. Johnson. The Paradox of E2F1: Oncogene and Tumor Suppressor Gene. Molecular Carcinogenesis. 2000; 27:151-157
    [29]Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene. 2000 Oct 19;19(44):5054-62.
    [30]Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996;85:537-548
    [31]Field SJ, Tsai F-Y, Kuo F, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549-561
    [32]Pützer BM. E2F1 death pathways as targets for cancer therapy. J Cell Mol Med. 2007 Mar-Apr;11(2):239-51.
    [33]Conner EA, Lemmer ER, Omori M, Wirth PJ, Factor VM, Thorgeirsson SS. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene. 2000 Oct 19;19(44):5054-62.
    [34]LizéM, Pilarski S, Dobbelstein M. E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ. 2010 Mar;17(3):452-8.
    [35]Chaogu Zheng, Zijia Ren, Hetian Wang, Weici Zhang, D.V. Kalvakolanu, Zhigang Tian, and Weihua Xiao. E2F1 Induces Tumor Cell Survival via Nuclear Factor-KB–Dependent Induction of EGR1 Transcription in Prostate Cancer Cells. Cancer Res. 2009 Mar 15;69(6):2324-31
    [36]Ma J, Ren Z, Ma Y, Xu L, Zhao Y, Zheng C, Fang Y, Xue T, Sun B, Xiao W. Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-kappaB synergy. J Biol Chem. 2009; 284(50): 34600-6.
    [37]Chaussepied M, Ginsberg D. Transcriptional regulation of AKT activation by E2F1. Mol Cell. 2004 Dec 3;16(5):831-7
    [38]Jing Tan, Li Zhuang, Xia Jiang, Kevin K. Yang, Krishina M. Karuturi, and QiangYu. Apoptosis Signal-regulating Kinase 1 Is a Direct Target of E2F1 and Contributes to Histone Deacetylase Inhibitorinduced Apoptosis through Positive Feedback Regulation of E2F1 Apoptotic Activity. JBC. 2006;281(15), 10508–10515
    [39]Ching-Aeng Lim, Fei Yao, Joyce Jing-Yi Wong, Joshy George, Han Xu, Kuo Ping Chiu, Wing-Kin Sung, Leonard Lipovich, Vinsensius B. Vega, Joanne Chen, Atif Shahab, Xiao Dong Zhao, Martin Hibberd, Chia-Lin Wei, Bing Lim, Huck-Hui Ng, Yijun Ruan, and Keh-Chuang Chin. Genome-wide Mapping of RELA(p65) Binding Identifies E2F1 as a Transcriptional Activator Recruited by NF-?B upon TLR4 Activation. Molecular Cell, 2006; 27(4), 622-635
    [40]Fang Fang, Yan Wang, Rui Li, Ying Zhao, Yang Guo, Ming Jiang, Jie Sun, Yang Ma, Zijia Ren, Zhigang Tian1, Feng Wei2, De Yang, Weihua Xiao.Transcription Factor E2F1 Suppresses Dendritic Cell Maturation. Journal of Immunology, 2010;
    [41]Yan Lavrovsky et al. Identification of binding sites for transcription factors NF-κB and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. 1994, 91: 5987-5991.
    [42]Nader G. Abraham et al. Heme Oxygenase-1 Gene Therapy: Recent Advances and Therapeutic Applications. Current Gene Therapy. 2007, 7: 89-108.
    [43]Heiko Muller et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes and Dev. 2001, 15: 267-285.
    [44]Mahin D. Maines. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. The FASEB Journal. 1988, 2: 2557-2568.
    [45]Alexander E. Kel et al. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J. Mol. Biol. 2001, 309: 99-120.
    [46]Maxim V. Frolov et al. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. Journal of Cell Science. 117: 2173-2181.
    [47]Andrew C. Phillips et al. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Molecular Cell. 1999,4:771-781.
    [48]Cynthia L. Hartsfield et al. Transcriptional regulation of the heme oxygenase 1 gene by pyrrolidine dithiocarbamate. The FASEB Journal. 1998;12:1675-1682.
    [49]Rong Yu et al. Activation of Mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 2000, 51: 39907-39913.
    [50]Shigeru Takahashi et al. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells. Biochimica et Biophysica Acta. 1999, 1447: 231-235.
    [51]Thomas Kietzmann et al. Transcriptional Regulation of Heme Oxygenase-1 Gene Expression by MAP Kinases of the JNK and p38 Pathways in Primary Cultures of Rat Hepatocytes. J. Biol. Chem. 2003, 278: 17927-17936.
    [52]Haim Werner and Sharon Maor (2006) The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action
    [53]Yewei Ma et al.(2006)Angiotensin II Stimulates Transcription of Insulin-Like Growth Factor I Receptor in Vascular Smooth Muscle Cells: Role of Nuclear Factor?_B.
    [54]Haim Werner et.al.(1994)Transcriptional Repression of the Insulin-like Growth Factor I Receptor (IGF-I-R) Geneb y the Tumor Suppressor WT1 Involves Binding to Sequences Both Upstream and Downstream of the IGF-I-R Gene Transcription Start Site.
    [55]Levon M. Khachigian(2007) Early Growth Response-1 in Cardiovascular Pathobiology.
    [56]Thierry Virolle(2003)Egr1 Promotes Growth and Survival of Prostate Cancer Cells.
    [57]V Baron et.al.(2006)The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFb1, PTEN, p53, and fibronectin.
    [58]Michalis V. Karamouzis et.al.(2006)The IGF-1 network in lung carcinoma therapeutics.
    [59]Derek Leroith et.al(2007)Molecular and cellular Aspects of the Insulin-Like Growth Factor 1 Receptor.
    [60]Jie Du et.al(1995)Transcriptional Regulation of the Insulin-Like Growth Factor-1 Receptor Gene: Evidence for Protein Kinase C-Dependent and-Independent Pathways.
    [61]Jizhong Cheng et.al.(2007)Mechanical Stretch Simulates Proliferation of Venous Smooth Muscle Cells Through Activation of the Insulin-Like Growth Factor-1 Receptor.
    [62]Chen Glait et.al.(2006) Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via SP1- and p53-dependent pathways.
    [63]Zheng Meng et.al.(2003)Evidence for differential ribonucleoprotein complex assembly in vitro on the 5’-untranslated region of the human IGF-IR transcript.
    [64]Doron Ginsberg (2002) E2F1 pathway to apoptosis.
    [65]Haim Werner et.al. (1990) Cloing and characterization of the proximal promoter region of the rat Insulin-Like Growth Factor 1 (IGF-1).
    [66]Judith Hailey et.al. (2002) Neutralizing Anti-Insulin-Like Growth Factor Receptor 1 Antibodies Inhibit Receptor Function and Induce Receptor Degradation in Tumor Cells.
    [67]Jennifer T. Yu et.al. (2000) Transcriptional Repression by Rb-E2F and Regulation of Anchorage-Independent Survival.
    [68]Sharon Maor et.al. (2006) Estrogen receptor regulates insulin-like growth factor-1 receptor gene expression in breast tumor cells: involvement of transcription factor SP1.
    [69]Moran Rubinstein et.al. (2004) Transcriptional Activation of the Insulin-Like Growth Factor 1 Receptor Gene by the Kruppel-Like Factor 6(KLF6) Tumor Suppressor Protein: Protential Interactions between KLF6 and p53.
    [70]Sharon Maor et.al. (2007) Elevated insulin-like growth factor-1 receptor (IGF-1R) levels in primary breast tumor associated with BrcA1 mutations.
    [71]Haim Werner et.al. (1993) Increased expression of the Insulin-Like Growth Factor 1 Receptor Gene, IGF-1R, in Wilms tumor is correlated with modulation of IGF-1R promoter activity by the WT1 Wilms tumor gene product.
    [72]Alam J et al. Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem, 1995, 270: 11977–11984.
    [73]Alexander E. Kel et al. Computer-assisted identification of cell cycle-related genes: new targets for E2F transcription factors. J. Mol. Biol. 2001, 309: 99-120.
    [74]Amersi F et al. Upregulation of heme oxygenase- 1 protects genetically fat Zucker rat livers from ischemia/ reperfusion injury. J Clin Invest, 1999, 104: 1631–1639.
    [75]Andrew C. Phillips et al. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Molecular Cell. 1999,4:771-781.
    [76]Ana I. Rojo et al. Regulation of heme oxygenase-1 gene expression through the phosphatidylinositol 3-kinase/PKC-ζpathway and SP1. Free Radical Biology & Medicine 41 2006, 247–261.
    [77]Ching-Aeng Lim et al. Genome-wide Mapping of RELA(p65) BindingIdentifies E2F1 as a Transcriptional Activator Recruited by NF-? B upon TLR4 Activation Molecular Cell 27, 622–635, August 17, 2007.
    [78]Cisowski et al. Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout. Biochem. Biophys. Res. Commun.,2005, 326: 670-676.
    [79]Doron. E2F1 pathways to apoptosis. FEBS letters, 2002, 529: 122-125.
    [80]Elbirt KK et al. Mechanism of sodium arsenite-mediated induction of hemeoxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J Biol Chem, 1998, 273: 8922–8931.
    [81]Ferris CD et al. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol, 1999, 3: 152–157.
    [82]Hancock WW et al. Antibody-induced transplant arteriosclerosis is prevented by graft expression of anti-oxidant and anti-apoptotic genes. Nat Med 4: 1392–1396.
    [83]Heiko Muller et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes and Dev. 2001, 15: 267-285.
    [84]Immenschuh S et al. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP response element/ activator protein-1 element in primary cultures of rat hepatocytes. Biochem J, 1998, 334: 141–146.
    [85]Ishizaka N and Griendling KK. Heme oxygenase-1 is regulated by angiotensin II in rat vascular smooth muscle cells. Hypertension. 1997, 29: 790–795.
    [86]Keyse SM et al. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci.1989, 86: 99–103.
    [87]Koizumi T et al. Identification of a cis-regulatory element for 12-prostaglandin J2-induced expression of the rat heme oxygenase gene. J Biol Chem, 1995, 270: 21779–21784.
    [88]Lautier D et al. Endogenous glutathione levels modulate both constitutive and UVA radiation/ oxidant-inducible expression of the human heme oxygenase gene. Carcinogenesis, 1992, 13: 227–232.
    [89]Lee BS et al. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc Natl Acad Sci, 1995, 92: 7207– 7211.
    [90]Maeshima H et al. Participation of altered upstream stimulatory factor in the induction of rat heme oxygenase-1 by cadmium. Nucleic Acids Res, 1996, 24: 2959–2965.
    [91]Mahin D. Maines. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. The FASEB Journal. 1988, 2: 2557-2568.
    [92]Malaguarnera, L. et al. Diminished heme oxygenase potentiates cell death: pyrrolidinedithiocarbamate mediates oxidative stress. Exp. Biol. Med., 2003, 228: 459-465.
    [93]Maxim V. Frolov et al. Molecular mechanisms of E2F-dependent activation andpRB-mediated repression. Journal of Cell Science. 117: 2173-2181.
    [94]Nader G. Abraham et al. Heme Oxygenase-1 Gene Therapy: Recent Advances and Therapeutic Applications. Current Gene Therapy. 2007, 7: 89-108.
    [95]Oguro T et al. The expression of heme oxygenase-1 gene responded to oxidative stress produced by phorone, a glutathione depletor, in the rat liver; the relevance to activation of c-jun nterminal kinase. J Pharmacol Exp Ther, 1998, 287: 773–778.
    [96]Otterbein et al. Hemoglobin provides protection against lethal endotoxemia in rats: The role of heme oxygenase-1. Am J Respir Cell Mol Biol, 1995, 13: 595–601.
    [97]Panahian N et al. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem, 1999, 72: 1187–1203.
    [98]Pellacani A et al. Induction of heme oxygenase-1 during endotoxemia is down-regulated by transforming growth factor-b1. Circ Res, 1998, 83: 396–403.
    [99]Polte T et al. Heme oxygenase-1 is a cyclic GMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler Thromb Vasc Biol, 2000, 20: 1209–1215.
    [100]Poss KD and Tonegawa S. Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci, 1997, 94: 10925–10930.
    [101]Rong Yu et al. Activation of Mitogen-activated protein kinase pathway induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 2000, 51: 39907-39913.
    [102]Shigeru Takahashi et al. Positive and negative regulation of the human heme oxygenase-1 gene expression in cultured cells. Biochimica et Biophysica Acta. 1999, 1447: 231-235.
    [103]Terry CM et al. TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca21, and phospholipase A2 in endothelial cells. Am J Physiol, 1999, 276: H1493–H1501.
    [104]Thomas Kietzmann et al. Transcriptional Regulation of Heme Oxygenase-1 Gene Expression by MAP Kinases of the JNK and p38 Pathways in Primary Cultures of Rat Hepatocytes. J. Biol. Chem. 2003, 278: 17927-17936.
    [105]Yachie, A et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J. Clin. Invest, 1999, 103: 129-135.
    [106]Yan Lavrovsky et al. Identification of binding sites for transcription factorsNF-κB and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. 1994, 91: 5987-5991.
    [107]Yang, L. et al. Retrovirus-mediated HO gene transfer into endothelial cells protects against oxidant-induced injury. Am. J. Physiol., 1999, 277: L127-L133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700