OCT4假基因在胶质瘤和乳腺癌中的表达及其意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
八聚体结合转录因子4(octamer-binding transcription factor 4,OCT4),是POU转录因子家族的一员,对于维持胚胎干细胞(embryonic stem cells, ES细胞)的多能性和自我更新具有十分重要的作用,并且OCT4是目前产生诱导多能干细胞(induced pluripotent stem cells)的一个必需因子。近年来,OCT4在人类肿瘤中的表达和意义也日益成为研究的热点。现已证实,OCT4基因在多能性生殖细胞肿瘤中有表达,并且其表达与多能性细胞的致瘤性有关。但是,体细胞肿瘤中是否表达OCT4仍有较大争议。许多研究报道,OCT4表达于成体干细胞和多种体细胞肿瘤中,而且肿瘤中的OCT4阳性细胞很可能就是肿瘤干细胞(cancer stem cells, CSCs),甚至有人报道,OCT4的表达对于维持干细胞样肿瘤细胞的存活和自我更新都是必需的。尽管如此,也有大量研究表明,OCT4在多种体细胞肿瘤和肿瘤细胞系中不表达。因此,为了更好的阐明肿瘤发生的分子机制,首先应该确定OCT4在人类体细胞肿瘤中是否有表达。一般来说,肿瘤细胞具有无限增殖、相对未分化和侵袭性等特征,这些都与早期胚胎细胞非常相似。但是,大多数肿瘤中的细胞群体都是异质性的,既有非常幼稚的细胞,也有几乎完全分化的细胞。随着干细胞理论在肿瘤研究中的应用,肿瘤中的未分化细胞即被称为CSCs。CSCs具有自我更新能力并且能够分化产生非致瘤性肿瘤细胞,正是肿瘤中存在的一小部分CSCs促进了肿瘤的形成和生长。到目前为止,许多研究者已经从多种肿瘤组织中成功分离培养出CSCs,包括胶质瘤和乳腺癌。最近有学者提出,CSCs可能来源于自我更新失调的正常干细胞或者重新获得自我更新能力的祖细胞或已分化细胞。不管怎样,自我更新机制的异常激活是肿瘤发生中的一个重要事件。因此,研究肿瘤中包括OCT4在内的参与干细胞自我更新机制的基因的表达和意义就变得十分迫切和重要。
     人类OCT4基因位于6号染色体,包含5个外显子和4个内含子。OCT4基因通过转录后的选择性剪接形成两种变异体OCT4A和OCT4B。它们翻译形成的蛋白质具有相同的POU和C端结构域,而N端结构域则不同。OCT4A定位于细胞核内,具有维持ES细胞自我更新的功能;而OCT4B主要位于细胞浆中,并且不具有维持ES细胞自我更新的功能。通常所说的OCT4指的是OCT4A。另有研究发现,人类基因组中存在6个OCT4假基因(pseudogenes),它们与OCT4基因有很高的序列同源性。有人报道,OCT4B表达于多种体细胞肿瘤细胞系中,而两个OCT4假基因——OCT4-pgl和OCT4-pg5在多种体细胞肿瘤组织和细胞系中都有转录。OCT4基因剪接异构体和假基因的存在和表达都有可能导致OCT4检测的假阳性实验结果。因此,检测OCT4基因的表达时,需要将真正的OCT4与其剪接变异体和各种假基因区分开来。
     虽然已有报道表明,可能是OCT4剪接变异体和假基因的存在导致了目前肿瘤和干细胞研究中OCT4是否表达的相悖结果,但是这一问题还没有引起人们足够的重视。在本研究中,我们利用RT-PCR和DNA测序分析的方法检测OCT4在两种体细胞肿瘤——胶质瘤和乳腺癌中的表达状况。我们的实验结果显示,这两种肿瘤中没有检测到真正的OCT4基因的表达,检测出的是三种OCT4假基因——OCT4-pgl、OCT4-pg3和OCT4-pg4。我们进一步研究了它们的蛋白表达情况,并对这些蛋白产物的功能和活性进行了探讨。
     第一部分胶质瘤和乳腺癌中OCT4假基因的克隆与测序分析
     为了检测OCT4在人胶质瘤和乳腺癌组织中的表达情况,我们共收集了42例胶质瘤和45例乳腺癌的临床标本。所有的肿瘤标本均经过最后的病理诊断证实,胶质瘤按照世界卫生组织(WHO)制定的标准进行分级,而乳腺癌依据雌激素受体(ER)、孕激素受体(PR)和人类表皮生长因子受体2(HER2)的表达情况进行分型。作为正常对照的4例成人脑组织和5例乳腺组织均取自于外伤病人。在RT-PCR过程中,我们利用两对引物来检测OCT4 mRNA的表达。OCT4A特异性引物能够特异性扩增OCT4A,而OCT4全长引物能够扩增OCT4A的全长编码序列。当用OCT4A特异性引物进行扩增时,除阳性对照精原细胞瘤外,各级别各类胶质瘤、各类型乳腺癌、正常脑组织和乳腺组织中都没有检测到OCT4 mRNA (496bp)的表达;而当用OCT4全长引物进行扩增时,各级别各类胶质瘤和各类型乳腺癌中都能检测到阳性条带(1086bp)。此外,我们还检测了OCT4 mRNA在多种人胶质瘤和乳腺癌细胞系中的表达情况。当用OCT4A特异性引物进行扩增时,除阳性对照人多能性胚胎癌细胞系NTera-2外,人胶质瘤细胞系U251和U87,乳腺癌细胞系MCF7、MDA-MB-231、BT474和SK-BR-3中都没有检测到OCT4 mRNA (496bp)的表达;而当用OCT4全长引物进行扩增时,这几种肿瘤细胞系中都能检测到阳性条带(1086bp)。
     下一步,我们利用DNA克隆和测序分析来确定胶质瘤和乳腺癌中是否有真正OCT4基因的表达。首先,我们从琼脂糖凝胶中回收由OCT4全长引物扩增得到的DNA片段(1086bp),克隆入pGEM-T easy载体中形成环状质粒,质粒扩增后进行酶切鉴定,插入片段大小正确的克隆再进行测序分析。测序结果显示,OCT4基因的转录本只在阳性对照精原细胞瘤和NTera-2细胞中被检测到,而在本研究收集的各种肿瘤组织和肿瘤细胞系中未检测到真正OCT4基因的表达,检测到的是三种OCT4假基因,即OCT4-pgl、OCT4-pg3和OCT4-pg4,它们分别位于人类染色体8q24、12p13和1q22。我们的测序结果表明,当用OCT4全长引物进行扩增时,正是肿瘤组织和细胞系中存在的这些OCT4假基因的转录本导致了RT-PCR的阳性结果。
     第二部分OCT4假基因蛋白的表达与定位研究
     从理论上来说,OCT4-pg1、OCT4-pg3和OCT4-pg4的转录本能够分别翻译生成由359、186和286个氨基酸组成的蛋白产物。尽管存在着氨基酸缺失或替代,这三种OCT4假基因的蛋白产物都有与OCT4蛋白相似的N端结构域。
     为了研究OCT4假基因的蛋白表达和细胞内定位,我们构建了它们的真核表达质粒,并使它们的C端带有HA标签,以便于检测。将它们分别转染小鼠胚胎成纤维细胞NIH 3T3后,进行免疫细胞化学染色。结果显示,与OCT4相似,OCT4-pg1和OCT4-pg4主要位于细胞核内,而OCT4-pg3主要位于细胞浆中。OCT4-pg1和OCT4-pg3还能被两种OCT4抗体——ab18976和sc-5279所识别,而OCT4-pg4不能被这两种抗体所识别。转染胶质瘤细胞系U251和乳腺癌细胞系MCF7得到了与NIH 3T3相似的结果,不同的是OCT4-pg3在这两种肿瘤细胞的细胞核和细胞浆中都有分布。Western blot结果显示,OCT4-pg1、OCT4-pg3、OCT4-pg4和OCT4蛋白产物所对应的条带分别位于50、30、30和50 KDa。与免疫细胞化学结果一致,细胞核浆分离后进行的Western blot检测结果显示,OCT4-pg1、OCT4-pg4和OCT4位于NIH 3T3的细胞核中,而OCT4-pg3位于细胞浆中。另外,Western blot结果显示,OCT4-pg1和OCT4-pg3还能被OCT4抗体sc-5279所识别。两种OCT4抗体都不能识别OCT4-pg4,可能与OCT4-pg4蛋白的N端存在较多的氨基酸缺失或替代有关。
     下一步,我们利用免疫化学染色检测了OCT4假基因在肿瘤细胞中的内源性表达。当用OCT4抗体ab18976进行免疫染色时,与NTera-2细胞中明显的核着色不同,荧光信号在几乎所有U251和MCF7细胞的细胞核和细胞浆中都能检测到,说明这些肿瘤细胞中表达OCT4假基因。同样,与精原细胞瘤中广泛的核着色相比,人胶质瘤和乳腺癌组织中只有一小部分细胞能着色,并且一些细胞的细胞核和细胞浆中都有阳性着色,说明这些肿瘤组织中有OCT4假基因的表达。在胶质瘤中,能被ab18976阳性染色的细胞也能同时表达肿瘤干细胞标志物CD133或者星形胶质细胞标志物GFAP,说明胶质瘤中OCT4假基因的表达并不局限于CSCs中。
     本实验结果表明,当检测肿瘤组织中OCT4的表达时,OCT4假基因蛋白的表达在免疫化学染色和Western blot中都可能产生假阳性实验结果。这可能也是导致目前关于肿瘤和干细胞中OCT4是否表达的相悖研究结果的原因。
     第三部分OCT4假基因蛋白的活性与功能研究
     为了研究OCT4假基因的生物学功能,我们用OCT4及其假基因的表达质粒转染胶质瘤细胞系U251、U87和乳腺癌细胞系MCF7、MDA-MB-231。转染后各个时间点的细胞活力用MTT实验来检测。结果显示,OCT4转染组肿瘤细胞的细胞活力明显高于对照组,而各OCT4假基因转染组的细胞活力与对照组相比没有明显差别。细胞克隆形成实验结果显示,OCT4转染组肿瘤细胞的克隆形成率明显高于对照组,而各OCT4假基因转染组细胞的克隆形成率与对照组相比没有明显差别。OCT4假基因不能增加肿瘤细胞的细胞活力,也不能促进肿瘤细胞的克降形成率,说明OCT4假基因对肿瘤细胞的增殖无明显作用。最后,我们利用荧光素酶报告基因检测的方法检测了这三种OCT4假基因的转录激活功能。OCT4能够明显激活三种OCT4依赖的荧光素酶报告基因载体(6×W、PORE和MORE),而三种OCT4假基因与空载体PCDNA3相比无明显差别,说明OCT4-pg1、OCT4-pg3和OCT4-pg4对这三种OCT4依赖的荧光素酶报告基因载体无明显的转录激活功能。
     这三种OCT4假基因与真正OCT4基因的高度同源性提示它们可能具有相似的生物学功能,但本研究结果显示,OCT4-pg1、OCT4-pg3和OCT4-pg4不具有类似OCT4的功能。OCT4假基因在肿瘤中表达的意义以及它们在肿瘤发生中的作用有待于进一步研究。
     总之,通过本研究我们发现,人类胶质瘤和乳腺癌中表达三种OCT4假基因——OCT4-pg1、OCT4-pg3和OCT4-pg4,而没有真正OCT4基因的表达,说明OCT4的表达在人类体细胞肿瘤发生过程中可能不是必需的。我们进一步通过免疫化学染色和Western blot检测了这三种OCT4假基因的蛋白表达情况,这些假基因的表达可能导致了目前人类体细胞肿瘤中OCT4表达的假阳性研究结果。本研究还发现OCT4假基因不具有类似OCT4的功能。我们的研究结果表明,当研究OCT4在肿瘤和干细胞中的表达时,必需联合采用多种实验方法并设立合适的对照组以排除假阳性结果,从而保证实验结果的可靠性。
Octamer-binding transcription factor 4 (OCT4) is a POU family transcription factor, notable for its maintaining the pluripotency and self-renewal of embryonic stem (ES) cells and for generating induced pluripotent stem (iPS) cells, as a uniquely essential reprogramming factor to date. Recently, it becomes a hot topic to study the expression and function of OCT4 in human tumours. Although OCT4 is putatively expressed in and associated with germ cell tumours with pluripotent potential, its expression in human somatic tumours remains controversial. Several studies showed that OCT4 is expressed in adult stem cells and somatic cancers, and OCT4-positive cells identified in cancers are likely to represent cancer stem cells (CSCs) and, further, OCT4 expression is required for maintaining the survival and self-renewal property of cancer stem-like cells. However, there is ample evidence suggesting that OCT4 is not expressed in somatic tumours and tumour cell lines. In view of this and to fully clarify the molecular mechanism of tumour biology, it would be vital to first determine whether OCT4 is expressed in human somatic cancers.
     In general, cancer cells, which are immortal, relatively undifferentiated, and invasive, are very similar to early embryonic cells. However, the cancer cell populations in most cancers are intrinsically heterogeneous, encompassing cells ranging from very immature to nearly differentiated. With stem cell theory being applied to cancer study, the undifferentiated cells in cancer may be considered to be CSCs, which have the exclusive ability to self-renew and give rise to nontumourigenic cancer cells. It is the small population of CSCs that drives tumour formation and growth. CSCs have been isolated from many somatic cancers including glioma and breast cancer and cultured in vitro. Recently, CSCs were proposed to be derived either from normal stem cells with dysregulated self-renewal or from restricted progenitors or differentiated cells regaining the capacity to self-renew. Therefore, it is likely that aberrant activation of the self-renewal pathway is a key event in carcinogenesis, and it becomes imperative and important to examine the expression and significance of genes involved in the regulation of stem cell self-renewal in cancers, including OCT4.
     The human OCT4 gene is located on chromosome 6 and comprises five exons and four introns. There are two isoforms generated by alternative splicing designated as OCT4A and OCT4B. They have identical POU DNA binding and C-terminal domains but differ in their N termini. OCT4A is localized in the nucleus, whereas OCT4B is mainly localized in the cytoplasm and, unlike OCT4A, it can not maintain the self-renewal of ES cells. OCT4 is commonly referred to as OCT4A and the function of OCT4 to maintain the self-renewal of ES cells should be attributed to OCT4A. In addition, there are six pseudogenes for human OCT4, which are highly homologous to human OCT4 gene. While OCT4B could be detected in various non-pluripotent somatic cancer cells, two OCT4 pseudogenes, OCT4-pg1 and OCT4-pg5, were found to be transcribed in somatic cancers and cancer cell lines. The existence and expression of both OCT4 alternative splicing variant and various pseudogenes are likely to yield undesirable false positive results. Therefore, when addressing OCT4 expression, it is necessary to distinguish the bona fide OCT4 from its alternative splicing variant and various pseudogenes.
     Although it was reported that the existence of OCT4 splicing variants and pseudogenes might have led to some confusion in cancer and stem cell research, the issue has not received much attention in many recent studies. In the present study, we used RT-PCR and sequencing analysis to detect OCT4 expression in two types of human somatic tumours, glioma and breast carcinoma, from which CSCs have already been isolated and cultured in vitro. Our results showed that three OCT4 pseudogenes, viz. OCT4-pg1, OCT4-pg3 and OCT4-pg4 rather than OCT4 gene, are expressed in these two human solid tumours. We further demonstrated their protein expression and explored the function and activity of their protein products.
     Part I Cloning and sequencing analysis of OCT4 pseudogenes from gliomas and breast carcinomas
     To detect OCT4 expression in glioma and breast carcinoma, we collected 42 cases of gliomas and 45 cases of breast carcinomas. All tumour specimens were verified by pathological analysis. Gliomas were classified according to the WHO classification standard, whereas breast cancer subtypes were defined according to the status of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). The adult normal brain and breast tissues were obtained from surgical resections of four and five trauma patients, respectively. In RT-PCR assays, we used two pairs of primers to detect OCT4 mRNA expression. OCT4A-specific primer set is able to specifically amplify OCT4A, while OCT4-full length primers were designed to amplify the entire coding sequence of OCT4A. When using OCT4A-specific primers, except for seminoma, which served as a positive control,OCT4A mRNA (496bp) was not detected in any tumour and normal tissues. But, when using OCT4-full length primers, besides seminoma, the predicated 1086bp PCR products were detected in gliomas of different grades and breast cancers of various subtypes. In addition, we detected OCT4 mRNA expression in many human glioma cell lines and breast cancer cell lines. When using OCT4A-specific primers, except for human pluripotent embryonal carcinoma cells NTcra-2, which served as a positive control, OCT4A mRNA (496bp) was not detected in U251, U87, MCF7, MDA-MB-231, BT474 and SK-BR-3 cells. But, when using OCT4-full length primers, besides NTera-2 cells, the predicated 1086bp PCR products were detected in these tumour cell lines.
     Next, we used DNA cloning and sequencing analysis to detect OCT4 expression in glioma and breast carcinoma. First, all the 1086bp DNA fragments were extracted from the agarose gel, cloned into pGEM-T easy vector and amplified. Plasmids with an insert of correct size were sequenced. Sequencing results showed that while the transcripts of OCT4 gene were only found in samples of positive control, the seminoma and NTera-2 cells, transcripts of three OCT4 pseudogenes, OCT4-pg1, OCT4-pg3 and OCT4-pg4, which are mapped to chromosomal bands 8q24,12p13 and 1q22, respectively, were found in these cancer tissues and cancer cell lines. Our sequencing results confirmed that it was the transcripts of OCT4 pseudogenes that contributed to the RT-PCR products in the cancer tissues and cancer cell lines when using OCT4-full length primers for PCR amplification.
     PartⅡProtein expression and localization of OCT4 pseudogenes
     Theoretically, the transcripts from OCT4-pg1, OCT4-pg3 and OCT4-pg4 can translate into protein products of 359,186 and 286 amino acids, respectively. Although there are amino acid deletions or substitutions, all these three putative proteins contain N-terminal domains similar to that of human OCT4.
     In order to investigate the expression and subcellular localization of these OCT4 pseudogene products, we constructed their expression plasmids with HA tag at their C termini. We then transfected them into NIH 3T3 cells and carried out immunocytochemistry staining. Our results showed that OCT4-pg1 and OCT4-pg4, as well as OCT4, were mainly localized in the nuclei, whereas OCT4-pg3 was mainly localized in the cytoplasm. Besides OCT4, OCT4-pg1 and OCT4-pg3 could also be detected by two anti-OCT4 antibodies, ab18976 and sc-5279. By contrast, OCT4-pg4 could not be detected by these two antibodies. Similar results were obtained in U251 and MCF7 cells transfected with the plasmids, except that OCT4-pg3 was located in both the nucleus and cytoplasm. Furthermore, Western blotting showed that OCT4-pg1, OCT4-pg3, OCT4-pg4 and OCT4 migrated at 50 kDa,30 kDa,30 kDa, and 50 kDa, respectively. In agreement with the immunocytochemistry results, subcellular fractionation analysis confirmed that OCT4-pgl, OCT4-pg4 and OCT4 were localized in the nuclei, while OCT4-pg3 was localized in the cytoplasm of NIH 3T3 cells. Besides OCT4, OCT4-pg1 and OCT4-pg3 could also be stained by sc-5279 in Western blotting. The two antibodies, ab18976 and sc-5279, could not recognize OCT4-pg4, possibly due to amino acid deletion or substitution.
     We further used immunochemistry to detect the endogenous expression of OCT4 pseudogenes in cancer cells. As expected, the fluorescence signal was strongly detected in the nucleus of NTera-2 cells when using the polyclonal ab18976 antibody. As to U251 glioma cells and MCF7 breast cancer cells, the fluorescence signals were detected in both the nucleus and cytoplasm of almost all cells, indicating the expression of OCT4 pseudogenes in these cancer cells. In contrast to extensive and nuclear staining of OCT4 in seminoma, only a few cells in human glioma and breast cancer were immunostained by ab18976, with positive staining in both the nucleus and cytoplasm of some cells, indicating the expression of OCT4 pseudogenes in these cancer tissues. In addition, the cells that were positively stained by ab 18976 in glioma also expressed the cancer stem cell marker CD 133 or the astroglial marker GFAP, indicating that expression of OCT4 pseudogenes is not restricted to CSCs in gliomas.
     These results suggest that, when detecting OCT4 expression in cancers, the expression of OCT4 pseudogenes might lead to false detection for OCT4 in both immunochemistry and Western blotting. This might also contribute to the misinterpretation of OCT4 expression in cancers and stem cells.
     Part III Protein activity and function of OCT4 pseudogenes
     To determine the biological activities of these OCT4 pseudogenes, U251, U87, MCF7 and MDA-MB-231 cells were transfected with expression plasmids of OCT4 or its pseudogenes. The cell viability was measured by MTT assay. There was a significant increase in cell viability in cancer cells transfected with OCT4 compared to the control group, but there was no significant difference between cell groups transfected with OCT4 pseudogenes and the mock vector. The colony formation assay showed that the colony formation rate of cancer cells transfected with OCT4 was significantly higher than that of the control group cells, while there was no significant difference between cell groups transfected with OCT4 pseudogenes and the mock vector. These results showed that the OCT4 pseudogenes could not increase cell viability in MTT analysis and did not promote colony formation rate of cancer cells, indicating that the OCT4 pseudogenes have no effect on the proliferation of cancer cells. Finally, the transcriptional activation potentials of OCT4 pseudogenes were detected by luciferase reporter assay. OCT4 strongly transactivated three OCT4 reporter constructs (6×W, PORE and MORE), but there was no significant difference between OCT4 pseudogenes and the mock vector, suggesting that OCT4-pgl, OCT4-pg3 and OCT4-pg4 have no significant transcriptional activity toward these three OCT4 luciferase reporter constructs.
     The high degree of homology between OCT4 and its pseudogenes suggests that they might have similar functions, but our results showed that OCT4-pg1, OCT4-pg3 and OCT4-pg4 did not possess OCT4-like activities. The functional implication of OCT4 pseudogenes expression in cancers and roles of these genes playing in carcinogenesis remain to be further investigated.
     In conclusion, we have demonstrated the expression of three OCT4 pseudogenes, OCT4-pgl, OCT4-pg3, and OCT4-pg4 with an apparent lack of OCT4 in human glioma and breast carcinoma, indicating that OCT4 may not be essential for somaic tumourigenesis. We further demonstrated their protein expression by using immunochemistry and Western blotting. Our results suggest that the protein expression of these pseudogenes might have produced the false detection of OCT4 in human somatic cancers. Remarkably, we have revealed that the OCT4 pseudogenes did not display OCT4-like activities. We suggest that, in order to obtain reliable results, combined approaches with appropriate controls must be followed to exclude possibility of false-positive results in investigations of OCT4 expression in cancers and stem cells.
引文
1. Pan GJ, Chang ZY, Scholer HR, Pei D:Stem cell pluripotency and transcription factor Oct4. Cell Res 2002,12(5-6):321-329.
    2. Pan G, Qin B, Liu N, Scholer HR, Pei D:Identification of a nuclear localization signal in OCT4 and generation of a dominant negative mutant by its ablation. J Biol Chem 2004,279(35):37013-37020.
    3. Brehm A, Ohbo K, Scholer H:The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 1997, 17(1):154-162.
    4. Saxe JP, Tomilin A, Scholer HR, Plath K, Huang J:Post-translational regulation of Oct4 transcriptional activity. PLoS One 2009,4(2):e4467.
    5. Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y:Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 2004,279(22):23495-23503.
    6. Liao B, Jin Y:Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Res 2010, 20(3):332-344.
    7. Wei F, Scholer HR, Atchison ML:Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 2007,282(29):21551-21560.
    8. Ovitt CE, Scholer HR:The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 1998,4(11):1021-1031.
    9. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A:Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998, 95(3):379-391.
    10. Velkey JM, O'Shea KS:Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis 2003,37(1):18-24.
    11. Matin MM, Walsh JR, Gokhale PJ, Draper JS, Bahrami AR, Morton I, Moore HD, Andrews PW:Specific knockdown of Oct4 and beta2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 2004,22(5):659-668.
    12. Zafarana G, Avery SR, Avery K, Moore HD, Andrews PW:Specific knockdown of OCT4 in human embryonic stem cells by inducible short hairpin RNA interference. Stem Cells 2009,27(4):776-782.
    13. Niwa H, Miyazaki J, Smith AG:Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000, 24(4):372-376.
    14. Zhou Q, Chipperfield H, Melton DA, Wong WH:A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2007, 104(42):16438-16443.
    15. Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J:Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 2001,25(2):500-510.
    16. Takahashi K, Yamanaka S:Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-676.
    17. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S:Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007,131(5):861-872.
    18. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin Ⅱ, Thomson JA:Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318(5858):1917-1920.
    19. Kang J, Shakya A, Tantin D:Stem cells, stress, metabolism and cancer:a drama in two Octs. Trends Biochem Sci 2009,34(10):491-499.
    20. Al-Hajj M, Clarke MF:Self-renewal and solid tumor stem cells. Oncogene 2004,23(43):7274-7282.
    21. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821-5828.
    22. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003,100(7):3983-3988.
    23. Pardal R, Clarke MF, Morrison SJ:Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003,3(12):895-902.
    24. Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, van Dekken H, Honecker F, Bokemeyer C, Perlman EJ, Schneider DT, Kononen J, Sauter G, Oosterhuis JW:POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 2003,63(9):2244-2250.
    25. Gidekel S, Pizov G, Bergman Y, Pikarsky E:Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 2003,4(5):361-370.
    26. de Jong J, Looijenga LH:Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics:history and future. Crit Rev Oncog 2006, 12(3-4):171-203.
    27. Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, Lopez-Beltran A, Montironi R, Looijenga LH:OCT4:biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 2007, 211(1):1-9.
    28. Monk M, Holding C:Human embryonic genes re-expressed in cancer cells. Oncogene 2001,20(56):8085-8091.
    29. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE:Oct4 expression in adult human stem cells:evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 2005,26(2):495-502.
    30. Wang P, Branch DR, Bali M, Schultz GA, Goss PE, Jin T:The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochem J 2003,375(Pt 1):199-205.
    31. Ezeh UI, Turek PJ, Reijo RA, Clark AT:Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 2005,104(10):2255-2265.
    32. Jin T, Branch DR, Zhang X, Qi S, Youngson B, Goss PE:Examination of POU homeobox gene expression in human breast cancer cells, Int J Cancer 1999,81(1):104-112.
    33. Simoes BM, Piva M, Iriondo O, Comaills V, Lopez-Ruiz JA, Zabalza I, Mieza JA, Acinas O, Vivanco MD:Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res Treat.2010 Sep 22. [Epub ahead of print]
    34. Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR:OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 2007, 120(7):1598-1602.
    35. Wu CL, Shieh GS, Chang CC, Yo YT, Su CH, Chang MY, Huang YH, Wu P, Shiau AL:Tumor-selective replication of an oncolytic adenovirus carrying oct-3/4 response elements in murine metastatic bladder cancer models. Clin Cancer Res 2008,14(4):1228-1238.
    36. Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL:Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 2008,68(15):6281-6291.
    37. Iki K, Pour PM:Expression of Oct4, a stem cell marker, in the hamster pancreatic cancer model. Pancreatology 2006,6(4):406-413.
    38. Wen J, Park JY, Park KH, Chung HW, Bang S, Park SW, Song SY:Oct4 and Nanog expression is associated with early stages of pancreatic carcinogenesis. Pancreas 2010,39(5):622-626.
    39. Sotomayor P, Godoy A, Smith GJ, Huss WJ:Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 2009,69(4):401-410.
    40. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ:Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate 2011, 71(1):18-25.
    41. Karoubi G, Gugger M, Schmid R, Dutly A:OCT4 expression in human non-small cell lung cancer:implications for therapeutic intervention. Interact Cardiovasc Thorac Surg 2009,8(4):393-397.
    42. Zhang X, Han B, Huang J, Zheng B, Geng Q, Aziz F, Dong Q:Prognostic significance of OCT4 expression in adenocarcinoma of the lung. Jpn J Clin Oncol 2010,40(10):961-966.
    43. Karoubi G, Cortes-Dericks L, Gugger M, Galetta D, Spaggiari L, Schmid RA: Atypical expression and distribution of embryonic stem cell marker, OCT4, in human lung adenocarcinoma. J Surg Oncol 2010,102(6):689-698.
    44. Huang PZ, Lu CL, Li BK, Hong J, Huang L, Wang L, Zhang Y, Yuan YF: [OCT4 expression in hepatocellular carcinoma and its clinical significance]. Chin J Cancer 2010,29(1):111-116.
    45. Yuan F, Zhou W, Zou C, Zhang Z, Hu H, Dai Z, Zhang Y:Expression of Oct4 in HCC and modulation to wnt/beta-catenin and TGF-beta signal pathways. Mol Cell Biochem 2010,343(1-2):155-162.
    46. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT, Fan ST:Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 2010,52(2):528-539.
    47. Wang Q, He W, Lu C, Wang Z, Wang J, Giercksky KE, Nesland JM, Suo Z: Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 2009, 29(4):1233-1241.
    48. Chen Z, Xu WR, Qian H, Zhu W, Bu XF, Wang S, Yan YM, Mao F, Gu HB, Cao HL, Xu XJ:Oct4, a novel marker for human gastric cancer. J Surg Oncol 2009,99(7):414-419.
    49. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA:Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 2005,7(11):967-976.
    50. Webster JD, Yuzbasiyan-Gurkan V, Trosko JE, Chang CC, Kiupel M: Expression of the embryonic transcription factor Oct4 in canine neoplasms:a potential marker for stem cell subpopulations in neoplasia. Vet Pathol 2007, 44(6):893-900.
    51. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH, Lo JF:Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 2008,14(13):4085-4095.
    52. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S:Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 2008, 68(16):6533-6540.
    53. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH, Chiou SH:Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008,3(7):e2637.
    54. Cantz T, Key G, Bleidissel M, Gentile L, Han DW, Brenne A, Scholer HR: Absence of OCT4 expression in somatic tumor cell lines. Stem Cells 2008, 26(3):692-697.
    55. Mueller T, Luetzkendorf J, Nerger K, Schmoll HJ, Mueller LP:Analysis of OCT4 expression in an extended panel of human tumor cell lines from multiple entities and in human mesenchymal stem cells. Cell Mol Life Sci 2009,66(3):495-503.
    56. Palumbo C, van Roozendaal K, Gillis AJ, van Gurp RH, de Munnik H, Oosterhuis JW, van Zoelen EJ, Looijenga LH:Expression of the PDGF alpha-receptor 1.5 kb transcript, OCT-4, and c-KIT in human normal and malignant tissues. Implications for the early diagnosis of testicular germ cell tumours and for our understanding of regulatory mechanisms. J Pathol 2002, 196(4):467-477.
    57. Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kogler G:Oct4 and its pseudogenes confuse stem cell research. Cell stem cell 2007, 1(4):364-366.
    58. Takeda J, Seino S, Bell GI:Human Oct3 gene family:cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res 1992,20(17):4613-4620.
    59. Cauffman G, Liebaers I, Van Steirteghem A, Van de Velde H:POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells 2006,24(12):2685-2691.
    60. Lee J, Kim HK, Rho JY, Han YM, Kim J:The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem 2006, 281(44):33554-33565.
    61. D'Errico I, Gadaleta G, Saccone C:Pseudogenes in metazoa:origin and features. Brief Funct Genomic Proteomic 2004,3(2):157-167.
    62. Pain D, Chirn GW, Strassel C, Kemp DM:Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem 2005,280(8):6265-6268.
    63. Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW:OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 2008,26(12):3068-3074.
    64. Suo G, Han J, Wang X, Zhang J, Zhao Y, Zhao Y, Dai J:Oct4 pseudogenes are transcribed in cancers. Biochemical and biophysical research communications 2005,337(4):1047-1051.
    65. Liedtke S, Stephan M, Kogler G:Oct4 expression revisited:potential pitfalls for data misinterpretation in stem cell research. Biological chemistry 2008, 389(7):845-850.
    66. Hemmati HD, Nakano I. Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI:Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003,100(25):15178-15183.
    67. Kondo T, Setoguchi T, Taga T:Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Nail Acad Sci U S A 2004, 101(3):781-786.
    68. Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M:Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 2006,54(8):850-860.
    69. Yi L, Zhou ZH, Ping YF, Chen JH, Yao XH, Feng H, Lu JY, Wang JM, Bian XW:Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 2007, 20(10):1061-1068.
    70. Garcia Bueno JM, Ocana A, Castro-Garcia P, Gil Gas C, Sanchez-Sanchez F, Poblet E, Serrano R, Calero R, Ramirez-Castillejo C:An update on the biology of cancer stem cells in breast cancer. Clin Transl Oncol 2008, 10(12):786-793.
    71. Oliveira LR, Jeffrey SS, Ribeiro-Silva A:Stem cells in human breast cancer. Histol Histopathol 2010,25(3):371-385.
    72. Lou N, Wang Y, Sun D, Zhao J, Wang Y, Gao Z:Isolation of stem-like cells from human MG-63 osteosarcoma cells using limiting dilution in combination with vincristine selection. Indian J Biochem Biophys 2010,47(6):340-347.
    73. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C:Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell stem cell 2007, 1(3):313-323.
    74. Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK: Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011,6(1):e16530.
    75. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY: Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007,132(7):2542-2556.
    76. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G:Identification of a tumor-initiating stem cell population in human renal carcinomas. Faseb J 2008,22(10):3696-3705.
    77. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG:The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011,17(2):211-215.
    78. Taipale J, Beachy PA:The Hedgehog and Wnt signalling pathways in cancer. Nature 2001,411(6835):349-354.
    79. Reya T, Morrison SJ, Clarke MF, Weissman IL:Stem cells, cancer, and cancer stem cells. Nature 2001,414(6859):105-111.
    80. Dahmen RP, Koch A, Denkhaus D, Tonn JC, Sorensen N, Berthold F, Behrens J, Birchmeier W, Wiestler OD, Pietsch T:Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 2001,61(19):7039-7043.
    81. Ruiz i Altaba A, Sanchez P, Dahmane N:Gli and hedgehog in cancer:tumours, embryos and stem cells. Nat Rev Cancer 2002,2(5):361-372.
    82. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Marie D, Eberhart CG, Fine HA: Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005,65(6):2353-2363.
    83. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P:The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007,114(2):97-109.
    84. Weigelt B, Baehner FL, Reis-Filho JS:The contribution of gene expression profiling to breast cancer classification, prognostication and prediction:a retrospective of the last decade. JPathol 2010,220(2):263-280.
    85. Rakha EA, Reis-Filho JS, Ellis IO:Basal-like breast cancer:a critical review. JClin Oncol 2008,26(15):2568-2581.
    86. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS: Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009,27(8):1160-1167.
    87. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW:A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006,10(6):515-527.
    88. Hochedlinger K, Yamada Y, Beard C, Jaenisch R:Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 2005,121(3):465-477.
    89. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, Scholer HR, Tomilin A, Jaenisch R:Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell stem cell 2007, 1(4):403-415.
    90. Lengner CJ, Welstead GG, Jaenisch R:The pluripotency regulator Oct4:a role in somatic stem cells? Cell Cycle 2008,7(6):725-728.
    91. Berg JS, Goodell MA:An argument against a role for Oct4 in somatic stem cells. Cell stem cell 2007, 1(4):359-360.
    92. Li B, Cong F, Tan CP, Wang SX, Goff SP:Aph2, a protein with a zf-DHHC motif, interacts with c-Abl and has pro-apoptotic activity. J Biol Chem 2002, 277(32):28870-28876.
    93. Zangrossi S, Marabese M, Broggini M, Giordano R, D'Erasmo M, Montelatici E, Intini D, Neri A, Pesce M, Rebulla P, Lazzari L:Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 2007,25(7):1675-1680.
    94. Kotoula V, Papamichos SI, Lambropoulos AF:Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem Cells 2008,26(1):290-291.
    95. Korneev SA, Park JH, O'Shea M:Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. JNeurosci 1999,19(18):7711-7720.
    96. Hirotsune S, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A:An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 2003, 423(6935):91-96.
    97. Zhang J, Wang X, Li M, Han J, Chen B, Wang B, Dai J:NANOGP8 is a retrogene expressed in cancers. Febs J 2006,273(8):1723-1730.
    98. Lin H, Shabbir A, Molnar M, Lee T:Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene. Biochemical and biophysical research communications 2007,355(1):111-116.
    99. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA:An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008,40(5):499-507.
    100. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM, Chang HY, Shurtleff SA, Downing JR, Cleary ML:Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell stem cell 2009, 4(2):129-140.
    101. Tomilin A, Remenyi A, Lins K, Bak H, Leidel S, Vriend G, Wilmanns M, Scholer HR:Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell 2000,103(6):853-864.
    102. Hart AH, Hartley L, Ibrahim M, Robb L:Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev Dyn 2004,230(1):187-198.
    103. Booth HA, Holland PW:Eleven daughters of NANOG. Genomics 2004, 84(2):229-238.
    104. Elliman SJ, Wu I, Kemp DM:Adult tissue-specific expression of a Dppa3-derived retrogene represents a postnatal transcript of pluripotent cell origin. J Biol Chem 2006,281(1):16-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700