亨廷顿蛋白出核转运机制和聚集物影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亨廷顿舞蹈病(Huntington Disease, HD),一种神经变性疾病,常染色体显性遗传,首先由George Huntington在1872年时报道,其临床特征为三主征:运动异常、认知障碍和精神异常。1993年HD致病基因成功克隆,被命名为IT15基因,正常人该基因的1号外显子内多态性三核苷酸[胞嘧啶-腺嘌呤-鸟嘌呤(CAG)]重复序列的重复数低于27次;当CAG重复次数介于27到35次之间时其本人不发病,但子代的CAG重复数有可能进一步扩增导致发病,尤其是在父系遗传的情况下;介于36到39次时为不完全外显状态,即患者可能有症状也可能完全无症状;当CAG重复数大于40次则为完全外显。到目前为止,还没有任何有效的治疗方法。HD具有家族性、致残性、致死性和终生性的特点,患者多在患病后12到15年间死亡。其病理表现主要是细胞内聚集物形成,该聚集物主要分布于细胞核,但也可见于神经突起内,这可能与多聚谷氨酰胺(polyglutamine, polyQ)之间的相互作用及亨廷顿蛋白(huntingtin, htt)出核困难有关。
     近年来关于htt出核转运机制的研究主要在于发现了羧基端的经典的出核信号和氨基端与胞浆定位相关的氨基酸序列(cytoplasmic localization-related domain, CLRD)。htt羧基端存在一富含亮氨酸(leucine, L)的出核信号(nuclear export signal,NES),该序列介导htt通过CRM-1途径出核。同时htt氨基端也存在一个CLRD,其介导htt出核不依赖于经典出核途径。由于htt在513、552或586氨基酸位点被半胱氨酸蛋白酶剪切,而聚集物主要由含polyQ的氨基端构成,所以氨基端的CLRD对于htt聚集物的分布可能具有重要意义。因此我们对这段17个氨基酸构成的CLRD进行细致的研究:通过缺失或突变该序列的个别氨基酸,明确影响出核功能的关键氨基酸位点;研究该定位信号功能缺失对聚集物的影响。
     HD发病主要取决于CAG重复数,但有研究显示IT15基因CAG附近的CCG多态和羧基端的A2642多态也与发病相关。为了研究CCG多态与HD发病的相关性,我们对中国大陆地区的HD家系中CCG多态进行分析,并深入研究该多态以及脯氨酸富含区对该蛋白在细胞内的定位和所形成的聚集物的影响。
     聚集物成分复杂,目前的研究结果显示其包括p53、mdm-2、HSP70、TFIID、actin、neurofilament、syntaxin 1A和核孔复合物等。对其成分的深入研究将有助于揭示它的形成和作用机制,因此,我们从已知与htt相关的蛋白质入手对聚集物成分进行初步探索。
     我们的前期工作包括以下几个方面:
     1.收集了两大HD家系,在明确其临床、脑影像学特征的基础上,完成了家系所有成员的IT15基因的突变检测。结果显示,在家系1中18名成员中有9名(其中5名病人,4名症状前患者)CAG重复数大于40次,家系2中24名成员中有5名(其中3名病人,2名症状前患者)CAG重复数大于50次;
     2.构建了IT15基因片段pEGFP-C1-19Q(野生型)和pEGFP-C1-70Q (突变型)的真核表达载体,瞬时转染非神经元Hela细胞和神经元SH-SY5Y细胞,成功构建了HD的细胞模型;
     3.验证了丁酸钠并不抑制突变htt聚集物的形成,但能保护神经元对抗突变htt的N端片段的毒性作用,突变htt聚集物与神经元死亡并无必然联系;
     4.缺失htt前3个氨基酸后N端片段仍具有出核功能,而缺失前5个氨基酸后其出核功能丧失,因此我们推测IT15基因的第4至17个氨基酸参与了htt蛋白N端片段的出核。
     第一部分亨廷顿舞蹈病致病蛋白氨基端出核序列的研究及其对聚集物的影响
     目的:
     明确htt氨基端胞浆定位相关的关键氨基酸位点,确定该定位信号所介导的亚细胞定位,并观察其对舞蹈病病理表征-聚集物的影响。
     方法:
     1.构建前17个氨基酸、核定位信号(nuclear localization sequence, NLS)与绿色荧光蛋白(green fluorescent protein, GFP)的融合蛋白真核表达载体,在此基础上缺失或突变个别氨基酸,构建一系列表达载体,瞬时转染细胞,观察融合蛋白在细胞核和细胞浆的分布,从而明确CLRD上的关键氨基酸位点;
     2.用免疫荧光染色方法对线粒体、内质网和高尔基体等细胞器的标记物进行染色,观察融合蛋白的亚细胞分布;
     3.构建野生型(CAG重复20次)和突变型(CAG重复59次)的1号外显子与GFP相融合的真核表达载体,在此基础上定点突变CLRD上的关键氨基酸位点,瞬时转染细胞,通过荧光显微镜下直接观察和western blot的实验方法研究胞浆定位功能的缺失对所形成的聚集物在细胞内的分布及其量的影响。
     结果:
     1.1-17氨基酸、NLS和GFP的融合蛋白分布在细胞浆,而NLS-GFP分布于细胞核,GFP在胞浆和胞核均匀分布,说明1-17氨基酸具有胞浆定位功能;缺失前3个氨基酸后融合蛋白仍分布于细胞浆,说明其不是该CLRD的关键氨基酸位点;缺失第4、第17个氨基酸后融合蛋白分布于细胞核,说明其对维持该序列的胞浆定位功能具有重要作用;将第4、第7位氨基酸由疏水氨基酸亮氨酸(leucine, L)突变为亲水的精氨酸(arginine, R)后,融合蛋白分布于细胞核,而突变为疏水氨基酸甲硫氨酸(methionine, M)后其仍分布于细胞浆,说明关键位点氨基酸的性质对于胞浆定位具有重要意义;
     2.1-17氨基酸、NLS和GFP的融合蛋白与线粒体标记物共定位,而非内质网、高尔基体等其他细胞器;
     3.野生型1号外显子与GFP的融合蛋白主要分布于胞浆,而突变第4个氨基酸后该融合蛋白在细胞内呈胞浆胞核均匀分布,进一步验证了第4个氨基酸是介导胞浆定位的关键位点;第4个氨基酸突变导致突变型1号外显子形成的核内聚集物增多,而聚集物总量减少。
     结论:
     1.在氨基端1-17个氨基酸中前3个氨基酸的缺失对该蛋白的胞浆定位无影响;而缺失第4个或第17个氨基酸或将第4个或第7个氨基酸由L突变为R(由疏水氨基酸变为亲水氨基酸)导致胞浆定位功能缺失,因此我们认为CLRD的关键氨基酸序列为4-17氨基酸;
     2.氨基端CLRD介导蛋白定位于线粒体;
     3.氨基端CLRD的缺失影响形成聚集物的量和聚集物的分布:该序列功能缺失引起异常增多的CAG重复所致的聚集物总量减少而定位于核内的比例增高。
     第二部分对中国大陆地区舞蹈病家系中CCG多态情况的分析及脯氨酸富含区对该蛋白的细胞内定位和聚集物形成的研究
     目的:
     完善家系收集工作,研究中国大陆地区舞蹈病家系中CCG多态与HD发病的相关性;研究包含该多态的脯氨酸富含区对htt蛋白细胞内定位和聚集物形态和大小的影响。
     方法:
     1.家系收集工作包括:a.家系成员临床资料的获取;b.外周血采集后用酚氯仿法抽取DNA;c对部分家系内的家系成员(包括患者和症状前患者)进行外周血淋巴细胞建株;
     2.测序检测CCG重复序列多态,与临床资料(包括性别比例、发病年龄、病程、家族史、临床症状等)结合后行基因型表型关联分析;
     3.构建分别含CCG10和CCG7的突变体(CAG重复46次)与GFP的融合蛋白的真核表达载体,瞬时转染细胞,通过荧光显微镜和western blot技术观察这两种多态对聚集物分布和量的影响;
     4.构建一系列含相同CAG重复(20次)但不同CCG重复(5P、7P和9P)的GFP融合蛋白表达载体,瞬时转染细胞,荧光显微镜下观察不同CCG重复对融合蛋白分布的影响;
     5.构建一系列含20次和59次CAG重复的、脯氨酸片段被不同程度截短的htt蛋白与GFP融合蛋白表达载体,瞬时转染细胞,通过荧光显微镜和western blot技术观察脯氨酸片段对该蛋白在细胞内的定位和聚集物的影响。
     结果:
     1.自2002年开始我们共收集舞蹈病家系53个,其中病人60人;外周血淋巴细胞建株8人。上述家系成员的临床资料、DNA模板和所建立的淋巴细胞株均保存完好;
     2.经测序证实各真核表达载体均构建成功;
     3.在所收集的53个家系中,CCG10和CCG7的分别有29个和24个(分别占了54.72%和45.28%),在56个正常对照(112条染色体)中,CCG10和CCG7分别占46.43%和35.71%,余CCG9、CCG8和CCG6分别占了10.71%、1.79%和5.36%;携带CCG1O和CCG7两种多态的病人在性别比例、发病年龄、病程、家族史、临床症状等方面均无统计学差异。
     4.携带CCG7和CCG10多态的突变体形成的聚集物在定位和数目上无显著差异;
     5.当CAG重复序列的3’端不加或加入5个CCG重复时,融合蛋白在胞浆和胞核接近均匀分布,而当加入大于7个CCG重复时,融合蛋白分布明显以胞浆为主,提示CCG重复数目影响其蛋白的分布;
     6.含20/59个CAG重复的1号外显子与GFP的融合蛋白以胞浆分布为主,缺失羧基端的脯氨酸富含区(含2个脯氨酸片段)后则胞浆胞核弥散分布,而第一个脯氨酸片段(CCG多态存在的区域)的添加能逆转这一趋势。含59个CAG重复的1号外显子与GFP的融合蛋白在核周形成大而单一的聚集物,缺失羧基端的脯氨酸富含区(含2个脯氨酸片段)后则形成多个较小且散在分布的聚集物,而第一个脯氨酸片段(CCG多态存在的区域)的添加仍能使其形成大而单一的聚集物;western blot结果显示缺失脯氨酸富含区后其形成的SDS不溶的聚集物显著减少,而第一个脯氨酸片段的添加能逆转这一趋势。
     结论:
     1.在中国大陆地区舞蹈病家系CCG重复多态以CCG10和CCG7两种形式为主,分别占54.72%和45.28%;
     2.携带CCG10和CCG7两种多态的病人在临床表型上无明显差异,在细胞模型中这两种多态对所形成的聚集物的量和分布无显著影响,提示该多态在舞蹈病发病过程中不具有显著作用;
     3.本实验验证了脯氨酸富含区对该蛋白细胞内胞浆分布的作用,在此基础上首次揭示了脯氨酸多态存在区域起了关键作用;而且,精确说明其中起作用的是当脯氨酸个数达到7个时其辅助出核功能完善;
     4.和文献报道一致,本实验验证了脯氨酸富含区缺失后聚集物减小、且散在存在,首次提出脯氨酸多态存在区域添加后即已逆转了上述趋势。
     第三部分聚集物内在成分的研究
     目的:探究聚集物内在成分,为阐明其形成和在HD发病过程中的作用机制提供线索。
     方法:
     将在第二部分中构建好的突变型1号外显子与GFP融合蛋白的表达载体转染细胞后,采用免疫荧光染色法鉴定聚集物与一些细胞内成分(ubiquitin、vimentin、caspase-3、caspase-9和HSP-70)的关系。
     结果:
     ubiquitin、vimentin、caspase-3、caspase-9和HSP-70等均与聚集物共定位,表明聚集物内成分复杂,囊括了细胞内的很多成分。
     结论:
     1)验证了聚集物内在成分包括ubiquitin、vimentin和HSP-70等;
     2)首次提出caspase-3和caspase-9也是聚集物的成分。
Huntington's Disease (HD), a neurodegenerative disease with dominant inheritance, was first reported in 1872 by George Huntington. It is characterized by motor symptoms, cognitive decline as well as neuropsychiatric abnormalities. In 1993, the gene for HD was successfully cloned and designated as IT15 gene. In normal individuals, the range of the CAG repeat is below 27; between 27 and 35, the carrier with no symptoms may transmit the disease to their children, especially in the case of paternal inheritance; people who take the CAG repeat in the range of 36 to 39 may present with an incomplete penetrance:when the repeats number is larger than 40, it is fully penetrant. Till now, there is no effective therapy. Once suffered from the disease, the patients may become disabled, or even die during the later period of 12-15 years after onset. Additionally, several family members may have the disease through their lifetime. The pathology is marked by the presence of neuronal intranuclear inclusions, as well as dystrophic neurites inclusions. The interaction between the polyglutamines (polyQ) and possibly the nuclear export deficit of huntingtin (htt) may be the culprit.
     With regard to study of mechanism of nuclear export of htt, the classical nuclear export signal (NES) in the carboxy-terminus and the cytoplasmic localization-related domain (CLRD) in the N-terminus of htt were both discovered. A carboxy-terminal conserved NES leucine (L)-rich sequence was detected, and further study suggested that it mediated the nuclear export of htt through a potent CRM-1/exportin export pathway. Subsequently, a CLRD, independent of the classical nuclear export pathway, was also confirmed to be located in the N-terminus of htt. Since full-length htt is cleaved at residue 513,552 or 586, and the aggregation is mainly composed of the N-terminal truncated htt fragment, suggesting that the N-terminal CLRD is more important for its cytoplasmic localization. Thus, we focus on this N-terminal CLRD in the present study. We introduced deletion and substitution to explore the essential sequence that is required for its cytoplasmic localization as well as its effect on aggregates.
     Abnormal CAG repeat contributes to the onset of HD, and other genetic polymorphisms in IT15 gene, like the CCG polymorphism in the N-terminus and the△2642 glutamic acid polymorphism in the C-terminus, have also been reported to be modifiers. To study the correlation between the CCG polymorphism and HD, we analyzed the CCG repeats in mainland Chinese HD families and its effect on the aggregate. Subsequently, we further investigated the effects of the proline-rich domain on the sub-cellular distribution of the protein and its aggregate formation.
     The composition of aggregate is complex, consisting of p53、mdm-2、HSP70、TFIID、actin、neurofilament、syntaxin 1A and nuclear pore complex as revealed by previous studies. Fully exploration of the aggregates' components may help us understand the formation process and the associated mechanism. Therefore, the co-localization analysis of htt-associated proteins and aggregates were performed preliminarily in the present study as well.
     Our previous work includes:
     1 We have collected two large HD pedigrees. On the basis of acquisition of their clinical and neuroimaging features, we further finished the IT15 gene mutation analysis in all the remaining family members. The result showed that in pedigree 1, the CAG repeat number of 9 of the 18 family members (5 patients and 4 asymptomatic subjects) reached 40; in pedigree 2, the CAG repeat number of 5 of the 24 family members (3 patients and 2 asymptomatic subjects) was more than 50;
     2 We constructed the plasmids carrying the wide-type and mutant-type of truncated htt fragment (pEGFP-Cl-19Q and pEGFP-Cl-70Q), both of which were transfected into non-neuronal Hela cells and neuronal SH-SY5Y cells.
     3 We found that sodium butyrate protected SH-SY5Y cells against death induced by mutant htt fragment. However, it did not decrease mutant htt aggregates formation, suggesting there is no essential association between htt aggregates and neuron death.
     4 Our previous experiment revealed that the nuclear export function of N-terminal htt fagment was eliminated in the absense of the first 5 amino acids, while still preserved in the deletion of the first 3 amino acids, indicating that Htt4-17 might be involved in the nuclear export process.
     Part 1 Essential sequence of the N-terminal CLRD of huntingtin and its effect on aggregates
     Objectives:
     To confirm the key sequence of the N-terminal CLRD of htt that is required for its cytoplasmic localization; to determine which cellular apparatus the sequence directed to, and its contribution to the pathology.
     Methods:
     1 Plasmids of Htt1-17-NLS-GFP、Htt4-17-NLS-GFP、Htt5-17-NLS-GFP. Htt4-16-NLS-GFP、Htt(L4M.1-17)-NLS-GFP、Htt(M8L.1-17)-NLS-GFP、Htt(L4R.1-17)-NLS-GFP、Htt(L7R.1-17)-NLS-GFP、HttEx1P(20Q)-GFP、 HttEx1p(L4R,20Q)-GFP、HttEx1P(59Q)-GFP and HttEx1P(L4R,59Q)-GFP were all constructed by recombinant DNA technology. To confirm the key residue that is required for its cytoplasmic localization, we observed the protein's intracellular distribution after transient transfection.
     2 Immunofluorescence was used to detect the expression and subcellular distribution of eukaryotic expression plasmids. The mitochondria, ER and Golgi were all stained by their corresponding markers.
     3 The effect of this sequence on the aggregate was evaluated by immunofluorescence and immunoblotting analysis after site-specific mutagenesis of both wide-type and mutant-type plasmids.
     Results:
     1 we found that the fused protein of the first 17 amino acids、NLS and GFP distributed in the cytoplasm, in contrary to either NLS-GFP or GFP, suggesting this sequence has a role of cytoplasmic localization. Deletion of the first 3 amino acids did not affect its distribution, which indicated they were not the key residues. The subcellular distribution changed when it was mutated to include amino acids of different charges (L4R or L7R), or deletion of one more amino acid from either the N-terminus or the C-terminus of Htt4-17, suggesting a structural requirement of the first 17 amino acids for the cytoplasmic localization of htt.
     2 The fused protein co-localized with mitochondria, rather than ER or golgi.
     3 L4R mutation of truncated htt fragment resulted in altered intracellular distribution and a reduction of total SDS-insoluble htt aggregates and increased nuclear aggregates.
     Conclusions:
     1 We demonstrated that the essential sequence for htt cytoplasmic localization was Htt4-17, and deletion of the first 3 amino acids did not affect the process.
     2 We found that this CLRD co-localized with mitochondria.
     3 We prove that the absence of the first 17 amino acids resulted in a reduction of total htt aggregates and increased nuclear aggregates, further supporting its effect on aggregate formation.
     Part 2 CCG repeats among mainland Chinese HD families and effects of the CCG polymorphism as well as the proline-rich region on intracellular distribution of the protein and aggregates
     Objectives:
     To improve the work of genetic family data collection, explore the CCG repeats among mainland Chinese HD families and analyze its correlation with HD; to determine the effect of the proline-rich region on intracellular distribution of the N-terminal htt fragment and its aggregates.
     Methods:
     1 Genetic family collection work includes:a. acquisition of clinical data of family members; b, phenolic alcohol/chloroform method was carried out to isolate genomic DNA from peripheral blood; c, cultured colonies of peripheral blood lymphocyte from HD family members were conducted.
     2 The correlation analysis was conducted between genotype (CCG polymorphisms) and phenotype (the clinical data, including sex ratio, age of onset, disease duration, family history and symptoms).
     3 Plasmids of exon 1 of IT15 gene with the same CAG repeat and different CCG repeat were constructed, and effects of the two polymorphisms on the intracellular distribution and quantity of the aggregates were observed after transient trasfection by both immunostaining and immunoblotting analysis.
     4 To determine the requirement of the CCG repeat number for htt cytoplasmic distribution, we constructed plasmids with the same CAG repeat number and different CCG repeat number (5P、7P and 9P) and observed their subcellular distributions after transient transfection.
     5 Plasmids with the same CAG repeat number and differently-truncated proline-rich fragment were constructed, and immunostaining and immunoblotting analysis were used to detect their effects on its intracellular distribution and aggregate formation.
     Results:
     1 53 HD families, including 60 patients, were gathered; 8 cultured colonies of peripheral blood lymphocyte from HD family members were successfully constructed. The clinical data, DNA samples as well as lymphocyte colonies were all conserved well.
     2 DNA sequencing confirmed the successful construction of all the above plasmids.
     3 In our 53 HD families studied,54.72% had 10-repeat alleles, and the left 45.28% had 7-repeat alleles; 56 normal controls (112 unrelated normal chromosomes) were also examined. The percentage of CCG(IO) and CCG(7) is 46.43% and 35.71% respectively, while CCG(9)、CCG(8) and CCG(6) is 10.71%、1.79%and 5.36%. In terms of clinical data, there was no significant difference between these two groups.
     4 Two plasmids of Exonl-46Q-10P-GFP and Exonl-46Q-7P-GFP were constructed. Similar intracellular distribution and aggregate quantity were observed after their expression.
     5 We also found that the protein presented a cytoplasmic distribution only with 7 CCG repeats, rather than with 5 CCG repeats, indicating that the CCG repeat number affected its intracellular distribution.
     6 Compared with Exonl-20Q/59Q-GFP, the distribution of 1-17-20Q/59Q-GFP was more in the nucleus, which could be reversed by adding of the first proline-rich region, further supporting the role of this region in its intracellular localization. Similarly, compared with Exonl-59Q-10P-GFP, aggregates formed by 1-17-59Q-GFP were smaller and more scattered, which could be reversed by adding the first proline-rich region. Western blot shows that the ratio of aggregate to soluble protein is significantly lowest in cells transfected by 1-17-59Q-GFP.
     Conclusion:
     1 We find that the 7-CCG repeat and the 10-CCG repeat are the most frequent (45.28% and 54.72%, respectively) types of mutant alleles in mainland Chinese HD families;
     2 We find that the two polymorphisms did not differ from the clinical information to the cell model, which suggests that this polymorphism is not associated with HD.
     3 In addition to confirmation of the role of the proline-rich region in the protein's distribution, our study suggests the key role that the first proline-rich region plays for the first time; we also point out the requirement of 7 CCG repeats for its cytoplasmic distribution.
     4 In addition to confirming that the aggregates become smaller and more scattered after deletion of the proline-rich region, we also find that it can be reversed by adding the first proline-rich region
     Part 3 Exploration of the component of the aggregate
     Objectives:
     To explore the component of the aggregate, and to provide some preliminary data for future study of HD.
     Methods:
     Laser scanning confocal microscope was used to observe the relationship between the aggregate and ubiquitin、vimentin、caspase-3、caspase-9、HSP-70.
     Results:
     Ubiquitin、vimentin、caspase-3、caspase-9 and HSP-70 were all co-localized with the aggregates, suggesting that the aggregate composition is complex.
     Conclusions:
     1) We confirmed that ubiquitin、vimentin and HSP-70 were all included in the aggregate.
     2) For the first time we point out that caspase-3 and caspase-9 are also the composition of aggregate.
引文
[1]Palo J, Somer H, Ikonen E, Karila L, Peltonen L. Low prevalence of Huntington's disease in Finland. Lancet 1987; 330:805-6.
    [2]Leung CM, Chan Y W, Chang CM, Yu YL, Chen CN. Huntington's disease in Chinese:a hypothesis of its origin. J Neurol Neurosurg Psychiat 1992; 55: 681-4.
    [3]Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S. Loss of normal huntingtin function:new developments in Huntington's disease research. Trends Neurosci 2001; 24:182-8.
    [4]Cattaneo E. Dysfunction of wild-type huntingtin in Huntington disease. News Physiol Sci 2003; 18:34-7.
    [5]Gusella JF, McNeil S, Persichetti F, Srinidhi J, Novelletto A, Bird E, Faber P, Vonsattel JP, Myers RH, MacDonald ME. Huntington's disease. Cold Spring Harbor Symp Quant Biol 1996; 61:615-26.
    [6]White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL, MacDonald ME. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet 1997; 17:404-10.
    [7]Rigamonti D. Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 2000; 20:3705-13.
    [8]Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E. Loss of huntingtin mediated BDNF gene transcription in Huntington's disease. Science 2001; 293:493-8.
    [9]Smith R, Brundin P, Li JY. Synaptic dysfunction in Huntington's disease:a new perspective. Cell Mol Life Sci 2005; 62:1901-12.
    [10]Laurent R. Gauthier, Benedicte C. Charrin, Huntingtin Controls Neurotrophic Support and Survival of Neurons by Enhancing BDNF Vesicular Transport along Microtubules. Cell 2004; 118:127-38.
    [11]Arzberger T, Krampfl K, Leimgruber S, Weindl A. Changes of NMD A receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease-an in situ hybridization study. J Neuropathol Exp Neurol 1997; 56:440-54.
    [12]Augood SJ, Faull RL, Emson PC. Dopamine D1 and D2 receptor gene expression in the striatum in Huntington's disease. Ann Neurol 1997; 42: 215-21.
    [13]Cha JH, Frey AS, Alsdorf SA, Kerner JA, Kosinski CM, Mangiarini L, Penney JB Jr, Davies SW, Bates GP, Young AB. Altered neurotransmitter receptor expression in transgenic mouse models of Huntington's disease. Philos Trans R Soc Lond B Biol Sci 1999; 354:981-9.
    [14]Norris PJ, Waldvogel HJ, Faull RL, Love DR. Emson PC. Decreased neuronal nitric oxide synthase messenger RNA and somatostatin messenger RNA in the striatum of Huntington's disease. Neuroscience 1996; 72:1037-47.
    [15]Panov AV, Burke JR, Strittmatter WJ, Greenamyre JT. In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria:relevance to Huntington's disease. Arch Biochem Biophys 2003; 410:1-6.
    [16]Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5:731-6.
    [17]Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 2004; 13:1407-20.
    [18]Slow EJ, Graham RK, Osmand AP, Devon RS, Lu G, Deng Y, Pearson J, Vaid K, Bissada N, Wetzel R, Leavitt BR, Hayden MR. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci USA 2005; 102:11402-7.
    [19]Bodner RA, Outeiro TF, Altmann S, Maxwell MM, Cho SH, Hyman BT, McLean PJ, Young AB, Housman DE, Kazantsev AG. Pharmacological promotion of inclusion formation:a therapeutic approach for Huntington's and Parkinson's diseases. Proc Natl Acad Sci USA 2006; 103:4246-51.
    [20]Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431:805-10.
    [21]Dehay B, Bertolotti A. Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast. J Biol Chem 2006; 281:35608-15.
    [22]Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L, Orban PC, Mullard A, Cowan CM, Raymond LA, Drisdel RC, Green WN, Ravikumar B, Rubinsztein DC, El-Husseini A, Hayden MR. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006; 9: 824-31.
    [23]Zala D, Colin E, Rangone H, Liot G, Humbert S, Saudou F. Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet 2008; 17:3837-46.
    [24]Luo S, Vacher C, Davies JE, Rubinsztein DC. Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases:implications for mutant huntingtin toxicity. J Cell Biol 2005; 169:647-56.
    [25]Andrade MA, Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet 1995; 11:115-6.
    [26]Schilling G, Savonenko AV, Klevytska A, Morton JL, Tucker SM, Poirier M, Gale A, Chan N, Gonzales V, Slunt HH, Coonfield ML, Jenkins NA, Copeland NG, Ross CA, Borchelt DR.. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice. Hum Mol Genet 2004; 3:1599-610.
    [27]DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of Huntingtin in Neuronal intranuclear inclusions and Dystrophic Neurites in Brain. Science 1997; 277:1990-3.
    [28]Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 2001; 153:283-94.
    [29]Swayne LA, Braun JE. Aggregate-centered redistribution of proteins by mutant huntingtin. Biochem Biophys Res Commun 2007; 354:39-44.
    [30]Borrell-Pages M, Zala D, Humbert S, Saudou F. Huntington's disease:from huntingtin function and dysfunction to therapeutic strategies Cell Mol Life Sci 2006;63:2642-60.
    [31]Cornett J, Cao F, Wang CE, Ross CA, Bates GP, Li SH, Li XJ. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 2005; 37: 198-204.
    [32]Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hay den MR. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. JNeurosci 2002: 22:7862-72.
    [33]33. SUMO modification of Huntingtin and Huntington's disease pathology. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL. Science 2004; 304:100-4.
    [34]Aiken CT, Steffan JS, Guerrero CM, Khashwji H, Lukacsovich T, Simmons D, Purcell JM, Menhaji K, Zhu YZ, Green K, Laferla F, Huang L, Thompson LM, Marsh JL. Phosphorylation of threonine 3:implications for Huntingtin aggregation and neurotoxicity. J Biol Chem 2009; 284:29427—36.
    [35]Havel LS, Wang CE, Wade B, Huang B, Li S, Li XJ. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation.Hum Mol Genet 2011; 20:1424-37.
    [36]Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL, Sullivan PG, Steffan JS, Sensi SL, Thompson LM. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2007; 16:61-77.
    [37]Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG, Greenamyre JT, Li XJ. N-terminal mutant huntingtin asso-ciates with mitochondria and impairs mitochondrial trafficking. J Neurosci 2008; 28: 2783-92.
    [38]rDamiano M, Galvan L, Deglon N, Brouillet E. Mitochondria in Hunting-ton's disease. Biochim Biophys Acta2010,1802:52-61.
    [39]Sack G H Jr. Mitochondrial matters in Huntington disease. J Bio-energ Biomembr 2010,42:189-91.
    [40]Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16:2600-15.
    [41]Vidal R, Caballero B, Couve A, Hetz C. Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington's disease. Curr Mol Med 2011:11:1-12.
    [42]Nozaki K, Onodera O, Takano H, Tsuji S. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation. Neuroreport2001; 12:3357-64.
    [43]Rousseau E, Dehay B, Ben-Haiem L, Trottier Y, Morange M, Bertolotti A. Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation. Proc Natl Acad Sci U S A 2004; 101:9648-53.
    [44]The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72:971-83.
    [45]Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 1993; 4:398-403.
    [46]Brinkman RR, Mezei MM, Theilmann J, Almqvist E, Hayden MR. The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet 1997; 60:1202-10.
    [47]Rubinsztein DC, Leggo J, Chiano M, Dodge A, Norbury G, Rosser E, Craufurd D. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci USA 1997:94: 3872-6.
    [48]Arning L, Kraus PH, Valentin S, Saft C, Andrich J, Epplen JT. NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics 2005; 6:25-8.
    [49]Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C,Soliveri P, Lange HW, Weirich-Schwaiger H, Wenning GK, Melegh B, Havasi V. Baliko L, Wieczorek S, Arning L, Zaremba J, Sulek A, Hoffman-Zacharska D, Basak AN, Ersoy N, Zidovska J, Kebrdlova V, Pandolfo M, Ribai P, Kadasi L, Kvasnicova M, Weber BH, Kreuz F, Dose M, Stuhrmann M, Riess O. The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington's disease. Neurogenetics 2006; 7:27-30.
    [50]Chattopadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP. Modulation of age at onset of Huntington disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 2005; 374: 81-6.
    [51]Squitieri F, Andrew SE, Goldberg YP, Kremer B, Spence N, Zeisler J, Nichol K, Theilmann J, Greenberg J, Goto J. DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum Mol Genet 1994; 3: 2103-14.
    [52]Almqvist E, Spence N, Nichol K, Andrew SE, Vesa J, Peltonen L, Anvret M, Goto J, Kanazawa Ⅰ, Goldberg YP. Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes:insights into the genetic evolution of Huntington disease. Hum Mol Genet 1995;4:207-14.
    [53]Morovvati S, Nakagawa M, Osame M, Karami A. Analysis of CCG repeats in Huntingtin gene among HD patients and normal populations in Japan. Arch Med Res 2008; 39:131-3.
    [54]Wang CK, Wu YR, Hwu WL, Chen CM, Ro LS, Chen ST, Gwinn-Hardy K, Yang CC, Wu RM, Chen TF, Wang HC, Chao MC, Chiu MJ, Lu CJ, Lee-Chen GJ. DNA haplotype analysis of CAG repeat in Taiwanese Huntington's disease patients. EurNeurol 2004; 52:96-100.
    [55]Leung CM, Chan YW, Chang CM, Yu YL, Chen CN Huntington's disease in Chinese:a hypothesis of its origin. J Neurol Neurosurg Psychiatry.1992; 55: 681-4.
    [56]金鹰,唐玫,李国明.实用淋巴细胞培养技术.激光生物学报.2003;1:75-78.
    [57]赵苏瑛,张海军,徐春宏.非综合征耳聋大家系永生细胞系的建立及几种EB病毒转化外周血淋巴细胞建系方法的探讨.遗传2005; 27:447-50.
    [58]魏军,杨宝珍,王利新.EB病毒转化外周血淋巴细胞建立永生细胞系方法的研究.中华检验医学杂志2007;30:1176-9.
    [59]刘青杰,李丹,马芬.中国儿童孤独症家系外周血淋巴细胞永生细胞系的建立.中国神经精神疾病2005;31:304-6.
    [60]Aman P, Gordon J, Lewin N, Nordstrom M, Ehlin-Henriksson B, Klein G, Carstensson A. Surface marker charcterization of EBV target cell in normal blood and tonsil B lymphocyte populations. J Immunol 1985; 135:2362-7.
    [61]Aman P,Ehlin-Henriksson B,Klein G. Epstein-Barr virus susceptibility of normal human B-lymphocyte populations. J Exp med 1984; 159:208-20.
    [62]乔军,刘雅琴,孙逸平.微量全血EB病毒转化法建立B淋巴细胞系的新技术.中国实验临床免疫医学杂志1990;2:2-5.
    [63]Warby SC, Visscher H, Collins JA, Doty CN, Carter C, Butland SL, Hayden AR, Kanazawa I, Ross CJ, Hayden MR. HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Gene 2011 Jan 19. [Epub ahead of print]
    [64]Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, Creamer TP, Wetzel R. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 2006; 355:524-35.
    [65]Goldberg YP, Nicholson DW, Rasper DM, Kalchman MA, Koide HB, Graham RK, Bromm M, Kazemi-Esfarjani P, Thornberry NA, Vaillancourt JP, Hayden MR. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is odulated by the polyglutamine tract. Nat Genet 1996; 13:442-9.
    [66]Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006; 125:1179-91.
    [67]Hersch S, Fink K, Vonsattel JP, Friedlander RM. Minocycline is protective in a mouse model of Huntington's disease. Ann Neurol 2003; 54:841-3.
    [68]Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 2002; 10:259-69.
    [69]Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90:537-48.
    [70]Dyer RB, McMurray CT. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat Genet 2001; 29:270-8.
    [71]Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J Neurosci 2002; 22:7862-72.
    [72]Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson DW, Bredesen DE, Hayden MR. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 2000; 275: 19831-8.
    [73]Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 1999; 399:263-7.
    [74]Gafni J, Ellerby LM. Calpain activation in Huntington's disease. J Neurosci 2002; 22:4842-9.
    [75]Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M. Caspase 3-cleaved NH2-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 2001; 98:12784-9.
    [76]Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y. Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 2002:10:259-69.
    [77]Ratovitski T, Nakamura M, D'Ambola J, Chighladze E, Liang Y, Wang W, Graham R, Hayden MR, Borchelt DR, Hirschhorn RR, Ross CA. NH2-terminal proteolysis of full-length mutant huntingtin in an inducible PC12 cell model of Huntington's disease. Cell Cycle 2007; 6:2970-81.
    [78]Zhang Y, Leavitt BR, van Raamsdonk JM, Dragatsis I, Goldowitz D, MacDonald ME, Hayden MR, Friedlander RM. Huntingtin inhibits caspase-3 activation. EMBO J 2006; 25:5896-906.
    [79]Ciammola A, Sassone J, Alberti L, Meola G, Mancinelli E, Russo MA, Squitieri F, Silani V. Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington's disease subjects. Cell Death Differ 2006; 13:2068-78.
    [80]Sanchez Mejia RO, Friedlander RM. Caspases in Huntington's disease. Neuroscientist 2001; 7:480-9.
    [81]Li XJ, Li S. Proteasomal dysfunction in aging and Huntington disease. Neurobiol Dis 2010 Dec 8. [Epub ahead of print]
    [82]Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428.
    [83]Valera AG, Diaz-Hernandez M, Hernandez F, Ortega Z, Lucas JJ. The ubiquitin-proteasome system in Huntington's disease. Neuroscientist 2005;11:583-94.
    [84]Tydlacka S, Wang CE, Wang X, Li S, Li XJ. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci 2008; 28:13285-95.
    [85]Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 2000; 97:7841-6.
    [86]Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998; 19:148-54.
    [87]Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, DeMartino GN, Marcelli M, Weigel NL, Mancini MA. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 1999:8:731-41.
    [88]Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY. chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998; 19:148-54.
    [89]Hoffner G Kahlem P, Djian P. Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with beta-tubulin:relevance to Huntington's disease. J Cell Sci 2002; 115:941-8.
    [90]Munsie L, Caron N, Atwal RS, Marsden Ⅰ, Wild EJ, Bamburg JR, Tabrizi SJ, Truant R. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum Mol Genet.2011 Mar 11. [Epub ahead of print]
    [91]DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA.Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol 2004; 33:517-33.
    [92]Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 2001; 12: 1393-407.
    [1]Rubinsztein DC. Molecular biology of Huntington's disease (HD) and HD-like disorders. Genetics of movement disorders. California:Academic Press 2003: 365-77.
    [2]Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Hayden MR. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996; 59:16-22.
    [3]McNeil SM, Novelletto A, Srinidhi J, Barnes G, Kornbluth Ⅰ, Altherr MR, Wasmuth JJ, Gusella JF, MacDonald ME, Myers RH. Reduced penetrance of the Huntington's disease mutation. Hum Mol Genet 1997; 6:775-79.
    [4]Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, Marder K, Penchaszadeh G, Roberts SA, Gayan J, Brocklebank D, Cherny SS, Cardon LR, Gray J, Dlouhy SR, Wiktorski S, Hodes ME, Conneally PM, Penney JB, Gusella J. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc Natl Acad Sci USA 2004; 101:3498-503.
    [5]Rosenblatt A, Brinkman RR, Liang KY, Almqvist EW, Margolis RL, Huang CY, Sherr M, Franz ML, Abbott MH, Hayden MR, Ross CA. Familial infl uence on age of onset among siblings with Huntington's disease. Am J Med Genet 2001; 105:399-403.
    [6]Chattapadhyay B, Baksi K, Mukhopadhyay S, Bhattacharyya NP. Modulation of age at onset of Huntington's disease patients by variations in TP53 and human caspase activated DNase (hCAD) genes. Neurosci Lett 2005; 374: 81-6.
    [7]Djousse L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, Margolis RL, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJ, McCusker E, Gomez-Tortosa E, Mayo Cabrero D, Jones R, Zanko A, Nance M, Abramson RK, Suchowersky O, Paulsen JS, Harrison MB, Yang Q, Cupples LA, Mysore J, Gusella JF, MacDonald ME, Myers RH. Evidence for a modifi er of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics 2004; 5:109-14.
    [8]MacDonald ME, Vonsattel JP, Shrinidhi J, Couropmitree NN, Cupples LA, Bird ED, Gusella JF, Myers RH. Evidence for the GluR6 gene associated with younger onset of Huntington's disease. Neurology 1999; 53:1330-32.
    [9]Kehoe P, Krawezak M, Harper PS, Owen MJ, Jones AL. Age of onset in Huntington disease:sex specifi c infl uence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet 1999; 36:108-11.
    [10]Chattopadhyay B, Ghosh S, Gangopadhyay PK, Das SK, Roy T, Sinha KK, Jha DK, Mukherjee SC, Chakraborty A, Singhal BS, Bhattacharya AK, Bhattacharyya NP. Modulation of age onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India. Neurosci Lett 2003; 345:93-6.
    [11]Gutekunst C, Norfl us F, Hersch S. The neuropathology of Huntington's disease. In:Bates G, Harper P, Jones L, eds. Huntington's disease. New York: Oxford University Press,2002:251-75.
    [12]Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998; 57:369-84.
    [13]Huntington G. On chorea. Med Surg Rep 1872; 26:317-21.
    [14]Rangone H, Humbert S, Saudou F. Huntington's disease:how does huntingtin. an anti-apoptotic protein, become toxic? Pathol Biol 2004; 52:338-42.
    [15]Reilmann R, Kirsten F, Quinn L, Henningsen H, Marder K, Gordon AM. Objective assessment of progression in Huntington's disease:a 3-year follow-up study. Neurology 2001; 57:920-4.
    [16]Cha JH. Transcriptional dysregulation in Huntington's disease. Trends Neurosci 2000; 23:387-92.
    [17]Paulsen JS, Hoth KF, Nehl C, Stierman L. Critical periods of suicide risk in Huntington's disease. Am J Psychiatry 2005; 162:725-31.
    [18]Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA, Srinidhi J, Gusella JF, Bird ED, Vonsattel JP, Myers RH.P-L;PO/,..,L Quantitative neuropathological changes in presymptomatic Huntington's disease. Ann Neurol 2001; 49:29-34.
    [19]Mizuno H. Shibayama H, Tanaka F, Doyu M, Sobue G, Iwata H. Kobayashi H, Yamada K, Iwai K, Takeuchi T, Hashimoto N, Ishihara R, Ibuki Y, Ogasawara S, Ozeki M. An autopsy case with clinically and molecular genetically diagnosed Huntington's disease with only minimal non-specifi c neuropathological fi ndings. Clin Neuropathol 2000; 19:94-103.
    [20]Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA, Richardson EP Jr, Bird ED. Decreased neuronal and increased oligodendroglial densities in Huntington's disease caudate nucleus. J Neuropathol Exp Neurol 1991; 50:729-42.
    [21]DiProspero NA. Chen EY, Charles V, Plomann M, Kordower JH. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol 2004; 33:517-33.
    [22]Modregger J, DiProspero NA, Charles V, Tagle DA, Plomann M. PACSIN 1 interacts with huntingtin and is absent from synaptic varicosities in presymptomatic Huntington's disease brains. Hum Mol Genet 2002; 11: 2547-58.
    [23]Mukai H, Isagawa T, Goyama E, Tanaka S, Bence NF, Tamura A, Ono Y, Kopito RR. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci USA 2005; 102:10887-92.
    [24]Menalled LB, Sison JD, Dragatsis Ⅰ, Zeitlin S, Chesselet MF. Time course of early motor and neuropathological anomalies in a knockin mouse model of Huntington's disease with 140 CAG repeats. J Comp Neurol 2003; 465: 11-26.
    [25]Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431:805-10.
    [26]Zuccato C, Liber D, Ramos C, Tarditi A, Rigamonti D, Tartari M, Valenza M, Cattaneo E. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res 2005; 52:133-9.
    [27]Van Raamsdonk JM, Pearson J, Slow EJ, Hossain SM, Leavitt BR, Hayden MR. Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease. J Neurosci 2005; 25: 4169-80.
    [28]Kaytor MD, Wilkinson KD, Warren ST. Modulating huntingtin halflife alters polyglutamine-dependent aggregate formation and cell toxicity. J Neurochem 2004;89:961-73.
    [29]Stober T, Wussow W, Schimrigk K. Bicaudate diameter:the most specific and simple CT parameter in the diagnosis of Huntington's disease. Neuroradiology 1984; 26:25-8.
    [30]Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME, Caplan K, Marek K, Seidman LJ, Makris N, Jenkins BG, Goldstein JM. Evidence for more widespread cerebral pathology in early HD:an MRI-based morphometric analysis. Neurology 2003; 60:1615-20.
    [31]31 Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004; 63:66-72.
    [32]Young AB, Shoulson Ⅰ, Penney JB, Starosta-Rubinstein S, Gomez F, Travers H, Ramos-Arroyo MA, Snodgrass SR, Bonilla E, Moreno H. Huntington's disease in Venezuela:neurologic features and functional decline. Neurology 1986; 36:244-9.
    [33]Mahant N, McCusker EA, Byth K, Graham S. Huntington's disease:clinical correlates of disability and progression. Neurology 2003; 61:1085-92.
    [34]Gordon AM, Quinn L, Reilmann R, Marder K. Coordination of prehensile forces during precision grip in Huntington's disease. Exp Neurol 2000; 163: 136-8.
    [35]Hayden MR. Huntington's chorea. New York:Springer,1981.
    [36]Kremer B. Clinical neurology of Huntington's disease. In:Bates G, Harper P, Jones L, eds. Huntington's disease. New York:Oxford University Press,2002: 3-27.
    [37]The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72:971-83.
    [38]Craufurd D, Snowden J. Neuropsychological and neuropsychiatric aspects of Huntington's disease. In:Bates G, Harper P, Jones L, eds. Huntington's disease. New York:Oxford University Press,2002:62-94.
    [39]Baliko L, Csala B. Czopf J. Suicide in Hungarian Huntington's disease patients. Neuroepidemiology 2004; 23:258-60.
    [40]Di Maio L, Squitieri F, Napolitano G, Campanella G, Trofatter JA, Conneally PM. Suicide risk in Huntington's disease. J Med Genet 1993; 30:293-5.
    [41]Robins Wahlin TB, Backman L, Lundin A, Haegermark A, Winblad B, Anvret M. High suicidal ideation in persons testing for Huntington's disease. Acta Neurol Scand 2000; 102:150-61.
    [42]McGeer EG, McGeer PL. Duplication of bio-chemical changes of Huntington's chorea by intrastriatal injections of glutamic and kainic acid. Nature 1976; 263:517-9.
    [43]Sanberg PR, Coyle JT. Scientific approaches to Huntington's disease. Crit Rev ClinNeurobiol 1984; 1:1-44.
    [44]Ludolph AC, He F, Spencer PS, Hammerstad J, Sabri M.3-Nitroproprionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 1991; 18:492-8.
    [45]Sathasivam K, Hobbs C, Mangiarini L, Mahal A, Turmaine M, Doherty P, Davies SW, Bates GP. Transgenic models of Huntington's disease. Phil Trans R Soc Lond B 1999; 354:963-9.
    [46]Hersch SM, Ferrante RJ. Translating therapies for Huntington's disease from genetic animal models to clinical trials. NeuroRx 2004; 3:298-306.
    [47]Reddy PH, Williams M, Charles V, Garrett L, Pike-Buchanan L, Whetsell WO Jr, Miller G, Tagle DA. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full lengthHD cDNA. Nat Genet 1998; 20:198-202.
    [48]Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 1999; 23:181-92.
    [49]Menalled LB, Sison JD, Wu Y, Olivieri M, Li XJ, Li H, Zeitlin S, Chesselet MF. Early motor dysfunction and striosomal distribution of huntingtin microaggregates in Huntington's disease knock-in mice. J Neurosci 2002; 22: 8266-76.
    [50]Kirkwood SC, Su JL, Conneally P, Foroud T. Progression of symptoms in the early and middle stages of Huntington disease. ArchNeurol 2001; 58:273-8.
    [51]Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM. Histone deacetylase inhibitors arrest polyglutaminedependent neurodegeneration in Drosophila. Nature 2001; 413: 739-43.
    [52]Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW, MacDonald ME, Zipursky SL. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila Bonini, NM. Suppression of polyglutamine-mediated neurodegene-photoreceptor neurons. Neuron 1999; 21:633-42.
    [53]Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C. Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechano-sensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98:13318-23.
    [54]Chalfie M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev 1989; 3:1823-33.
    [55]The C elegans Sequencing Consortium. Genome sequence of the nematode C elegans:a platform for investigating biology. Science 1998; 282:2012-8.
    [56]Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW. Towards a transgenic model of Huntington's disease in a non-human primate. Nature.2008; 453:921-4.
    [57]Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E. Loss of huntingtinmediated BDNF gene transcription in Huntington's disease. Science 2001; 293:493-8.
    [58]Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E. Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease. Brain Pathol 2008; 18:225-38.
    [59]Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington's disease. Prog Neurobiol 2007; 81:294-330.
    [60]Cha JH. Transcriptional signatures in Huntington's disease. Prog Neurobiol 2007; 83:228-48.
    [61]Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H. Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 2004; 118:127-38.
    [62]Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci 2004; 24:4250-8.
    [63]Saudou F, Finkbeiner S, Devys D, Greenberg ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998; 95:55-66.
    [64]Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT, Mengod G, Ernfors P, Alberch J, Brainderived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J Neurosci 2004; 24:7727-39.
    [65]Albin RL, Young AB, Penney JB, Handelin B, Balfour R, Anderson KD, Markel DS, Tourtellotte WW, Reiner A. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N Engl J Med 1990; 322:1293-8.
    [66]DiFiglia M. Excitotoxic injury of the neostriatum:a model for Huntington's disease. Trends Neurosci 1990; 13:286-9.
    [67]Dure L, St Young AB, Penney JB. Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington's disease. Ann Neurol 1991: 30:785-93.
    [68]London ED, Yamamura HI, Bird ED, Coyle JT. Decreased receptor-binding sites for kainic acid in brains of patients with Huntington's disease. Biol Psychiatry 1981; 16:155-62.
    [69]Young AB, Greenamyre JT, Hollingsworth Z, Albin R, D'Amato C, Shoulson Ⅰ, Penney JB. NMDA receptor losses in putamen from patients with Huntington's disease. Science 1988; 241:981-3.
    [70]Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci 1991; 11:1649-59.
    [71]Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 1986; 321:168-71.
    [72]Bruyn RP, Stoof JC. The quinolinic acid hypothesis in Huntington's chorea. J Neurol Sci 1990; 95:29-38.
    [73]Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E. Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 2008; 283:5780-9.
    [74]Tang TS, Slow E, Lupu V, Stavrovskaya IG, Sugimori M, Llinas R, Kristal BS, Hayden MR, Bezprozvanny Ⅰ. Disturbed Ca+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA 2005; 102:2602-7.
    [75]Zeron MM, Fernandes HB, Krebs C, Shehadeh J, Wellington CL, Leavitt BR, Baimbridge KG, Hayden MR, Raymond LA. Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2004;25:469-79.
    [76]Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK. Dopamine modulates release from corticostriatal terminals. J Neurosci 200; 24: 9541-52.
    [77]Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin.2006 Cell 125:1179-91.
    [78]Hersch S, Fink K, Vonsattel JP, Friedlander RM. Minocycline is protective in a mouse model of Huntington's disease. Ann Neurol 2003; 54:841-3.
    [79]Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK, Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, Hersch SM, Leavitt BR, Roy S, Nicholson DW, Hayden MR. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J Neurosci 2002; 22:7862-72.
    [80]Wellington CL, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson DW, Bredesen DE, Hayden MR. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem 2000; 275: 19831-8.
    [81]Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 1999; 399:263-7.
    [82]Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006; 125:1179-91.
    [83]DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranu-clear inclusions and dystrophic neurites in brain. Science 1997; 277:1990-3.
    [84]Bates G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 2003; 361:1642-4.
    [85]Ross CA. Huntington's disease:new paths to pathogenesis. Cell 2004; 118: 4-7.
    [86]Wanker EE. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol Chem 2000; 381:937-42.
    [87]Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, Anjum DH, Kodali R, Creamer TP, Conway JF, Gronenborn AM, Wetzel R. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009; 16:380-9.
    [88]Nucifora FC Jr, Ellerby LM, Wellington CL. Wood JD, Herring WJ, Sawa A, Hayden MR, Dawson VL, Dawson TM, Ross CA. Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J Biol Chem 2003; 278:13047-55.
    [89]Cha JH. Transcriptional signatures in Huntington's disease. Prog Neurobiol 2007; 83:228-48.
    [90]Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B, Sintasath L, Bonini NM, Goldstein LS. Disruption of axonal transport by loss of huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 2003; 40:25-40.
    [91]Li H, Li SH, Yu ZX, Shelbourne P, Li XJ. Huntingtin aggregateassociated axonal degeneration is an early pathological event in Huntington's disease mice. J Neurosci 2001; 21:8473-81.
    [92]Parker JA, Connolly JB, Wellington C, Hayden M, Dausset J, Neri C, Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proc Natl Acad Sci USA 2001; 98:13318-23.
    [93]Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000; 101: 57-66.
    [94]Slow EJ, Graham RK, Osmand AP, Devon RS, Lu G, Deng Y, earson J, Vaid K, Bissada N, Wetzel R, Leavitt BR, Hayden MR. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci USA 2005; 102:11402-7.
    [95]Arrasate M, Mitra S, Schweitzer ES, Segal MR. Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004; 431:805-10.
    [96]Gu X, Andre VM, Cepeda C. Li SH, Li XJ. Levine MS, Yang XW. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington's disease. Mol Neurodegener 2007; 2: 8.
    [97]Gu X, Li C, Wei W, Lo V, Gong S, Li SH, Iwasato T, Itohara S, Li XJ, Mody I, Heintz N, Yang XW. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005; 46:433-44.
    [98]Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR. Global changes to the ubiquitin system in Huntington's disease. Nature 2007; 448:704-8.
    [99]Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36:585-95.
    [100]Ventruti A, Cuervo AM. Autophagy and neurodegeneration. Curr Neurol Neurosci Rep 2007; 7:443-51.
    [101]Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 1997; 90:537-48.
    [102]Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 2000; 20:7268-78.
    [103]Petersen A, Larsen KE, Behr GG, Romero N, Przedborski S, Brundin P, Sulzer D. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet 2001:10:1243-54.
    [104]Qin ZH, Wang Y, Kegel KB, Kazantsev A, Apostol BL, Thompson LM, Yoder J, Aronin N, DiFiglia M. Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 2003; 12:3231-44.
    [105]Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002; 11:1107-17.
    [106]Cuervo AM, Dice JF. Regulation of lamp2a levels in the lysosomal membrane. Traffic 2000; 1:570-83.
    [107]Orr AL, Li S, Wang CE, Li H, Wang J, Rong J, Xu X, Mastroberardino PG, Greenamyre JT, Li XJ. NH2-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 2008; 28: 2783-92.
    [108]Trushina E, Dyer RB, Badger JD,2nd Ure D, Eide L, Tran DD, Vrieze BT, Legendre-Guillemin Ⅴ, McPherson PS, Mandavilli BS, Van Houten B, Zeitlin S, McNiven M, Aebersold R, Hayden M, Parisi JE, Seeberg E, Dragatsis Ⅰ, Doyle K, Bender A, Chacko C, McMurray CT. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004; 24:8195-209.
    [109]Cantuti-Castelvetri Ⅰ, Lin MT, Zheng K, Keller-McGandy CE, Betensky RA, Johns DR, Beal MF, Standaert DG, Simon DK. Somatic mitochondrial DNA mutations in single neurons and glia. Neurobiol Aging 2005; 26:1343-55.
    [110]Horton TM, Graham BH, Corral-Debrinski M, Shoffner JM, Kaufman AE, Beal MF, Wallace DC. Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington's disease patients. Neurology 1995; 45: 1879-83.
    [111]Arenas J, Campos Y, Ribacoba R, Martin MA, Rubio JC, Ablanedo P. Cabello A. Complex I defect in muscle from patients with Huntington's disease. Ann Neurol 1998; 43:397-400.
    [112]Browne SE. Mitochondria and Huntington's disease pathogenesis:insight from genetic and chemical models. Ann NY Acad Sci 2008; 1147:358-82.
    [113]Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF. Oxidative damage and metabolic dysfunction in Huntington's disease:selective vulnerability of the basal ganglia. Ann Neurol 1997; 41:646-53.
    [114]Butterfield DA, Howard BJ, LaFontaine MA. Brain oxidativestress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem 2001; 8: 815-28.
    [115]Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR,S trittmatter WJ, Greenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5:731-6.
    [116]Bae BI, Xu H, Igarashi S, Fujimuro M, Agrawal N, Taya Y, Hayward SD, Moran TH, Montell C, Ross CA, Snyder SH, Sawa A. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 2005; 47:29-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700