不同温度型小麦K~+吸收动力学特征及其盐胁迫效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探究不同温度型小麦K~+吸收动力学特征及其盐胁迫效应,进一步揭示不同温度型小麦幼苗的耐盐机制,丰富温度型理论,本文用NR9405(暖型)、小偃六号(中间型)、陕229和RB6(冷型)等四种不同温度型作为试验材料,采用浓度梯度法研究了不同温度型小麦幼苗(14d)K~+的吸收动力学特征,并结合药理学方法探讨了高亲和与低亲和的K~+吸收系统在不同温度型小麦幼苗K~+和Na~+吸收累积中的作用。得到以下主要结论:
     1.不同温度型小麦幼苗K~+吸收动力学特征
     在0~50mmol·L~(-1)的K~+浓度范围内,4种不同温度型小麦幼苗K~+吸收速率随浓度的增加而增大,可分为高亲和吸收(0~1mmol·L~(-1))和低亲和吸收(1~50mmol·L~(-1))等两个过程,二者均可用米氏方程描述。
     高亲和吸收过程中,暖型小麦的亲和系数Km和最大吸收速率Imax分别为0.332mmol·L~(-1)和33.57μmol·h-1·g-1RDW,小于两种冷型小麦的0.430~0.432 mmol·L~(-1)和42.46~43.13μmol·h-1·g-1RDW,中间型小偃六号则介于二者之间,Km和Imax分别为0.353 mmol·L~(-1)和35.38μmol·h-1·g-1RDW。NR9405的养分离子流入系数α[K~+]值最大,为101.02,小偃六号次之,为100.36,陕229和RB6较小,分别为98.86和99.84。说明暖型小麦对K~+的高亲和力是K~+吸收能力强的重要原因之一。
     NR9405、小偃六号、陕229和RB6等四种小麦幼苗低亲和吸收(1~50mmol·L~(-1))的特征值分别为:Imax值分别为213.33、185.73、197.93和253.37μmol·h-1·g-1RDW,而Km为30.35、20.90、21.22和30.38mmol·L~(-1),α[K~+]值分别为7.03、8.89、9.33和8.31;NR9405和RB6的Imax值较大,Km较高,而小偃6号和陕229则相反,Imax值较小,Km较低。陕229的α[K~+]最高,NR9405最低。
     抑制低亲和吸收系统后,NR9405和小偃6号的Km值不受影响,Imax值和α[K~+]值增大;而陕229和RB6的Km值和Imax值均增大,α[K~+]值变化不大。说明暖型小麦的高亲和吸收系统与K~+的亲和力不受低亲和系统影响,而抑制低亲和吸收系统可以增加其吸收容量和吸钾能力;而抑制冷型小麦的低亲和系统会降低冷型小麦高亲和系统对钾的亲和力。
     抑制高亲和吸收系统后,小麦幼苗的低亲和吸收特征值Imax和Km均有所增加,Imax值在314~390μmol·h-1·g-1RDW之间,冷型小麦的增幅大于暖型小麦。Km在29~55mmol·L~(-1)之间;冷型小麦增幅也大于暖型小麦。说明抑制高亲和吸收系统后,降低了幼苗对K~+的亲和力,但增加了最大吸收容量。
     2. Na~+对不同温度型小麦幼苗K~+高亲和吸收动力学特征的影响
     50~100mmol·L~(-1)的Na~+存在降低了K~+高亲和吸收速率,吸收动力学过程仍然符合米氏方程。50~100mmol·L~(-1)的Na~+显著降低了Imax和α[K~+]值,冷型小麦的降幅大于暖型小麦;暖型小麦NR9405和中间型小偃六号的Km值不受盐浓度的影响;而在100mmol·L~(-1)的Na~+浓度时冷型小麦的Km值降低了20%~30%。这说明冷型小麦对Na~+胁迫响应的反应较暖型小麦敏感。50~100mmol·L~(-1)的Na~+胁迫下冷型小麦的α[K~+]均低于其他两种小麦,即K~+吸收能力较低,这可能是冷型小麦耐盐能力较低的原因之一。
     3. Na~+对不同温度型小麦幼苗K~+低亲和吸收动力学特征的影响
     100~150mmol·L~(-1)的Na~+存在下,K~+低亲和吸收(1~50mmol·L~(-1))速率降低,且其吸收动力学过程不符合米氏方程,只能用线性方程描述;可以划分为1~15和15~50mmol·L~(-1)等两个吸收阶段。100~150mmol·L~(-1)的Na~+胁迫引起K~+的外流,在较低的K~+(约1~3 mmol·L~(-1))浓度下出现净流失。
     4. Na~+对不同温度型小麦幼苗生长与离子吸收的影响
     NR9405的地上部K~+累积能力强于RB6。随着介质中Na~+的增加地上部K~+含量逐渐下降。在无盐环境中,两个小麦基因型的盐分含量没有差异,盐胁迫下随Na~+浓度的增大,地上部Na~+含量和细胞浓度都逐渐增加,RB6的累积量大于NR9405。K~+对地上部Na~+含量的影响因品种和盐浓度不同而异,在100mmol·L~(-1)盐浓度下,K~+可明显降低RB6地上部的Na~+累积量。地上部Na~+/K~+含量比与细胞内Na~+/K~+离子浓度比与地上部生长速率呈显著负相关,可以作为耐盐评价的指标。
In order to enrich the tempreture type theory and reveal the salt tolerance mechanism of wheat, we studied the effect of Na~+ on K~+ high affinity transporter systems(HATs) and low affinity transporter systems (LATs) absorption kinetic characteristics of wheat seedlings with different canopy temperatures: NR9405 (warm type),Xiaoyan NO.6(middle type),RB6 and Shan229(cold types). As well as we studied the effect of Na~+ on shoot growth and ion accumulation of the 4 types wheat seedlings. The main research results as follows:
     1. In the range of 0~50 mmol·L~(-1) K~+, K~+ absorption velocity of the 4 different type wheats increased with the increasing concentration. It can be divided into two phases, high affinity transport(HAT,0~1mmol·L~(-1)) and low affinity transport (LAT,1~50mmol·L~(-1)). both of the uptake process can be described by Michaelis-Menten equation.
     For K~+-HAT, Km and Imax of warm type wheat was 0.332mmol·L~(-1) and 33.57μmol·h-1·g-1RDW that less than that of the cold type, Shaan229 and RB6, which were 0.430~0.432 mmol·L~(-1) and 42.46~43.13μmol·h-1·g-1RDW, and that of the middle type XiaoyanNO.6 is 0.353 mmol·L~(-1) and 35.38μmol·h-1·g-1RDW, which is between the two types.α[K~+](coefficient of K~+ influx) of the 4 types, NR9405 is 101.02, XiaoyanNO.6 is 100.36, Shaan229 and RB6 is 98.86 and 99.84. It revealed that high K~+ affinity of warm type wheat is one reason why it had stronger K uptake capacity .
     For K~+-LAT, Imax of NR9405, XiaoyanNO.6, RB6, Shaan229 wheats were 213.33、185.73、197.93 and 253.37μmol·h-1·g-1RDW, Km were 30.35、20.90、21.22 and 30.38mmol·L~(-1),α[K~+] were 7.03、8.89、9.33 and 8.31, respectively. Imax and Km of NR9405 and RB6 were higher, while XiaoyanNO.6 and Shaan229 with lower Imax and Km.α[K~+] of Shaan229 is maximum, and NR9405 is minimum.
     When inhibited low affinity systems, Km was not affected and Imax andα[K~+] increased in NR9405 and XiaoyanNO.6, while Km and Imax increased,α[K~+] almost not changed in Shaan229 and RB6. It means that inhibited LATs not affect K~+ affinity with HAT, but increased K~+ absorption capacity in warm type wheat. But K~+ affinity with HATs decreased in cold type wheat,when inhibited the LATs.
     When inhibited HATs,character parameters of LATs increased.Imax of 4 wheats in 314~390μmol·h-1·g-1RDW,Km in 29~55mmol·L~(-1). Imax and Km of cold type increased more than warm type.It mean that K~+ affinity of LATs of 4 wheats decreased and increased K~+absorption capacity ,when inhibited HATs.
     2. K~+ high affinity(0~1mmol·L~(-1)) absorption velocity curve could be decreased by the Michaelich-Menten under 10~100 mmol·L~(-1) Na~+.The Imax andα[K~+] of 4 wheats decreased by the Na~+ exist,effect of Na~+ on Imax andα[K~+] of cold type wheat is relatively serious.Km of NR9405 and XiaoyanNO.6 almost uneffected by salt stress, the Km of cold type wheats decreased by 20%~30% by 100mmol·L~(-1) Na~+.The result indicated that reaction of cold type is sensitive to salt stress.Under 50~100mmol·L~(-1) Na~+,α[K~+] of cold type wheats lower than NR9405 and XiaoyanNO.6,it mean than K~+ absorption capacity of cold type is lower,it is reason that salt tolerance of cold type lower than warm and middle types.
     3. The relationship between K~+ low affinity absorption velocity and concentration in the solution can be described by line equation, within 1~50 mmol·L~(-1) K~+ concentration, and it divided into two phases , 1~15 and 15~50mmol·L~(-1), which described by line equation with different slopes.LATs K~+ absorption velocity decreased as the existence of Na~+ (100~150 mmol·L~(-1) ).Thus, the existence of Na~+ make K~+ flow out seriously, even with negative net absorption under lower K~+ concentration(1~3mmol·L~(-1)).
     4. K~+ absorption capacity of NR9405 stronger than RB6.K~+ content of shoot of the both wheat seedlings decreased with increasing Na~+ concentration in solution.Na~+ content of shoot not different between the both wheat genotypes seedlings.
     Na~+ content and concentration of shoot of the both wheat seedlings increased with the increasing Na~+(0~150mmol·L~(-1)) concentration in the solution under every K~+ contration,and Na~+ accumulation content of RB6 higer than NR9405.Different cultivars and salt contration due to the effect of K~+ on Na~+ content of shoot were different,this effect were significant,while NR9405 under 150mmol·L~(-1) Na~+ and RB6 under 100~150mmol·L~(-1) Na~+. The content ratio of Na~+/K~+ or cell concentration ratio in shoot was significantly related with the growth velocity in different treatments, thus, it was a reliable index to identify the salt resistence.
引文
陈敏,彭建云,王宝山. 2008.整株水平上Na~+转运体与植物的抗盐性.植物学通报, 25(4):381-391.
    程晶晶,周春菊,李蓉,魏国荣,康振生,黄丽丽. 2009.不同温度型小麦幼苗期的抗锈性及其生理特性分析.西北农林科技大学学报, 37(2):112-116.
    崔桂霞,甄润英. 2005.国内外小麦生产现状及发展趋势.食品研究与开发, 26(2):13-17.
    封克,孙小茗,汪晓丽,盛海君. 2007.铵对不同作物根系钾高亲和转运系统的影响.植物营养与肥料学报, 13(5):877-881.
    冯佰利,张宾,高小丽,高金峰,王长发,张嵩午. 2004.抗旱小麦的冷温特征及其生理特性分析. 作物学报, 30(12):1215-1219.
    黄建国,杨邦俊. 1995.小麦不同品种吸收钾离子的动力学研究.植物营养与肥料学报, 1(1):38-43.
    蒋廷惠,郑绍建,石锦芹,胡霭堂,史瑞和,徐茂. 1995.植物吸收养分动力学研究中的几个问题. 植物营养与肥料学报, 1(2):11-17.
    李青松,周春菊,尚浩博,王林权. 2009.盐胁迫下蒸腾对冬小麦地上部钠积累的影响.植物营养与肥料学报,15 (1):32-40.
    李青松,王俪梅,汪德勇,王林权. 2010.不同基因型冬小麦Na~+吸收动力学特征及其耐盐性.土壤学报, 47(1):145-152.
    李树华,许兴,惠红霞,米海莉,马向前. 2002.土壤盐碱胁迫对春小麦K~+、Na~+选择性吸收的影响.西北植物学报, 22(3):587-594.
    刘贯山,王元英,孙玉合,王卫锋. 2006.高等植物钾转运蛋白.生物技术通报, 5:13-18.
    刘芷宇. 1992.植物的磷素营养和土壤磷的生物有效性.土壤, 24(2):97-101.
    马翠兰,刘星辉,王湘平. 2004.盐胁迫下柚实生苗生长,矿质营养及离子吸收特性研究.植物营养与肥料学报, 10(3):319-323.
    毛达如. 2005.植物营养研究方法(第二版).北京:中国农业大学出版社.
    饶宝蓉,罗海燕,杜中军,陶亮,陈业渊,徐立. 2009.不同香蕉品种钾离子吸收动力学研究.热带作物学报, 11:1612-1617.
    孙继山,程龙生,秦静芬. 1989.竹红菌甲素对红细胞膜上几种酶光敏失活作用的研究.实验生物学报, 22(4):423-431.
    孙小茗. 2006.钾离子跨细胞膜吸收过程受铵影响的机理探讨[D].江苏:扬州大学.
    王宝山,赵可夫. 1995.小麦叶片中Na~+、K~+提取方法的比较.植物生理学通讯, 31(1):50-52.
    王宝山,赵可夫,邹琦. 1997.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报, 14(1):25-30.
    王林权,邵明安. 2005.高等植物对钠离子的吸收、运输和累积干旱地区农业研究, 23(5):244-249.
    王羽,华元刚,罗微. 2010.橡胶树幼苗磷吸收的动力学参数.热带作物学报, 31(6):926-929.
    吴平,印莉萍,张立平. 2001.植物营养分子生理学.北京:科学出版社.
    杨劲松,陈德明,沈其荣. 2002.作物抗盐机制研究Ⅱ.小麦对盐分离子的吸收与运移.土壤学报, 39(5):759-762.
    叶优良,韩燕来,谭金芳,崔振岭. 2007.中国小麦生产与化肥施用状况研究.麦类作物学报, 27(1):127-133.
    余勤,邝炎华. 1997.根系养分吸收动力学研究及应用.华南农业大学学报, 18(2):105-110.
    张金林. 2008.盐生植物海滨碱蓬Na~+吸收和积累的研究[D].甘肃:兰州大学.
    张嵩午. 1997.小麦温型现象研究.应用生态学报, 8(5):471-474.
    张嵩午,冯佰利,王长发,苗芳,周春菊,刘党. 2003.小麦冷源及其在干旱条件下的适应性.生态学报, 23(12):2558-2564.
    张嵩午,王长发. 2001.小麦冷源及其性状特征的研究.中国农业科学, 34(001):40-45.
    张志勇,王刚卫,田晓莉,段留生,王保民,董学会,张明才,何钟佩,李召虎. 2007.棉花品种间苗期钾吸收效率的差异研究.棉花学报, 19(1):47-51.
    赵可夫,李法曾. 1999.中国盐生植物.北京:科学出版社.
    赵旭. 2006.不同基因型冬小麦对Na~+、K~+的吸收与累积规律及其耐盐性研究[D].陕西:西北农林科技大学.
    赵旭,王林权,周春菊,尚浩博. 2005.盐胁迫对不同基因型冬小麦发芽和出苗的影响.干旱地区农业研究, 23(004):108-112.
    赵旭,王林权,周春菊,尚浩博. 2007.盐胁迫对四种基因型冬小麦幼苗Na~+, K~+吸收和累积的影响.生态学报, 27(1):205-213.
    赵学强,介晓磊,李有田,许仙菊,谭金芳,化党领. 2006.不同基因型小麦钾离子吸收动力学分析.植物营养与肥料学报, 12(003):307-312.
    郑延海,蒋高明. 2008.外源硝酸钾对小麦氯化钠胁迫缓解机理的研究进展.科学通报, 53(24):3140.
    郑延海,宁堂原,贾爱君,李增嘉,韩宾,江晓东,李卫东. 2007.钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用.植物营养与肥料学报, 13(3):381-386.
    周春菊,张嵩午,王林权. 2006a.不同施肥条件下冷,暖型小麦旗叶光合生理特性的研究.西北植物学报, 26(12):2511-2516.
    周春菊,张嵩午,王林权. 2007.冷型小麦磷素吸收积累特性的研究.植物营养与肥料学报, 13(6):1062-1067.
    周春菊,张嵩午,王林权,苗芳. 2006b.冷型小麦氮素吸收积累特性的研究.植物营养与肥料学报, 12(2):162-168.
    周峰,李平华. 2003. K~+稳态与植物耐盐性的关系.植物生理学通讯, 39(001):67-70.
    邹春琴,李继云. 2001.小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报, 7(1):36-43.
    Al-Rawahy S., Stroehlein J., Pessarakli, M. 1992. Dry matter yield and nitrogen-15, Na~+, Cl-, and K~+ content of tomatoes under sodium chloride stress. Journal of Plant Nutrition, 15(3):341-358.
    Alagem N., Dvir M., Reuveny E. 2001. Mechanism of Ba2+ block of a mouse inwardly rectifying K~+ channel: differential contribution by two discrete residues. The Journal of Physiology, 534(2):381-393.
    Amtmann A., Fischer M., Marsh E. L., Stefanovic A., Sanders D., Schachtman D. P. 2001. The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. Plant physiology, 126(3):1061-1071.
    Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. 1992. Functional expressionof a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 89(9):3736-3740.
    Armstrong C., Swenson R., Taylor S. 1982. Block of squid axon K~+ channels by internally and externally applied barium ions. The Journal of General Physiology, 80(5):663-682.
    Bia czyk J., Lechowski Z. 1990. Influence of a potassium channel blocker and metabolic and ATPase inhibitors on potassium and malate content of Phaseolus coccineus L. pulvini. New Phytologist, 115(4):595-601.
    Bihler H., Slayman C. L., Bertl A. 2002. Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1558(2):109-118.
    Bray E. A. 1997. Plant responses to water deficit. TRENDS in Plant Science, 2(2):48-54.
    Briskin D. P., Gawienowski M. C. 1996. Role of the plasma membrane H+-ATPase in K~+ transport. Plant physiology, 111(4):1199-1207.
    Cacco G., Ferrari G., Saccomani M. 1980. Pattern of sulfate uptake during root elongation in maize: its correlation with productivity. Physiologia Plantarum, 48(3):375-378.
    Chen Z., Zhou M., Newman I. A., Mendham N. J., Zhang G., Shabala S. 2007. Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Functional Plant Biology, 34(2):150-162.
    Claassen N., Barber S. A. 1974. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant physiology, 54(4):564-568.
    Clemens S., Antosiewicz D. M., Ward J. M., Schachtman D. P., Schroeder J. I. 1998. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences of the United States of America, 95(20):12043-12048.
    Colmer T., Munns R., Flowers T. 2005. Improving salt tolerance of wheat and barley: future prospects. Australian Journal of Experimental Agriculture, 45(11):1425-1443.
    Davenport R. J., Munoz-Mayor A., Jha D., Essah P. A., Rus A., Tester M. 2007. The Na~+ transporter AtHKT1;1 controls retrieval of Na~+ from the xylem in Arabidopsis. Plant, Cell & Environment, 30(4):497-507.
    Demidchik V., Davenport R. J., Tester M. 2002. Nonselective cation channels in plants. Annual Review of Plant Biology, 53(1):67-107.
    Elumalai R. P., Nagpal P., Reed J. W. 2002. A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 14(1):119-131.
    Epstein E., Bloom A. 2005. Mineral nutrition of plants: principles and perspectives: Sinauer Associates Sunderland, MA.
    Epstein E., Hagen C. 1952. A kinetic study of the absorption of alkali cations by barley roots. Plant physiology, 27(3):457-474.
    Epstein E., Norlyn J. D., Rush D. W., Kingsbury R. W., Kelley D. B., Cunningham G. A., Wrona A. F. 1980. Saline culture of crops: a genetic approach. Science (New York, NY), 210(4468):399-404.
    Epstein E., Rains D., Elzam O. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proceedings of the National Academy of Sciences of the United States of America, 49(5):684-692.
    Faiyue B., Alazzawi M., Flowers T. 2010. The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant, Cell & Environment, 33(5):702-716.
    FAO. 2000. Land resource potential and constraints at regional and county levels. World soil resources resportts, 909-11,59-65.
    Fu H. H., Luan S. 1998. AtKUP1: a dual-affinity K~+ transporter from Arabidopsis. The Plant Cell Online, 10(1):63-73.
    Ghassemi F., Jakeman A. J., Nix H. A. 1995. Salinisation of land and water resources: human causes, extent, management and case studies. Cab international, Wallingford (United Kingdom).
    Gierth M. 2007. Potassium transporters in plants-Involvement in K~+ acquisition, redistribution and homeostasis. FEBS Letters, 581(12):2348-2356.
    Gierth M., Maser P., Schroeder J.I. 2005. The potassium transporter AtHAK5 functions in K~+ deprivation-induced high-affinity K~+ uptake and AKT1 K~+ channel contribution to K~+ uptake kinetics in Arabidopsis roots. Plant physiology, 137(3):1105-1114.
    Golldack D., Quigley F., Michalowski C. B., Kamasani U. R., Bohnert H. J. 2003. Salinity stress tolerant and sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant molecular biology, 51(1):71-81.
    Hamada A., Hibino T., Nakamura T., Takabe T. 2001. Na~+/H+ Antiporter fromSynechocystis Species PCC 6803, Homologous to SOS1, Contains an Aspartic Residue and Long C-Terminal Tail Important for the Carrier Activity. Plant physiology, 125(1):437-446.
    Hess D. C., Lu W., Rabinowitz J. D., Botstein D. 2006. Ammonium toxicity and potassium limitation in yeast. PLoS Biol, 4(11):2012-2023.
    Higinbotham N. 1973. Electropotentials of plant cells. Annual Review of Plant Physiology, 24(1):25-46.
    Horie T., Costa A., Kim T. H., Han M. J., Horie R., Leung H. Y., Miyao A., Hirochika H., An G., Schroeder J.I. 2007. Rice OsHKT2;1 transporter mediates large Na~+; influx component into K~+-starved roots for growth. The EMBO journal, 26(12):3003-3014.
    Horie T., Hauser F., Schroeder J. I. 2009. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. TRENDS in Plant Science, 14(12):660-668.
    Horie T., Yoshida K., Nakayama H., Yamada K., Oiki S., Shinmyo A. 2001. Two types of HKT transporters with different properties of Na~+ and K~+ transport in Oryza sativa. The Plant Journal, 27(2):129-138.
    Itoh S. B. 1983. Phosphorus Uptake by Six Plant Species as Related to Root Hairs1. Agronomy Journal, 75(3):457-461.
    James R.A., Munns R., Von Caemmerer S., Trejo C., Miller C., Condon T. A. G. 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na~+, K~+ and Cl- in salt affected barley and durum wheat. Plant, Cell & Environment, 29(12):2185-2197.
    Kaddour R., Nasri N., M'rah S., Berthomieu P., Lachaal, M. 2009. Comparative effect of potassium on K~+ and Na~+ uptake and transport in two accessions of Arabidopsis thaliana during salinity stress. Comptes Rendus Biologies, 332(9):784-794.
    Kader M., S L. 2005. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. Journal of experimental botany,56(422):3149-3158.
    Kochian , L., Lucas W. 1982. Potassium transport in corn roots: I. Resolution of kinetics into a saturable and linear component. Plant physiology, 70(6):1723-1731.
    Kochian L., Xin-Zhi , J., Lucas W. 1985. Potassium transport in corn roots: IV. Characterization of the linear component. Plant physiology, 79(3):771-776.
    Kochian L. V., Shaff J. E., Lucas W. J. 1989. High affinity K~+ uptake in maize roots: a lack of coupling with H+ efflux. Plant physiology, 91(3):1202-1211.
    Kronzucker H., Szczerba M., Moazamigoudarzi M., Britto D. 2006. The cytosolic Na~+: K~+ ratio does not explain salinity induced growth impairment in barley: a dual tracer study using 42K~+ and 24Na~+. Plant, Cell & Environment, 29(12):2228-2237.
    Kronzucker H. J., Szczerba M. W., Schulze L. M., Britto D. T. 2008. Non-reciprocal interactions between K~+ and Na~+ ions in barley (Hordeum vulgare L.). Journal of experimental botany, 59:2793-2801.
    Langer K., Ache P., Geiger D., Stinzing , A., Arend M., Wind C., Regan S., Fromm J., Hedrich R. 2002. Poplar potassium transporters capable of controlling K~+ homeostasis and K~+-dependent xylogenesis. The Plant Journal, 32(6):997-1009.
    Lazof D., Cheeseman J. 1988. Sodium and potassium compartmentation and transport across the roots of intact Spergularia marina. Plant physiology, 88(4):1274-1278.
    Lebaudy A., Very A. A., Sentenac H. 2007. K~+ channel activity in plants: genes,regulations and functions. FEBS Letters, 581(12):2357-2366.
    Leigh R., RG W. J. 1984. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol, 971-13.
    Levitt J. 1980. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses. New York: Academic Press.
    Luan S., Lan W., Chul Lee S. 2009. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. Current opinion in plant biology, 12(3):339-346.
    Lux A., Anna S., Jana O., Maria G. 2004. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120(4):537-545.
    Maathuis F., Amtmann A. 1999. K~+ nutrition and Na~+ toxicity: the basis of cellular K~+/Na~+ ratios. Annals of Botany, 84(2):123-133.
    Maathuis F. J. M. 2009. Physiological functions of mineral macronutrients. Current opinion in plant biology, 12(3):250-258.
    Maathuis F. J. M., Sanders D., Gradmann D. 1997. Kinetics of high-affinity K~+ uptake in plants, derived from K~+-induced changes in current-voltage relationships. Planta, 203(2):229-236.
    Marschner H. 1995. Mineral nutrition of higher plants. San Diego: Academic press San Diego. Angels M. C., Vicente M., Rubio F. 2005. High-affinity K~+ uptake in pepper plants. Journal of experimental botany, 56(416):1553-1562.
    Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167(3):645-663.
    Munns R., Tester M. 2008. Mechanisms of salinity tolerance. Plant Biology, 59(1):651-681.
    Nielsen N. 1978. Differences Among Genotypes of Corn in the Kinetics of P Uptake1. Agronomy Journal, 70(5):695-698.
    Nieves-Cordones M., Martinez-Cordero M., Martinez V., Rubio F. 2007. An NH4+-sensitive component dominates high-affinity K~+ uptake in tomato plants. Plant Science, 172(2):273-280.
    Niu X., Bressan R., Hasegawa P., Pardo J. 1995. Ion homeostasis in NaCl stress environments. Plant physiology, 109(3):735-742.
    Pardo J. M., Cubero B., Leidi E. O., Quintero F. J. 2006. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. Journal of experimental botany, 57(5):1181-1199.
    Pardo J. M., Rubio F. 2011. Na~+ and K~+ Transporters in Plant Signaling. Transporters and Pumps in Plant Signaling, 7(2):65-98.
    Pyo Y. J., Gierth M., Schroeder J. I., Cho M. H. 2010. High-affinity K~+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant physiology, 153(2):863-875.
    Rains, D., Epstein, E. 1967. Sodium absorption by barley roots: role of the dual mechanisms of alkali cation transport. Plant physiology, 42(3):314-318.
    Ranathunge K., Steudle E., Lafitte R. 2005. A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant, Cell & Environment, 28(11):1450-1462.
    Rodriguez-Navarro A., Rubio F. 2006. High-affinity potassium and sodium transport systems in plants. Journal of experimental botany, 57(5):1149-1160.
    Rubio F., Gassmann W., Schroeder J. I. 1995b. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 270(5242):1660-1663.
    Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. 1992. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science, 258 (5088) :1654-1658.
    Siddiqi M. Y., Glass A. 1982. Simultaneous consideretion of tissue and substrate potassium concentration in K~+ uptake kinetics:A model. Plant Physiol, 69:283-285.
    Siddiqi M. Y., Glass A. D. M. 1986. A model for the regulation of K~+ influx, and tissue potassium concentrations by negative feedback effects upon plasmalemma influx. Plant physiology, 81(1):1-7.
    Spalding E. P., Hirsch R. E., Lewis D. R., Qi Z., Sussman M. R., Lewis B. D. 1999. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. The Journal of General Physiology, 113(6):909-918.
    Subbarao G., Ito O., Berry W., Wheeler R. 2003. Sodium:a functional plant nutrient. Critical reviews in Plant sciences, 22(5):391-416.
    Szczerba M., Britto D., Kronzucker H. 2009. K~+ transport in plants: physiology and molecular biology. Journal of Plant Physiology, 166(5):447-466.
    Szczerba M. W., Britto D. T., Balkos K. D., Kronzucker H. J. 2008. Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K~+-sensitive and-insensitive components of NH4+ transport. Journal of experimental botany, 59:303-313.
    Szczerbab M. W., Brittoa D. T., Kronzucker H. J. 2009. K~+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 166:447-466.
    Tester M. 1988. Blockade of potassium channels in the plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na~+ and Cs+. Journal of Membrane Biology, 105(1):77-85.
    Tyerman S., Skerrett I. 1998. Root ion channels and salinity. Scientia Horticulturae, 78(1-4):175-235.
    Walker D., Leigh R., Miller A. 1996. Potassium homeostasis in vacuolate plant cells. Proceedings of the National Academy of Sciences of the United States of America, 93(19):10510-10514.
    Wang S. M., Zhang J. L., Flowers T. J. 2007. Low-affinity Na~+ uptake in the halophyte Suaeda maritima. Plant physiology, 145(2):559-571.
    White P. J. 1999. The molecular mechanism of sodium influx to root cells. TRENDS in Plant Science, 4(7):245-246.
    Wrona A. F., Epstein E. 1985. Potassium and sodium absorption kinetics in roots of two tomato species: Lycopersicon esculentum and Lycopersicon cheesmanii. Plant physiology, 79(4):1064-1067.
    Yeo A., Flowers S., Rao G., Welfare K., Senanayake N., Flowers T. 1999. Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant, Cell & Environment, 22(5):559-565.
    Zepeda-Jazo I., Shabala S., Chen Z., Pottosin I. I. 2008. Na~+-K~+ transport in roots under salt stress. Plant Signaling & Behavior, 3(6):401-403.
    Zhang J. L., Flowers T. J., Wang S. M. 2010. Mechanisms of sodium uptake by roots of higher plants. Plant and soil, 326(1):45-60.
    Zhu J. K. 2001. plant salt tolerance. TRENDS in Plant Science, 6(2):66-71.
    Zhu J. K. 2000. Genetic analysis of plant salt tolerance using Arabidopsis. Plant physiology, 124 (3):941-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700