盐胁迫和干旱胁迫下胡杨和意大利杨细胞内Ca~(2+)和Ca~(2+)-ATPase水平的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物细胞中Ca2+起着维持离子平衡、水分平衡和构成细胞保护体系的作用,并被认为是细胞最重要的第二信使;Ca2+-ATPase在保持正常细胞胞质Ca2+浓度平衡、提高植物抗逆性、维持细胞在逆境中的正常生长等方面起着重要的生理作用。逆境引发的刺激信号传入细胞中时,不同植物不同器官的细胞、以及细胞内不同细胞器中Ca2+及Ca2+-ATPase水平出现差异性变化,深入研究此变化机制,是指导实践工作的前提。
     根据胡杨和意大利杨同属木本植物、却在抗逆性方面具有较大差异的特点,本实验选此二种植物作为实验材料,并均采用相同时间和强度的盐胁迫和干旱胁迫处理,借助X射线能谱分析技术和硝酸铅沉淀的电镜细胞化学法,定性、定量进行数据的分析及谱图绘制工作,以期通过对实验结果进行对比,达到研究外界刺激引发的抗性不同的植物细胞以及不同细胞器内Ca2+水平和Ca2+-ATPase水平的变化,以及它们的变化对植物细胞生理生化方面的影响。
     实验结果表明,胡杨抗逆性较强,在整个实验过程中其细胞Ca2+-ATPase一直高于同期处理的意大利杨细胞。另外,短期干旱和盐的刺激,还会促使Ca2+-ATPase的活性短暂升高,但随时间延长、逆境强度加大,其活性随即持续转小;意大利杨细胞Ca2+-ATPase活性则随时间延长呈现同一趋势,即其活性不断减小。另一方面,低温、干旱、高盐渗透等逆境胁迫刺激Ca2+在细胞内进行了重新分布和定位:在静息态的植物细胞中,胞质Ca2+含量极微;干旱和盐胁迫对胡杨和意大利杨的细胞均产生相似的刺激效应,即促使Ca2+由钙库(主要是液泡)流出至胞质,增大胞质Ca2+浓度。细胞中Ca2+的感受蛋白随即活化,引发下游磷酸化反应进行响应,一定程度内缓解逆境伤害。但在刺激强度较大时,随着胡杨与意大利杨的Ca2+-ATPase活性均降至极低,细胞质沉积过多的Ca2+引起细胞中毒,并诱导凋亡,最后植株死亡。
Ca2+plays roles in sustaining the balance level of the ion and the water in plant cells, and it's a component part of cell's protective system as well as the most important second messenger in plant cells; Ca2+-ATPase plays significant roles in keeping the concentration of Ca2+balanceable in cytoplasm, improving plant cell's performance of stress tolerance and keeping cells alive and active under various stress in a certain degree. The stress induce some kind of signal which will be transferrsd into cells, then some certain actions such as Ca2+and Ca2+-ATPase will be taken place,which will response to the corresponding external circumstance. That process is various according to different organs of a plant as well as different organelles of a cell. So studying this mechanism will assure our scientific practice.
     Both Populus euphratica and P.euramericana are ligneous plant, whereas they have adverse tolerances to stress. According to this we have chosen them as materials,aiming to analyze and compare them under the same treat—drought and salinity. We take advantages of X-ray technology and electron microscop-cytochemical method to analyze the energy spectrum and the location of sedimentation in both quality and quantity aspects,which is extremely helpful to study the effect of Ca2+and Ca2+-ATPase in plants.
     The experimental has revealed that Ca2+level of both polar decreased with the strengthening of stress in vacuole,yet is adverse in cytoplasm.The activity of Ca2+-ATPase in plasma membrane and tonoplast of the two polar are different under drought and saline stress.It's always more activated in Populus euphratica,although it has decreased a lot after a temporary increase in the first 16 days. While to P.euramericana,it lasted decreaseing with the intensity of stress.
引文
[1]柏新富,朱建军,卜庆梅,蒋小满.盐胁迫对大豆根系木质部压力和Na+吸收的影响.生态学报,2009(12):6506-6511.
    [2]陈华新,李卫军,安沙舟,高辉远.钙对NaCl胁迫下杂交酸模(Rumex-K1)幼苗叶片光抑制的减轻作用,植物生理与分子生物学学报,2003,29(5):449-454.
    [3]陈少良,李金克,尹伟伦等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(5/6):84-88.
    [4]陈宣钦,於丙军.等渗盐胁迫下Na+和Cl+对大豆幼苗光合作用的离子效应.植物生理与分子生物学学报,2007,33(4):294-300.
    [5]杜洪艳,柏彦超等.NaCl胁迫对水稻幼苗生长和钾、钠、钙、镁营养的影响.江苏农业学报,2008,24(4):527-529.
    [6]钙信号与水杨酸在植物免疫相应中的应用,科学中国人,2009(4),38.
    [7]冯永刚,孙广玉,王秋玉.论钙在植物细胞中盐胁迫信号转导中的作用.科技创新导报,2008,(4):153.
    [8]郭秀林,李孟军.ABA与Ca2+/CaM信使系统关系.西北植物学报,2001,6(21):1283-1287.
    [9]郭秀林等.Ca2+/CaM对玉米干旱信息传递的介导作用研究.作物学报,2005,8(31):1001-1006.
    [10]韩宁,綦翠华,丁同楼,王宝山.植物膜Ca2+运输系统与逆境应答.植物生理学通讯,2005(10):577-582.
    [11]韩宁.盐地碱蓬液泡膜Ca2+主动运输体及其在耐盐性中的作用,2005.
    [12]郝鲁宁,余叔文.大麦根细胞质膜Ca2+系统对盐胁迫的反应.植物生理与分子生物学报,1993
    [13]简令成,王红.Ca2+在植物细胞对逆境反应和适应中的调节作用.植物学通报,2008,25(3):255-267.
    [14]康彬,童哲.高等植物细胞中的钙通道.应用与环境生物学报,1998,4(4):414-421.
    [15]李东屏,陈良碧,李乐攻,栾升.植物细胞的钙信号转导.生命科学研究,2004,8,284-293.
    [16]李继伟,邓祥宜,周竹青,王利凯,阳超男,樊海燕.Ca2+和Ca2+-ATPase在小麦颖果筛分子分化中的动态变化.中国农业科学2009,42(12):4209-4217
    [17]李晓明,陈劲枫,逯明辉等.低温下钙对黄瓜幼苗抗氧化酶活性及POD同工酶谱的影响[J].西北植物学报,2006,26:(2):0241-0246.
    [18]李卫欣,陈贵林,任良玉,王鹏.氯化钠胁迫对不同品种南瓜幼苗阳离子含量的影响,应用生态学报,2008,19(3):569-574.
    [19]林建军,魏幼璋.植物细胞Ca2+的微调系统—Ca2+-ATPase.植物学通报,2001,18(2):190-196.
    [20]刘金兰.外源钙和甜菜碱提高小麦抗旱性研究,[D],山东农业大学,2009(6)
    [21]马淑英,赵明.钙对拟南芥耐盐性的调节.作物学报,2006(11)1706-1711.
    [22]马媛媛,刘子会,郭秀林,李广敏.渗透胁迫下玉米幼叶细胞Ca2+分布及超微结构变化.河北农业大学学报,2007,(30):1-3.
    [23]马贞玉,郭秀林,刘子会,张红梅.渗透胁迫下外源试剂对玉米幼苗微粒体膜Ca2+-ATPase活性的影响.华北农学报,2008(04).
    [24]缪颖,武炳华.植物抗逆性的获得与信息传导.植物生理学通讯,2001,37(1):71-76.
    [25]彭淼等.钙对干旱胁迫下草莓SOD、CAT、PPO活性的影响.长江大学学报(自然科学版),2009,3,(6):11-14.
    [26]商学芳,董树亭,郑世英,王丽燕.玉米种子萌发过程中Na+、K+和Ca2+含量变化与耐盐性的关系.作物学报,2008,34(2):333-336.
    [27]尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性.植物生理学通讯,2003(39)第2期.
    [28]宋秀芬,洪剑明.植物细胞中钙信号的时空多样性与信号转导.植物学通报,2001,18(4):436-444.
    [29]孙芳,夏新莉,尹伟伦.逆境胁迫下ABA与钙信号转导途径之间的相互调控机制.基因组学与应用生物学,2009(2):391-397.
    [30]万丙良,查中萍,戚华雄.钙依赖的蛋白激酶与植物抗逆性.生物技术通报,2009(1):7-10
    [31]王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响.作物学报,2000(11):845-850.
    [32]王凤茹,张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究.电子显微学报,2002(4):106-109.
    [33]王瑞刚.盐诱导氧化胁迫与杨树耐盐性研究,[D];北京林业大学,2007年.
    [34]王瑞云,王玉国.钙在植物生长代谢中的作用.2001,(266):41-43.
    [35]王志强,王春丽,王同朝,林同保.钙离子对盐胁迫小麦幼苗氮代谢的影响.生态学报,2009,(29):4339-4345.
    [36]吴凯,胁迫条件下胡杨与意大利杨细胞内Ca2+水平和Ca2+-ATPase活性的变化,北京林业大学[D],2007.
    [37]谢少平.高等植物钾离子吸收的调节.Plant Physiology Communications,1889(4):1-7.
    [38]徐晓辉,刘延吉,王淼,田晓艳.干旱胁迫对杨树幼苗叶片内ABA和CaM含量的影响.安徽农业科学,2006,34(11):2332-2335.
    [39]杨敏生,李艳华,梁海永,王进茂.盐胁迫下白杨无性系苗木体内离子分配及比较.生态学报.2003,23(2):271-277.
    [40]杨亚军,李利红,赵会杰,马培芳,张超男.Ca2+对高温强光胁迫下小麦叶片光合机构的保护作用.麦类作物学报2008,28(6):1042-1047.
    [41]尹增芳,宁代峰,张菁.Ca2+在杨树韧皮部筛管/伴胞复合体的分布与功能分析.中国细胞生物学学会第九次会员代表大会暨青年学术大会论文摘要集,2007.
    [42]赵险飞,周晓阳.盐胁迫和干旱胁迫条件下细胞内Ca2+水平的变化.河北林果研究,2005(20):228-233.
    [43]张古文,朱月林,杨立飞,刘正鲁,胡春梅.对番茄嫁接苗生物量及离子含量的影响.西北 植物学报,2006,26(10):2069-2074.
    [44]张国增,白玲,宋纯鹏.低温胁迫下拟南芥CBFl超表达突变体胞质中Ca2+浓度的变化.植物学报,2009,44(3):283-289.
    [45]张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制.植物学通报,2007,24(1):114-112.
    [46]张红,简令成,李广敏.低温逆境中黄瓜幼苗细胞内钙离子水平变化的细胞化学研究.实验生物学报,1994,27,419-427.
    [47]张红,简令成.低温逆境中黄瓜幼苗细胞内钙离子水平变化的细胞化学研究.实验生物学报,1994(27):419-423.
    [48]张俊环,张国强,刘悦萍,黄卫东.温度逆境交叉适应过程中葡萄幼苗质膜Ca2+-ATPase的细胞化学定位与活性变化.中国农业科学2006,39(8):1617-1625.
    [49]张乃华,高辉远,邹琪.Ca2+缓解NaCl胁迫引起的玉米光合作用能力下降的作用.植物生态学报2005,29(2)324-330.
    [50]张玉鑫,刘芳,康恩祥,陈年来.NaCl胁迫下甜瓜幼苗离子吸收特性研究.植物营养与肥料学报,2008,14(3):533-539.
    [51]张志刚,尚庆茂,董涛.水杨酸与CaCl2复配诱导黄瓜幼苗抗复合逆境效果研究.内蒙古农业大学学报,2007,(28):125-130.
    [52]郑青松.王仁雷.刘友良.钙对盐胁迫下棉苗离子吸收分配的影响.植物生理学报2001(4).
    [53]朱建军,柏新富,张萍, 庆梅.盐胁迫下大麦根系木质部压力的自调节现象.植物生理与分子生物学学报,2005,31(1):97-102.
    [54]朱晓军,杨劲松,梁永超,娄运生,杨晓英.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503.
    [55]宗会,李明启.钙信使在植物适应非生物逆境中的作用.植物生理学通讯,2001(8):330-335.
    [56]Allen R. Dissection of oxidative stress tolerance using trans-genic plants. Plant Physiology,107,1049-1054.
    [57]Askerlund P,1997. Calmodulin-stimulated Ca2+-ATPase in the vacuolar and plasma membranes in cauliflower. Plant Physiol,114:832-847.
    [58]Balk J, Chew S K, Leaver C J, McCabe P F. The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant Journal, 2003,34:573-583.
    [59]Bonza C, Carnelli A, De Michelis MI, Rasi-Caldgno F,1998. Purification of the plasma membrane Ca2+-ATPase from radish seedlings by calmodulin-agarose affinity chromatography. Plant Physiol,116:845-851.
    [60]Briskin D P,1990. Ca2+-translocating ATPase of the plant plasma membrane. Plant Physiol,94:397-400.
    [61]Bush DR. Calcium regulation in plant cell and its role in signaling. Annu. Rev.Plant Physiol. Plant Mol.Biol.,1995,46:95-122
    [62]Cosgrove DJ, Hedrich R. Stretch-activated chloride,potassium, and calcium channels coexisting in plasma membanes of guard cells of Vicia faba L. Planta,1991,186:143-153.
    [63]Cramer CL Bell JN Ryder TB Bailey JA, Schuch W, Bolwell GP. Clayton H, Knight MR, Knight H et al. Dissection of the qzone-induced calcium signature. Plant J,1999,17: 575-569.
    [64]Desagher S, Martinou J C. Mitochondria as the central control point of apoptosis. Trends in Cell Biology,2000,10:369-377.
    [65]Gelli A, Blumwald E. Calcium retrieval from vacuolar pools. Characterization of a vacuolar calcium channel. Plant Physiol 1993,102:1139-1146.
    [66]Guo YF, Chen FJ, Zhang FS, Mi GH. Auxin transport form shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Science (2005) 169:894-900.
    [67]Hong B A, Ichida S, Wang y, Gens J S, Pickard B G, Harper G F. Identification of a Calmodulin-regulated calcium ATPase in the ER. [J]. Plant Physiol,1999,119:1165 - 1176.
    [68]Hwang I, Ratterman DM, Sze H. Distinction between endoplasmic reticulum-type and plasma membrane-type Ca2+ pumps[J]. Plant physiol,1997,113:535-548.
    [69]Liang F, Cunningham KW, Harper JF, Sze H (1997). ECA1 complements yeast mutants defective in Ca2+pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. Proc Natl Acad Sci USA 94,8579-8584.
    [70]Lopez M V, Satti S M E. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Science,1996,114:19-27.
    [71]Lynch J, Polito VS, Lauchli A.1989. Salinity stress increases cytoplasmic Ca activity in maize root protoplasts. Plant Physiology 90,1271-1274.
    [72]Malho R, Moutinho A, Van der Luit A et al. Spatial characteristics of calcium signaling:The calcium wave as a basic unit in plant cell calcium signaling. Phil Trans R Soc Lond,1998,353:1463-1473.
    [73]Putney J W, Thomas A P. Calcium signaling:double duty for calcium at the mitochondrial uniporter. Current Biology,2006,16(18):R812-R815.
    [74]Qiu, QS., Guo, Y., Quintero Fj., Pardo JM., Schumaker, K. S. and Zhu, J.-K.. Regulation of vacuolar membrane Na+/H+exchange in Arabidopsis thaliana by the SOS pathway. J Biol Chem.2004,279(1):207-215.
    [75]Rasi-Caldgno F, Carnelli A, De Michelis M 1. Identification of the plasma membrane Ca2+pump of higher plants. A comparison with the effect of calmodulin in plasma membrane Ca2+-ATPase and of its autoinhibitory domain[J]. Plant Physiol,1995,108:105-113.
    [76]Science,2007,315(5817):1423-1426.
    [77]Schroeder JI, Thuleau P. Ca2+channels in higher plant cells. Plant Cell,3:555-559. Science,2007,315 (5817):1423-1426.
    [78]Skerlund P,1997. Calmodulin-stimulated Ca2+-ATPase in the vacuolar and plasma membranes in cauliflower. Plant Physiol,114:999-1007.
    [79]The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany,2007, 59 (2):173-178.
    [80]Thomson L T, Xing T, Hall J L, Williams L E. Investigation of the calcium transporting ATPase at the endoplasmic reticulum and plasma membrane of red beet(Bara vulgaris) [J]. Plant Physio,1993,102:553-564.
    [81]Thuleau P,Ward JM, Ranjeva R Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell.EMBO J,1994,13:2970-2975.
    [82]Van Bel A J E, Gaupels F. Pathogen-induced resistance and alarm signals in the phloem. Molecular Plant Pathology,2004,5 (5):495-504.
    [83]White PJ, Broadley MR (2003). Calcium in plants. Ann Bot 92,487-511.
    [84]Xia Y, Liang H M, Wang T M, et al. Effects of NaCl stress on Ca, Mg, Fe, Zn contents of different apple organs. Chinese Journal of applied Ecology,2005,16(3):431-434.
    [84]Yang H M, Wang G X. The regulation between Ca2+concentration in guard cell and stomatal aperture. Plant physiol Commu,2001,37 (3):269-273.
    [86]Yang TB, Poovaiah BW (2003). Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8,505-512.
    [87]Zielinski R E, Calmodulin and calmodulin-binding proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology,49:697-725.
    [88]Zhang WH, Liu YL. Effects of calcium on absorption and distribution of ions and H'-ATPase activity in barely and wheat under salt stress. Acta Bot Sin,35:435-440.
    [89]Zhu J K. Salt and drought stress signal transduction in plant. Ann Rev plant Bio 2002,53:247-273.
    [90]Zhu Y, Tan G E, He C Q, Cui X H, Zhang Q. Efect of salinization on growth and ion homeostasis in seedlings of Festuca arundinacea. Acta Ecologica Sinica,2007,27(12): 5447-5454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700