农杆菌介导的IPT和PEPC基因共转化台粳9号水稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数陆地植物利用C_3光合途径中的核酮糖1,5-二磷酸羧化酶/加氧酶(Rubisco)吸收大气中的CO_2。C_4植物除了C_3途径外,还利用C_4光合循环在Rubisco位点提高CO_2浓度,其中一个关键酶是磷酸烯醇式丙酮酸羧化酶(PEPC),它与CO_2的亲和性比Rubisco高。与C_3植物相比,C_4植物的光合效率提高近2倍。因此长期以来人们期望将C_4特征转移到C_3植物上提高C_3植物的光合性状。
     水稻生育后期叶片过早衰老,导致光合效率降低。有报道指出,延缓一天衰老,生物产量可提高2%。细胞分裂素是一种重要的延缓植物叶片衰老进程的植物激素,异戊烯基转移酶(IPT)基因是其生物合成的关键酶基因。将叶片衰老相关的启动子(SAG1和SAG2)与IPT基因融合构成嵌合基因pSAG12-IPT后再导入水稻中,可以特异性地提高转基因水稻体内的细胞分裂素水平,从而有效地延缓水稻叶片的衰老。
     本研究初步建立了台粳9号的再生体系,采用根癌农杆菌介导的遗传转化系统,将已经构建好的嵌合基因pSAG12-IPT和无标记的pCAMBIA1300-Ubi-PEPC-NOS,通过双菌共转化的方法导入优良水稻品种台粳9号幼胚诱导的胚性愈伤组织中,经潮霉素筛选,抗性愈伤分化成苗,共获得36个抗性愈伤克隆,41株转基因植株,对这些植株进行PCR检测和GUS染色分析,确定其中16株为阳性植株,10株为含IPT基因阳性植株,9株为含PEPC基因阳性植株,3株既含有IPT基因又含有PEPC基因,共转化率达18.75%。
     在水稻遗传转化的同时,将玉米的完整PEPC基因(包括所有外显子、内含子、启动子和终止子,共8.5 kb)构
    
    建到植物双元表达载体上pCAMBIA 1 300。拟在获得无标
    记PEPC基因的水稻植株基础上进行第二次遗传转化。
     通过对同一批16株转基因水稻植株的光合速率进行
    测定,结果表明,在所有转IPT基因的水稻植株中,有8
    株的光合速率比对照高6.26%一73.22%,有2株比对照低
    9.17%和20.67%。在所有转PEPC基因的水稻植株中,有7
    株的光合速率比对照高48.76%~63.46%,有2株比对照低
    16.89%和31.88%。在既含有I户T基因又含有PEPC基因的3
    株转基因水稻的光合速率均比对照高,最高的一株比对
    照高88.65%。
The majority of terrestrial plants assimilate atmospheric CO2 through the C3 photosynthetic pathway, and the enzyme of primary CO2 fixation in this pathway is ribulose 1,5-bisphosphate carboxylase/oxygenase
    (Rubisco). In addition to the C3 pathway, C4 plants use the C4 photosynthetic cycle to elevate the CO2 concentration at the site of Rubisco. One of the key enzymes in C4 pathway is phosphoenolpyruvate carboxylase (PEPC) that has higher affinity for CO2 than Rubisco. The C4 plants have up to twice photosynthetic rate than C3 plants. Consequently, it has long been expected that the transfer of C4 traits to C3 plants could improve the photosynthetic performance of C3 species.
    The photosynthetic rate decreases due to leaf senescence during the late growth period of rice. It is reported that the biomass can be elevated by 2% if the senescence can be delayed for one day. Cytokinin is an important phytohormone involved in delaying senescence of plant leaf, and isopentenyl transferase (IPT) gene encodes the key enzyme that catalyzes cytokinin biosynthesis. Transformation of chimeric gene which consists of leaf-specific promoter (SAG 1 and SAG 2) of the senescence expression and IPT gene can specifically increase cytokinin of transgenic rice and thus delay the leaf senescence effectively.
    The regenerating system of rice cultivar Tai 9 is established in this experiment. Using an Agrobacterium-mediated transformation system, we have
    
    
    introduced both the chimeric gene pSAG12-IPT and marker-free pCAMBIA1300-Ubi-PEPC-NOS into the embryogenic calli of elite japanica rice variety Taijing 9 through co-transformation method. The calli were selected on the NB media plus with hygromycin. And then 36 clones of calli resistant to hygromycin were obtained and differenciated into the plantlets. A total of 41 primary transgenic rice plants were obtained from antibiotic-resistant cells. Sixteen transgenic rice plants were determined to be positive through histochemical GUS assay and PCR assay, and 10 rice plants contained IPT gene and 6 rice plants contained PEPC gene, and 3 plants contained both IPT and PEPC gene among them. The co-transformation rate was 18.75%.
    The maize intact PEPC gene (8.5 kb) including all exons, introns, promoter and terminator was constructed on plant binary expression vector pCAMBIA1300 during rice genetic transformation. The second genetic transformation will be conducted on the basis of obtaining marker-free transgenic rice plant containing PEPC.
    Photosynthetic rates of 16 transgenic rice plants were measured under ambient conditions. The results showed that 8 of them were higher 6.26%~73.22% and 2 of them were lower 9.17% and 20.67% tha.n that of the control among all transgenic rice containing IPT gene, and that 7 of them were higher 48.76%~63.46% and 2 of them were lower 16.89% and 31.88% than that of the control among all transgenic rice containing PEPC gene in terms of photosynthetic rate. The transgenic rice plants containing both IPT and PEPC gene had a higher photosynthetic rate
    
    than that of control and the highest one was improved by 88.65%.
引文
AKIYOSHI D E, KLEE H E, GORDON M, et al. 1984. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci USA, 81:5994-5998
    Amasino RM, Gan S. 1997. Transgenic plants with altered senescence characteristics. Patent Application EP 804066.
    Azumi Y, Watanabe A, 1991. Evidence for a senescence-associated gene induced by darkness. Plant Physiol, 95:577-583.
    Batt T et al. 1975. Changing activities during senescence and its synthesis of photosynthetic enzymes in leaves of iabiate, perilla frutenscens (L.)Britt, J.Exp.Bot, 26:569-579
    Beinsberger S E I,Valcke R L M,Deblaere R Y, et al. 1991. Effects of the introduction of Agrobacterium tumefaciens T-DNA IPT gene in Nicatiana tabaclan L.cv. Petit Havana SRI plant cells. Plant Cell Physiol, 32:489~496
    Birch, R.G. 1997. Plant transformation: problems and strategies for practical application. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:297-326.
    Brace W B, Christensen A H et al. 1989. Photoregulation of a photochrome gene promoter from oat transferred into rice by particle bombardment. Proc. Natl. Acad. Sci USA, 86:9692-9696
    Buchanan-Wollaston V. 1994. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus, Identificatio of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol, 105:839-846
    Callis, J., Fromm, M., and Walbot, Ⅴ. 1987. Introns increase gene
    
    expression in cultured maize cells. Genes Dev. 1:1183-1200
    Clark M S.顾红雅,瞿礼嘉译.1998.植物分子生物学——实验手册[M].北京:高等教育出版社.4~9
    Cogoni, C, Macino, G. 1997. Conservation of transgene-induced post-transcriptional gene silencing in plants and fungi. Trends in Plant Sci. 2:438-443
    Dale EC, Ow DW. 1991 .Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA,88:10558-10562
    Daley M, Knauf VC, Summerfelt KR, Turner JC.1998. Co-Transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 17:489-496
    Davies K M, Grierson D. 1989. Indentification of cDNA clones for tomato (Lycopersicoa esculentum Mill.) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta, 179:73~80
    De Block M, De Brouwer D, Tenning P. 1989.Transformationg of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants.Plant Physiol, 91 : 694-701
    De Block M, Debrouwer D.1991.Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet,82:257-263
    Depicker A,Herman L, Jacobs A, Schell J, Van Montague M.1985.
    
    Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacteriuml plant cell interaction. Mol Gen Genet, 201:477-484
    De Nijs JJM, Broer J, Van Doorn JE. 1997. Plants with delayed or inhibited ripening or senescence. Patent Application EP 784423.
    Edwards GE, Ku MSB, Monson RK.1985. C_4 photosynthesis and its regulation.In Photosynthetic Mechanisms and the Environment, ed. J Barber, NR Baker, pp. 289—327. New York: Elsevier
    Edwards GE, Walker DA. 1983. C_3,C_4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis. Oxford: Blackwell Sci.
    Edwards GE. 1999. Tuning up crop photosynthesis. Nat.Biotechnol.17:22-23
    Fukayama H, Agaric S, Nomura M, Tsuchida H, Ku MSB, et al. 1999. Highlevel expression of maize C_4-specific pyruvate, Pi dikinase and its light activation in transgenic rice plants, Plant Cell Physiol.40:s 116 (Abstr.)
    Fukayama H, Imanari E, Tsuchida H, Izui K, Matsuoka M, et al. 2000. In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell Physiol. 41 :s112 (Abstr.)
    Furbank RT, Hatch MD, Jenkins CLD. 2000. C_4 photosynthesis: mechanism and regulation. See Ref. 9, pp. 435-5722.
    Furbank RT, Taylor W. 1995. Regulation of photosynthesis in C_3 and C_4 plants: a molecular approach. Plant Cell 7:797-807
    Gallardo F, Miginiac-MaslowM, Sangwan R, Decottignies P, Keryer E, et al. 1995. Monocotyledonous C_4 NADPC-malate dehydrogenase is efficiently
    
    synthesized, targeted to chloroplasts and processed to an active form in transgenic plants of the C_3 dicotyledon tobacco. Planta 197:324-32
    Gan S et al. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 270:1986-88
    Gan S et al. 1996. Cytokinins in plant senescence : from spray and pray to clone and play. BioEssays, 18:557-565
    Gan S, Amasino R M. 1997. Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant physiol, 113:313-319
    Gatz C, Lenk I. 1998 Promoters that respond to chemical inducers. Trends in plant Sci, 3:352~358
    Gehlen J, Panstruga R, Smets H, Merkelbach S, Kleines M, et al. 1996. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C_3 plant Solanum tuberosum. Plant Mol. Biol. 32:831-48
    Goldsbrough AP,Lastrella CN,Yoder JI. 1993.Transpositionmediated re-positioning and subsequent elimination of marker genes from transgenic tomatoes.Bio/Technology,11 :1286-1292
    Grimm B. 1998. How to affect the chlorophyll biosynthesis in plants. Patent Application WO 98/24920
    Hatch MD. 1987. C_4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biphys.Acta 895:81-106
    Hatch MD. 1997. Resolving C_4 photosynthesis: trials, tribulations and other unpublished stories. Aust. J. Plant Physiol. 24:413-22
    Hayati R et al. 1995. Carbon and nitrogen supply during seed filling and leaf senescence in soybean. Crop Sci, 35:1063~1069
    Hensel L L et al. 1993. Developmental and age-related processes that influence
    
    the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell, 5:553-564
    Hensel L L, Grbic V, Baungarten D A et al. 1993. Developmental and age-related process that influence the longevity and senescence of photosynthetic tissues in Arabidoposis. Plant Cell, 5:553~564
    Hudspeth RL, Grula JW, Dai Z, Edwards GE, Ku MSB. 1992. Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiol. 98:458-64
    Ishimaru K, Ichikawa H, Matsuoka M, Ohsugi R. 1997. Analysis of a C_4 maize pyruvate, orthophosphate dikinase expressed in C_3 transgenic Arabidopsis plants. Plant Sci. 129:57-64
    Ishimaru K, Ohkawa Y, Ishige T, Tobias DJ, Ohsugi R. 1998. Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C_3 transgenic potatoes with a C_4 maize PPDK gene. Physiol. Plant. 103:340-46
    Jefferson RA. 1987. Assaying chimeric genes in plants: The GUS gene fusion system Plant Mol Biol Rep, 5:387~405
    Jiang C Z et al. 1993. Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing leaf soybean leaves. Plant Physiol, 101:105-112
    John, I, Drake, R, Farrelll, A, Cooper, W, Lee, et al. 1995. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plant: Molecular and physiological analysis. Plant J, 7:483~490
    Junghans H, Metzlaff M. 1990. A simple and rapid method for the preparation of total plant DNA. BioTechniques. 8:1761
    King G A et al. 1993. Similarities in gene expression during the post
    
    harvest-induced senescence of spears and the natural foliar senescence of asparagus. Plant P hysiol, 108:125-128
    Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, et al. 1994. Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res. 3:287-96
    Komari T, Hiei Y,Saito Y, Murai N, Kumashiro T.1996.Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers.Plant J, 10:165-174
    Koziel, M.G., Carozzi, N.B., and Desai, N. 1996. Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol. Biol. 32:393-405.
    Ku MSB, Agaric S, Nomura M, Fukayama H, Tsuchida H, et al. 1999. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat.Biotechnol. 17:76-80
    Ku MSB, Kano-Murakami Y, Matsuoka M. 1996. Evolution and expression of C_4 photosynthesis genes. Plant Physiol. 111:949-57
    Kunkel T, Niu Q W, Chan Y S, et al. 1999. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nattandem Biotechnol, 17:916~919
    Lipka V, H"ausler RE, Rademacher T, Li J, Hirsch H-J, et al. 1999. Solanum tuberosum double transgenic expressing phosphoenolpyruvate carboxylase and NADP malic enzyme display reduced electron requirement for CO_2
    
    fixation. Plant Sci. 144:93-105
    Lohman K N, Gan S, John M C, et al. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant, 92:322~32
    Martineau B, Houck C M, Sheehy R E, et al. et al. 1994. Fruit-specific expression of the A tumefaciens isopentenyl transferase gene in tomato: effects on fruit ripening and defense-related gene expression in leaves. Plant J, 5:11~19
    Matsuoka M, Furbank RT, Fukayama H, Miyao M. 2001. Molecular engineering of C_4 photosynthesis. Annu. Rev. Plant Physiol. Plant Mol.Biol. 52:297-314
    Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y. 1994. The promoters of two carboxylases in a C_4 plant (maize) direct cell-specific, light-regulated expression in a C_3 plant (rice). Plant J.6:311-19
    Matsuoka M, Sanada Y. 1991.Expression of photosynthetic genes from the C_4 plant, maize, in tobacco. Mol. Gen.Genet. 225:411-19
    Matsuoka M, Tada Y, Fujimura T, Kano-Murakami Y. 1993. Tissue-specific light-regulated expression directed by the promoter of a C_4 gene, maize pyruvate, orthophosphate dikinase, in a C_3 plant, rice. Proc. Natl. Acad. Sci. USA 90:9586-90
    Matsuoka M, Tokutomi M, Toki S, Ku MS-B. 1998. C_3 plants expressing photosynthetic enzymes of C_4 plants. Patent Application EP 874056.
    Matsuoka M. and Minami, E. 1989. Complete structure of the gene for phosphoenol pyruvate earboxylase from maize. Eur.J.Biochem. 181:593-598.
    Matzke, M, Matzke, A.M. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107:679-685
    McCourt P, Ghassemian M, Cutler S, Bonetta D. 1999. Stress
    
    tolerance and delayed senescence in plants. Patent Application WO 99/0741.
    Mckenzle M J,Mett V, Reynolds P H S. et al. 1998. Controlled cytokinin production in transgenic tobacco using a copper-inducible promoter. Plant Physiol, 116:969~977
    McKnight TD, Lillis MT, Simpson RB.1987.Segregation of genes transferred to one plant cell from two separate Agrobacterium strains.Plant Mol Biol,8:439-445
    Medford J I, Horgan R, El-Sawi Z, et al. 1989. Alterations of endogenous cytokinin in transgenic plants using a chimeric isopentenyl transferase gene. Plant Cell, 1:403~413
    Nomura M, Sentoku N, Nishimura A, Lin J-H, Honda C, et al. 2000. The evolution of C_4 plants: acquisition of cis-regulatory sequences in the promoter of C_4-type pyruvate, orthophosphate dikinase gene. Plant J. 22:211-21
    Oeller, P W, Wong, L.M,Taylor, L.P, et al. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254, 437~439
    Oh S A, Lee S Y, Chung I K et al. 1996. A senescence-associated gene of Arabidoposis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol, 30:239~254
    Osteryoung KW. 1998. Plant plastid division genes. Patent Application WO 98/00436
    Ou-Lee TM, Turgeon R, Wu R. 1986. Expression of a foreign gene linked to either a plant virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc. Natl Acad Sci USA, 83:6815~6819
    
    
    Richard B Flavell, Ed Dart, Roy L Fuchs, et al. 1992. Selectable marker genes: safe for plants? BIO/TECHNOLOGY, 10: 1441-1444
    Rogers SO, Bendish AJ. 1988. Extraction of DNA from plant tissues. Plant Mol. Biol.Manual A6: 1-10
    Sage RF, Monson RK, et al. 1999. Plant Biology. San Diego: Academic. 596
    Schmulling T, Beinsberger S, De Greef J, et al. 1989. Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic plant tissue. FEBS Lett, 249: 410~406
    Sentoku N, Taniguchi M, Sugiyama T, Ishimaru K, Ohsugi R, et al. 2000. Analysis of transgenic tobacco plants expressing Panicum miliaceum aspartate aminotransferase genes, Plant Cell Rep. 19: 598-603
    Sheriff A, Meyer H, Riedel E, Schmitt JM, Lapke C. 1998. The influence of plant pyruvate, orthophosphate dikinase on a C_3 plant with respect to the intracellular location of the enzyme. Plant Sci. 136: 43-57
    Shimada H, Tada Y, Kawasaki T, et al. 1993. Antisense regulation of the rice waxy gene exprission using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theor Appl Genet, 86: 665~672
    Simpson, G.G., and Filipowicz, W.1996. Splicing of precursors to messenger RNA in higher plants: mechanism, regulation and sub-nuclear organization of the spliceosomal machinery. Plant Mol. Biol. 32: 1-41
    Smart C M, Hosken S E, Thomas H et al. 1995. The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiol Plant, 93: 673-682.
    
    
    Smart C M, Scofield S R, Bevan M W, et al. 1991. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell, 3: 647~656
    Smart C M. 1994. Gene expression during leaf senescence. New Phytol, 126: 419-448
    Smart C, Thomas H, Hosken S, Schuch WW, Drake CR, Grierson D, Farrel A, John I, Greaves JA. 1996. Regulation of senescence. Patent Application EP 719341
    Smigocki A C, Owens L D. 1988. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA, 85: 5131~5135.
    Suzuki S, Murai N, Burnell JN, Arai M. 2000. Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol. 124: 163-72
    Tada Y, Sakamoto M et al. 1990. Efficient transformation of rice cells and production of transgenic rice plants. In: IRRI. Rice genertics Ⅱ: Proceedings of the second international rice genetics symposium. Manila: IRRI, 575~583
    Tagu D, Cretin C, Bergounioux C, Lepiniec L, Gadal P. 1991. Transcription of a Sorghum phosphoenolpyruvate carboxylase gene in transgenic tobacco leaves: maturation of monocot pre-mRNA by dicot cells. Plant Cell Rep. 9: 688-90
    Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H.2000. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211: 265-74
    Thomas K H, Jianying P, Leszek A L et al. 1991. Transformation and redifferentiation of rice protoplasts. Biotechnology Agriculture: Rice
    
    Biotechnology, (6): 157~174
    Toriyama K, Arimoto Y Uchimiya H et al. 1988. Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology, 6: 1072~1074
    Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, et al. 2000. High level expression of C_4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of C_3 plant rice. Plant Cell Physiol.
    Van Loven K, Beinsberger S E I, Valcke R L M, et al. 1993. Morphometric analysis of the growth of P_(hsp70)-IPT transgenic tabacco plants. J Exp Bot, 44: 1671~1678
    Van Staden J et al. 1988. Cytokinins and Senescence. In: Senescence and Aging in Plants. Edited by Nooden LD, Leopold AC, San D, Academic Press.
    Xu X, Li B. 1994. Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep, 13: 237~242
    Yoder JI, Goldsbrough AP. 1994. Transformation systems for generating marker-free transgenic plants. Bio/Technology, 12: 263-267
    Zhang H M, Yang H, Rech et al. 1988. Transgenic rice plant produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep, 7: 379~425
    曹孟良.1999.农杆菌介导的水稻高效遗传转化体系的建立.湖南农业大学学报,25(5):349~356
    程奇等.1993.含真核光诱导启动子的报告基因在水稻幼根中的瞬间表达.中国农业科学,26(2):86
    迟伟,匡廷云,等.2001.转PEPC基因水稻的光合生理特性.植物学报:英文版,43(6):657-660
    
    
    付永彩,丁月云,刘新仿.1998.抑制衰老的嵌合基因在水稻中的转化.科学通报,43:1963~1967
    黄健秋等.2000.根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生.植物学报,42(11):1172-1178
    焦德茂,匡廷云,等.2001.转PEPC基因水稻的光合CO_2同化和叶绿素荧光特性.科学通报.46(5):414-418
    焦德茂,匡廷云,李霞,戈巧英,黄雪清,郝乃斌,白克智.2003.转PEPC基因水稻具有初级CO_2浓缩机制的生理特点.中国科学:C辑.33(1):33-39
    开国银,张磊,张红禹等,2002.无标记(Marker-Free):转基因植物研究的新趋势.植物学报,44(8):883-888
    李宝健,许新萍,石和平等.1991.应用电注射法将外源基因导入水稻种胚及获得及获得转基因水稻植株研究.中国科学(B辑),3:270~275
    李洪清,李美茹,刘鸿先等.2000.木薯抗叶片早衰的基因工程育种.中国科学院研究生院学报,17(2):74-80
    李文彬等.1995.PEG介导遗传转化获得转基因植株.植物学报,37(5):409~412
    刘道宏,1983.植物叶片衰老,植物生理学通讯,(2):14-19
    刘巧泉等.1998.根癌农杆菌介导的水稻高效转化系统的建立.植物生理学报.24:259~271
    沈成国,张福锁,毛达如.1998.植物叶片衰老过程中基因的表达与调控.植物生理与分子生物学,4:304~311
    王德正,焦德茂,等.2002.转玉米pepc基因的杂交水稻亲本的选育.中国农业科学.35(10):1165-1169
    王伟,陈亮,林均民.1998.叶片衰老的特性及分子调控(综述).亚热带植物通讯,27(1):54~60
    
    
    王晓莺,范树国,张明永等.2002.外源IPT对叶片衰老分子调控研究进展(综述).热带亚热带植物学报,10(1):77~82
    徐昌杰,陈昆松,张上隆.1998.乙烯生物合成及其控制研究进展.植物学通报,15:54~61
    许大全.2002.光合作用效率.上海科学技术出版社.163-170
    袁政,潘爱虎,简志英等.2002.转基因(SAG12-IPT)青菜的迟衰特性,植物生理与分子生物学学报,28(5):379~384
    张治礼,张银东,郑学勤.2002.植物叶片抗衰老基因工程研究.华南热带农业大学学报,3:40~43
    郑少清,曾广文.1999.植物叶片衰老及其延缓的分子途径.植物生理学通讯,(35):152~157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700