元蘑多糖活性部位分析及对~(60)Co-γ辐射损伤的防护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电离辐射通过诱导人体产生过量的ROS,攻击机体中的生命物质,如蛋白质、脂质和糖类,引发自由基链状反应,破坏机体内环境稳态。科学研究发现长期暴露在电离辐射环境下能够诱导人体产生各种疾病,如衰老、炎症、心脑血管疾病,甚至引发癌症,筛选出高效低毒的辐射防护剂成为科研工作者研究的热点。据研究报道多糖能够通过提升机体的抗氧化系统和免疫系统的活性,从而发挥辐射防护的作用。因此,本论文以食用菌为研究对象,通过在体外建立多重抗氧化模型,从8种食用菌中筛选出抗氧化活性最强的中性元蘑多糖(NTHSP)作为后续研究目标;采用响应面设计优化NTHSP提取工艺,并对其进行纯化和结构表征;系统的研究了NTHSP在体外和体内对辐射诱导氧化应激的防护功效并揭示其辐射防护作用机制。
     采用酸碱度不同的3种溶剂从产自中国不同地区具有代表性的8种食用菌中分离23种食用菌多糖,成分分析结果表明食用菌多糖样品中仅含有少量蛋白质,无多酚类物质;通过在体外建立抗氧化模型,研究了食用菌多糖对生理性OH·自由基、超氧自由基和非生理性ABTS自由基的清除活性、对脂质过氧化反应的抑制作用以及铁离子还原能力,结果表明NTHSP的抗氧化活性最强,选择其作为后续研究对象。
     采用响应面设计对NTHSP提取工艺进行优化,得到最佳提取条件为:提取温度94℃、提取时间3.0h、液料比110:1和超声功率480W,所得到的多糖提取得率为17.45±0.18%,而通过传统方法提取NTHSP的得率仅为10.21±0.36%;通过离子交换纤维素DEAE-52及葡聚糖凝胶层析Sephadex G-100对NTHSP进行纯化,采用凝胶渗透色谱(GPC)、气质联用(GC-MS)、红外光谱(FT-IR)、核磁共振光谱(NMR)和原子力显微镜(AFM)对其结构进行表征,结果表明NTHSP为一种具有高分支结构的葡聚糖,分子量为8.09×103,由阿拉伯糖:甘露糖:葡萄糖:半乳糖(3.8:15.8:28.4:10.5)组成,主链由→3,6)-α-D-Glcp-(1→组成,其侧链→2)-α-L-Arap-(1→、α-D-Manp-(1→和→6)-β-D-Galp-(1→分别连接在→3,6)-α-D-Glcp-(1→的3位、3位和6位上,其中,→2)-α-L-Arap-(1→和→6)-β-D-Galp-(1→的2位和6位分别连接甲基。
     通过在体外建立辐射诱导细胞氧化损伤模型,研究NTHSP对大鼠外周血白细胞、大鼠脾细胞和人脐静脉内皮细胞ECV304的辐射防护作用,通过对辐射后大鼠脾细胞中SOD和CAT的活性以及MDA的水平进行研究,发现NTHSP能够显著提升辐射后大鼠脾细胞中抗氧化酶SOD和CAT的活性,并降低脾细胞脂质过氧化反应的发生;NTHSP还能够有效的降低外周血白细胞中异形淋巴细胞、带空泡分叶细胞和退行性变细胞的数量,提升正常白细胞的数量,对外周血白细胞起到有效的防护;通过DNA ladder研究NTHSP对辐射后脾细胞DNA的防护作用,结果表明NTHSP对电离辐射诱导脾细胞DNA凋亡起到显著的防护功效,并不同程度的促进了脾细胞和内皮细胞增殖,显著的提升辐射后脾细胞和内皮细胞的存活率。
     通过在体内建立辐射诱导小鼠氧化损伤模型,研究NTHSP的辐射防护途径,结果显示NTHSP能够有效的提升辐射后小鼠体内的抗氧化酶系(SOD、CAT和GSH-Px)的活性和增强抗氧化物质(GSH、VE和铜蓝蛋白)的合成能力,并降低小鼠体内脂质过氧化产物MDA的水平,表明NTHSP能够增强辐射后小鼠抗氧化系统的活性;对辐射后小鼠特异性免疫和非特异性免疫进行研究,发现NTHSP能够有效的提升小鼠血液系统免疫能力、增加小鼠免疫器官指数、促进脾淋巴细胞增殖并增强单核细胞的吞噬作用;通过对小鼠骨髓微核、骨髓染色体畸变和DNA含量进行分析,结果显示NTHSP能够对辐射诱导小鼠产生的遗传毒性起到有效的防护。
     通过免疫组织化学方法和流式细胞仪检测脾细胞周期研究NTHSP的辐射防护机制进行研究,结果发现NTHSP能够有效的抑制电离辐射诱导小鼠脾细胞停滞在G0/G1期,并对电离辐射诱导的脾细胞凋亡起到防护功效,从而恢复细胞的正常生理代谢过程;通过对细胞凋亡线粒体途径相关蛋白表达进行分析,研究发现NTHSP能够通过抑制促凋亡蛋白Bax、细胞色素c和Caspase-3活化亚基的表达,促进抗凋亡蛋白Bcl-2的表达而抑制细胞凋亡,从而对辐射诱导氧化损伤具有防护功效。
     本课题研究发现NTHSP可以降低电离辐射诱导活性氧ROS的产生,调节细胞内氧化还原状态,提升机体免疫活性,通过影响线粒体凋亡信号途径相关蛋白表达而抑制细胞凋亡,从而对辐射诱导的氧化损伤具有显著的防护功效。另外,关于NTHSP对辐射诱导小鼠脾细胞凋亡的其他凋亡途径的影响还需进一步研究和探索。本研究对于揭示电离辐射防护途径具有一定的理论价值,对进一步开发天然高效辐射防护剂具有现实意义。
Ionizing radiation could induce the body to produce excessive of ROS, whichattack the biological substances such as proteins, lipids and carbohydrates that cancause a chain reaction and damage the body homeostasis. Studies have shown thatlong-term exposure to ionizing radiation environment could induce the body toproduce a variety of diseases such as aging, inflammation, cardiovascular andcerebrovascular diseases, and even cancer. Existing chemical radioprotectors werenot suitable for long-term use due to their side effects on normal tissues and organs.Therefore, screening natural radioprotectors with efficiency and low toxicitybecome a focus. This subject sreened neutral polysaccharide of Hohenbueheliaserotina from8kinds of mushroom through multiple antioxidant model in vitro asthe object; optimized the extraction process using RSM and characterized itsstructure, systematically studied the in vivo and in vitro protective effect of NTHSPon radiation induced oxidative stress and revealed the mechanism of radiationprotection; the main findings were as follows:
     23kinds of polysaccharides were isolated from eight kinds of mushrooms withthree kinds of solvents. There was a small amout of protein and no polyphnol inpolysaccharides. By establishing multiple antioxidant model in vitro, we studied thescavenging activity on physiological hydroxyl radicals and non-physiological ABTSradical, as well as lipid peroxidation inhibition activities of23kinds of ediblefungus polysaccharides. The results indicated that HSP had the most significantantioxidant activities in vitro. The ferric reducing ability and superoxide radicalscavenging activity of three kinds of HSP were determined. The results showed thatNTHSP could effectively supply electron and suppress radical chain reaction whichwas the best fraction for antioxidant activities.
     An ultrasonic-assisted procedure for the extraction of polysaccharides from thefruiting body of Hohenbuehelia serotina was investigated using response surfacemethodology. The effect of four factors on the yield of polysaccharides were studied.The optimized conditions for maximum yield were extraction temperature of94°C,extraction time of3.0h, water to raw material ratio of110:1and ultrasonic power of480W. Under these conditions, the experimental yield of polysaccharides was17.45±0.18%, which was higher than the yield of polysaccharide extracted bytraditional method (10.21±0.36%). Then, the structural features of untreatedmaterials, hot water extraction residue and ultrasonic-assisted extraction residuewere compared by SEM. The results indicated that ultrasonic-assisted extraction technology could be an effective and advisable technique. The NTHSP was purifiedby DEAE-52and Sephadex G-100. The structure of NTHSP-A1was characterizedby HPCPC, GC-MS, FT-IR, NMR and AFM. The results suggested that NTHSP wasa glucan with high branches. The molecular weigh is8.09×103. The polysaccharidewas composed of arabinose, mannose, glucose and galactose with a ratio of3.8:15.8:28.4:10.5. The main chain of NTHSP-A1was→3,6)-α-D-Glcp-(1→, andthe side chains→2)-α-L-Arap-(1→, α-D-Manp-(1→and→6)-β-D-Galp-(1→werelinked at3-position,3-position and6-position of→3,6)-α-D-Glcp-(1→respectively.Furthermore, methyl groups were respectively connected with→2)-α-L-Arap-(1→and→6)-β-D-Galp-(1→at2-position and6-position.
     By the established model of radiation inducing oxidative stress in cells, westudied the radioprotective effect of HSPs on rat peripheral blood white blood cells,rat spleen cells and human umbilical vein endothelial cells. The results indicatedthat HSPs were able to reduce the number of atypical lymphocyte, leaf granulocytecotaining vacuoles and degenerative cell, and effectively protect the peripheralblood leukocytes. Three kinds of HSP also could promote the proliferation of ratsplenocytes and endothelial cells, significantly improved the survival of thesplenocytes and endothelial cells after radiation. NTHSP possessed the mostsignificant effect; SOD and CAT activities and MDA level in spleen cells afterradiation were investigated. The results showed that NTHSP could significantlyincrease the activities of SOD and CAT, and inhibit the occurrence of lipidperoxidation. DNA ladder study further demonstrated that NTHSP could play aprotective effect on ionizing radiation induced DNA damage.
     The oxidative damage model of mice induced by60Co-γ radiation wasestablished to investigate the radioprotective effect of NTHSP. The results showedthat NTHSP could effectively increase the activities of SOD, CAT and GSH-Px aswell as enhance the synthesis of antioxidants (GSH, Vitamin E and ceruloplasminprotein) and reduce the level of MDA. The results showed that NTHSP can enhancethe activity of anti-oxidative system after radiation. By studying the specificimmunity and non-specific immunity, it was found that NTHSP could significantlyincrease the immune organ index, promote spleen lymphocyte proliferation andenhance monocyte phagocytosis. By studying the mouse micronucleus,chromosome aberrations and DNA content in mice bone marrow, it was obeservedthat NTHSP could protect DNA against damage induced by radiation.
     The protective mechanism of NTHSP on radiation induced oxidative stress wasanalyzed by the methods of flow cytometry and immunohistochemistry. The resultssuggested that NTHSP could protect splenocytes against the damage caused by radiation through inhibiting more cells arrest into G0/G1phase and restore thephysiology metabolic processes. NTHSP could also play a protective effect for theapoptosis of splenocytes induced by radiation. The related proteins of apoptosis inmitochondrial pathway were determined and the results showed that NTHSP couldsignificantly inhibit the expression of pro-apoptosis protein Bax, Cytochrome c andCaspase-3and as well as promote the expression of anti-apoptosis protein Bcl-2,and then effectively protect the splenocytes away from oxidative damage inducedby radiation.
     These results indicated that NTHSP could prevent the radiation induceddamage by reducing the production of ROS and regulating the redox state, and theneffectively inhibiting the mitochondrial apoptotic signaling pathway. The presentstudy will play an important theoretical and practical role in revealing protectivemechanism of radiation and exploiting the natural and efficient raidioprotectors.
引文
[1]吴永霞,吴皓,狄留庆.动物多糖的化学研究概况[J].时珍国医国药,2006,17(4):640-641.
    [2]孙靖轩,王延锋,王金贺,等.食用菌多糖提取技术研究概况[J].中国食用菌,2012,31(3):6-9.
    [3] Chen H, Ju Y, Li J, et al. Antioxidant activities of polysaccharides from Lentinusedodes and their significance for disease prevention[J]. International Journal ofBiological Macromolecules,2012,50(1):214-218.
    [4] Nguyen T L, Wang D, Hu Y, et al. Immuno-enhancing activity of sulfatedAuricularia auricula polysaccharides[J]. Carbohydrate Polymers,2012,89(4):1117-1122.
    [5] Zhao L, Dong Y, Chen G, et al. Extraction, purification, characterization andantitumor activity of polysaccharides from Ganoderma lucidum[J].Carbohydrate Polymers,2010,80(3):783-789.
    [6] Liu J, Sun Y. Structural analysis of an alkali-extractable and water-solublepolysaccharide (ABP-AW1) from the fruiting bodies of Agaricus blazeiMurill[J]. Carbohydrate Polymers,2011,86(2):429-432.
    [7] Ke, R D, Lin, S F, Chen, Y, et al. Analysis of chemical composition ofpolysaccharides from Poria cocos Wolf and its anti-tumor activity by NMRspectroscopy[J]. Carbohydrate Polymers,2010,80(1):31-34.
    [8] Zhang Z, Lv G, Pan H, et al. Antioxidant and hepatoprotective potential ofendo-polysaccharides from Hericium erinaceus grown on tofu whey[J].International Journal of Biological Macromolecules,2012,51(5):1140-1146.
    [9] Thetsrimuang C, Khammuang S, Chiablaem K, et al. Antioxidant properties andcytotoxicity of crude polysaccharides from Lentinus polychrous Lév[J]. FoodChemistry,2011,128(3):634-639.
    [10] Zhang Z, Wang F, Wang X, et al. Extraction of the polysaccharides from fivealgae and their potential antioxidant activity in vitro[J]. CarbohydratePolymers,2010,82(1):118-121.
    [11] Kozarski M, Klaus A, Niksic M, et al. Antioxidative and immunomodulatingactivities of polysaccharide extracts of the medicinal mushrooms Agaricusbisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus[J].Food Chemistry,2011,129(4):1667-1675.
    [12] Chen H L, Ju Y, Li J J, et al. Antioxidant activities of polysaccharides fromLentinus edodes and their significance for disease prevention[J]. InternationalJournal of Biological Macromolecules,2012,50(1):214-218.
    [13] Wang C, Chen Y, Hu M L, et al. In vitro antioxidant activities of thepolysaccharides from Tricholoma lobayense[J]. International Journal ofBiological Macromolecules,2012,50(3):534-539.
    [14] Hua Y, Yang B, Tang J, et al. Structural analysis of water-solublepolysaccharides in the fruiting body of Dictyophora indusiata and their in vivoantioxidant activities[J]. Carbohydrate Polymers,2012,87(1):343-347.
    [15] Wang J G, Wang Y T, Liu X B, et al. Free radical scavenging andimmunomodulatory activities of Ganoderma lucidum polysaccharidesderivatives[J]. Carbohydrate Polymers,2013,91(1):33-38.
    [16] Zhang H, Wang Z Y, Zhang Z, et al. Purified Auricularia auricular-judaepolysaccharide (AAP I-a) prevents oxidative stress in an ageing mousemodel[J]. Carbohydrate Polymers,2011,84(1):638-648.
    [17] Fan L, Ding S, Ai L, et al. Antitumor and immunomodulatory activity ofwater-soluble polysaccharide from Inonotus obliquus[J]. CarbohydratePolymers,2012,90(2):870-874.
    [18] Zhang M, Cui S W, Cheung P C K, et al. Polysaccharides from mushrooms: areview on their isolation process, structural characteristics and antitumoractivity[J]. Trends in Food Science&Technology,2006,18(1):4-19.
    [19] Sun Y, Sun T W, Wang F, et al. A polysaccharide from the fungi of Huaierexhibits anti-tumor potential and immunomodulatory effects[J]. CarbohydratePolymers,2013,92(1):577-582.
    [20] Yang W J, Pei F, Shi Y, et al. Purification, characterization andanti-proliferation activity of polysaccharides from Flammulina velutipes[J].Carbohydrate Polymers,2012,88(2):474-480.
    [21] Zhao L Y, Dong Y H, Chen G T, et al. Extraction, purification, characterizationand antitumor activity of polysaccharides from Ganoderma lucidum[J].Carbohydrate Polymers,2010,80(3):783-789.
    [22] Fan Y, Hu Y, Wang D, et al. Effects of Astragalus polysaccharide liposome onlymphocyte proliferation in vitro and adjuvanticity in vivo[J]. CarbohydratePolymers,2012,88(1):68-74.
    [23] Wang M, Meng X Y, Yang R L, et al. Cordyceps militaris polysaccharides canenhance the immunity and antioxidation activity in immunosuppressed mice[J].Carbohydrate Polymers,2012,89(2):461-466.
    [24] Luo Q, Sun Q, Wu L S, et al. Structural characterization of animmunoregulatory polysaccharide from the fruiting bodies of Lepistasordida[J]. Carbohydrate Polymers,2012,88(3):820-824.
    [25] Hua Y, Gao Q, Wen L, et al. Structural characterisation of acid-andalkali-soluble polysaccharides in the fruiting body of Dictyophora indusiataand their immunomodulatory activities[J]. Food Chemistry,2012,132(2):739-743.
    [26] Ruan Z, Su J, Dai H C, et al. Characterization and immunomodulatingactivities of polysaccharide from Lentinus edodes[J]. InternationalImmunopharmacology,2005,5(5):811-820.
    [27] Wu D M, Duan W Q, Liu Y, et al. Anti-inflammatory effect of thepolysaccharides of Golden needle mushroom in burned rats[J]. InternationalJournal of Biological Macromolecules,2010,46(1):100-103.
    [28] Hwang H J, Kim S W, Lim J M, et al. Hypoglycemic effect of crudeexopolysaccharides produced by a medicinal mushroom Phellinus baumii instreptozotocin-induced diabetic rats[J]. Life Sciences,2005,76(26):3069-3080.
    [29] Chen J, Mao D, Yong Y, et al. Hepatoprotective and hypolipidemic effects ofwater-soluble polysaccharidic extract of Pleurotus eryngii[J]. Food Chemistry,2012,130(3):687-694.
    [30] Wu Q, Tan Z, Liu H, et al. Chemical characterization of Auricularia auriculapolysaccharides and its pharmacological effect on heart antioxidant enzymeactivities and left ventricular function in aged mice[J]. International Journal ofBiological Macromolecules,2010,46(3):284-288.
    [31] Oliveira E M, Suzuki M F, Nascimento P A D, et al. Evaluation of the effect of90Sr β-radiation on human blood cells by chromosome aberration and singlecell gel electrophoresis (comet assay) analysis[J]. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis,2001,476(1-2):109-121.
    [32] Saberi A, Salari E, Latifi S M. Cytogenetic analysis in lymphocytes fromradiation workers exposed to low level of ionizing radiation in radiotherapy,CT-scan and angiocardiography units[J]. Mutation Research/GeneticToxicology and Environmental Mutagenesis,2013,750(1-2):92-95.
    [33] Begum N, Prasad N R, Kanimozhi G, et al. Apigenin ameliorates gammaradiation-induced cytogenetic alterations in cultured human bloodlymphocytes[J]. Mutation Research/Genetic Toxicology and EnvironmentalMutagenesis,2012,747(1):71-76.
    [34] Ramachandran L, Nair C K K. Protection against genotoxic damages followingwhole body gamma radiation exposure in mice by lipoic acid[J]. MutationResearch/Genetic Toxicology and Environmental Mutagenesis,2011,724(1-2):52-58.
    [35] Hada M, Wu H, Cucinotta F A. mBAND analysis for high-and low-LETradiation-induced chromosome aberrations: A review[J]. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis,2011,711(1-2):187-192.
    [36] Di Toro C G, Di Toro P A, Zieher L M, et al. Sensitivity of cerebellarglutathione system to neonatal ionizing radiation exposure[J].NeuroToxicology,2007,28(3):555-561.
    [37] Thotala D, Chetyrkin S, Hudson B, et al. Pyridoxamine protects intestinalepithelium from ionizing radiation-induced apoptosis[J]. Free Radical Biologyand Medicine,2009,47(6):779-785.
    [38] Bursal E, Gül in. Polyphenol contents and in vitro antioxidant activities oflyophilised aqueous extract of kiwifruit (Actinidia deliciosa)[J]. Food ResearchInternational,2011,44(5):1482-1489.
    [39] Bursal E, K ksal E, Gül in, et al. Antioxidant activity and polyphenol contentof cherry stem (Cerasus avium L.) determined by LC-MS/MS[J]. FoodResearch International,2013,51(1):66-74.
    [40] Yamamori T, Yasui H, Yamazumi M, et al. Ionizing radiation inducesmitochondrial reactive oxygen species production accompanied byupregulation of mitochondrial electron transport chain function andmitochondrial content under control of the cell cycle checkpoint[J]. FreeRadical Biology and Medicine,2012,53(2):260-270.
    [41] Guelman L R, Cabana J I, Pagotto R M d L, et al. Ionizing radiation-induceddamage on developing cerebellar granule cells cultures can be prevented by anearly amifostine post-treatment[J]. International Journal of DevelopmentalNeuroscience,2005,23(1):1-7.
    [42] Andreassen C N, Grau C, Lindegaard J C. Chemical radioprotection: A criticalreview of amifostine as a cytoprotector in radiotherapy[J]. Seminars inRadiation Oncology,2003,13(1):62-72.
    [43] Nguyen T D, Maquart F X, Monboisse J C. Ionizing radiations and collagenmetabolism: from oxygen free radicals to radio-induced late fibrosis[J].Radiation Physics and Chemistry,2005,72(2-3):381-386.
    [44] Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterizationand antioxidant activity in vivo of mycelial polysaccharide from Phellinusbaumii Pilát[J]. Carbohydrate Polymers,2010,81(3):533-540.
    [45] Kim Y, Kim B H, Lee H, et al. Regulation of skin inflammation andangiogenesis by EC-SOD via HIF-1α and NF-κB pathways[J]. Free RadicalBiology and Medicine,2011,51(11):1985-1995.
    [46] Yang J, Dong S, Jiang Q, et al. Characterization and expression of cytoplasmiccopper/zinc superoxide dismutase (CuZn-SOD) gene under temperature andhydrogen peroxide (H2O2) in rotifer Brachionus calyciflorus[J]. Gene,2013,518(2):388-396.
    [47] Nicholls P. Classical catalase: Ancient and modern[J]. Archives ofBiochemistry and Biophysics,2012,525(2):95-101.
    [48] Shivakumar A, Nagaraja P, Chamaraja N A, et al. Determination of catalaseactivity using chromogenic probe involving iso-nicotinicacidhydrazide andpyrocatechol[J]. Journal of Biotechnology,2011,155(4):406-411.
    [49] Naz ro lu M, Akku S, elik H. Levels of lipid peroxidation and antioxidantvitamins in plasma and erythrocytes of patients with ankylosing spondylitis[J].Clinical Biochemistry,2011,44(17-18):1412-1415.
    [50] Mahadik S P, Mukherjee S. Free radical pathology and antioxidant defense inschizophrenia: A review[J]. Schizophrenia Research,1996,19(1):1-17.
    [51] Kumar V, Rani A, Dixit A K, et al. A comparative assessment of total phenoliccontent, ferric reducing-anti-oxidative power, free radical-scavenging activity,vitamin C and isoflavones content in soybean with varying seed coat colour[J].Food Research International,2010,43(1):323-328.
    [52] Ryan M J, Dudash H J, Docherty M, et al. Vitamin E and C supplementationreduces oxidative stress, improves antioxidant enzymes and positive musclework in chronically loaded muscles of aged rats[J]. Experimental Gerontology,2010,45(11):882-895.
    [53] Barros L, Ferreira M-J, Queirós B, et al. Total phenols, ascorbic acid,β-carotene and lycopene in Portuguese wild edible mushrooms and theirantioxidant activities[J]. Food Chemistry,2007,103(2):413-419.
    [54] Valdovinos-Flores C, Gonsebatt M E. The role of amino acid transporters inGSH synthesis in the blood-brain barrier and central nervous system[J].Neurochemistry International,2012,61(3):405-414.
    [55] Limon-Pacheco J, Gonsebatt M E. The role of antioxidants andantioxidant-related enzymes in protective responses to environmentallyinduced oxidative stress[J]. Mutation Research-Genetic Toxicology andEnvironmental Mutagenesis,2009,674(1-2):137-147.
    [56] Saini D K, Saini M R. Evaluation of radioprotective efficacy and possiblemechanism of action of Aloe gel[J]. Environmental Toxicology andPharmacology,2011,31(3):427-435.
    [57] Lu X, Wang Y, Zhang Z. Radioprotective activity of betalains from red beets inmice exposed to gamma irradiation[J]. European Journal of Pharmacology,2009,615(1-3):223-227.
    [58] Yuan H, Song J, Li X, et al. Immunomodulation and antitumor activity ofκ-carrageenan oligosaccharides[J]. Cancer Letters,2006,243(2):228-234.
    [59] González-Fernández á, Faro J, Fernández C. Immune responses topolysaccharides: Lessons from humans and mice[J]. Vaccine,2008,26(3):292-300.
    [60] Saha P, Mukhopadhyay D, Chatterjee M. Immunomodulation bychemotherapeutic agents against Leishmaniasis[J]. InternationalImmunopharmacology,2011,11(11):1668-1679.
    [61] Moradali M F, Mostafavi H, Ghods S, et al. Immunomodulating and anticanceragents in the realm of macromycetes fungi (macrofungi)[J]. InternationalImmunopharmacology,2007,7(6):701-724.
    [62] Martin L M, Marples B, Coffey M, et al. DNA mismatch repair and the DNAdamage response to ionizing radiation: Making sense of apparently conflictingdata[J]. Cancer Treatment Reviews,2010,36(7):518-527.
    [63] Dextraze M E, Gantchev T, Girouard S, et al. DNA interstrand cross-linksinduced by ionizing radiation: An unsung lesion[J]. MutationResearch/Reviews in Mutation Research,2010,704(1-3):101-107.
    [64] Harper J V, Anderson J A, O'Neill P. Radiation induced DNA DSBs:Contribution from stalled replication forks?[J]. DNA Repair,2010,9(8):907-913.
    [65] Duan Y, Zhang H, Xie B, et al. Whole body radioprotective activity of anacetone-water extract from the seedpod of Nelumbo nucifera Gaertn.seedpod[J]. Food and Chemical Toxicology,2010,48(12):3374-3384.
    [66] Paul P, Bansal P, Nayak P G, et al. Polyphenolic fraction of Pilea microphylla(L.) protects Chinese hamster lung fibroblasts against γ-radiation-inducedcytotoxicity and genotoxicity[J]. Environmental Toxicology and Pharmacology,2012,33(1):107-119.
    [67] Liang X, Xu K, Xu Y, et al. B1-induced caspase-independent apoptosis inMCF-7cells is mediated by down-regulation of Bcl-2via p53binding to P2promoter TATA box[J]. Toxicology and Applied Pharmacology,2011,256(1):52-61.
    [68] Yang T, Zhu H, Zhou H, et al. Rice protein hydrolysate attenuates hydrogenperoxide induced apoptosis of myocardiocytes H9c2through the Bcl-2/Baxpathway[J]. Food Research International,2012,48(2):736-741.
    [69] Chen L. Okadaic acid induces apoptosis through the PKR, NF-κB and caspasepathway in human osteoblastic osteosarcoma MG63cells[J]. Toxicology inVitro,2011,25(8):1796-1802.
    [70] Nagaraj N S, Anilakumar K R, Singh O V. Diallyl disulfide causescaspase-dependent apoptosis in human cancer cells through a Bax-triggeredmitochondrial pathway[J]. The Journal of Nutritional Biochemistry,2010,21(5):405-412.
    [71] Wang Q F, Chen J C, Hsieh S J, et al. Regulation of Bcl-2family molecules andactivation of caspase cascade involved in gypenosides-induced apoptosis inhuman hepatoma cells[J]. Cancer Letters,2002,183(2):169-178.
    [72] Zhao L, Wang Y, Shen H L, et al. Structural characterization andradioprotection of bone marrow hematopoiesis of two novel polysaccharidesfrom the root of Angelica sinensis (Oliv.) Diels[J]. Fitoterapia,2012,83(8):1712-1720.
    [73] Li X L, Zhou A G, Li X M. Inhibition of Lycium barbarum polysaccharides andGanoderma lucidum polysaccharides against oxidative injury induced byγ-irradiation in rat liver mitochondria[J]. Carbohydrate Polymers,2007,69(1):172-178.
    [74] Pillai T G, Nair C K K, Janardhanan K K. Enhancement of repair of radiationinduced DNA strand breaks in human cells by Ganoderma mushroompolysaccharides[J]. Food Chemistry,2010,119(3):1040-1043.
    [75] Saxena S, Hajare S N, More V, et al. Antioxidant and radioprotective propertiesof commercially grown litchi (Litchi chinensis) from India[J]. Food Chemistry,2011,126(1):39-45.
    [76] Dixit A K, Bhatnagar D, Kumar V, et al. Antioxidant potential andradioprotective effect of soy isoflavone against gamma irradiation inducedoxidative stress[J]. Journal of Functional Foods,2012,4(1):197-206.
    [77] Qi L, Liu C Y, Wu W Q, et al. Protective effect of flavonoids from Astragaluscomplanatus on radiation induced damages in mice[J]. Fitoterapia,2011,82(3):383-392.
    [78] Mutlu-Türko lu ü, Erbil Y, ztezcan S, et al. The effect of selenium and/orvitamin E treatments on radiation-induced intestinal injury in rats[J]. LifeSciences,2000,66(20):1905-1913.
    [79] Ramos F M D, Pontual M L D, de Almeida S M, et al. Evaluation ofradioprotective effect of vitamin E in salivary dysfunction in irradiated rats[J].Archives of Oral Biology,2006,51(2):96-101.
    [80] Konopacka M, Rzeszowska-Wolny J. Antioxidant Vitamins C, E andβ-carotene reduce DNA damage before as well as after γ-ray irradiation ofhuman lymphocytes in vitro[J]. Mutation Research/Genetic Toxicology andEnvironmental Mutagenesis,2001,491(1-2):1-7.
    [81] Peker S, Abacioglu U, Sun I, et al. Prophylactic effects of magnesium andvitamin E in rat spinal cord radiation damage: evaluation based on lipidperoxidation levels[J]. Life Sciences,2004,75(12):1523-1530.
    [82] Güney, Cumao lu A, ztürk G, et al. Comparison of melatonin effect onoxidant status and antioxidant capacity in liver and heart of young and agedrats[J]. International Journal of Gerontology,2013,7(1):45-49.
    [83] Maldonado M D, Manfredi M, Ribas-Serna J, et al. Melatonin administratedimmediately before an intense exercise reverses oxidative stress, improvesimmunological defenses and lipid metabolism in football players[J].Physiology&Behavior,2012,105(5):1099-1103.
    [84] El-Missiry M A, Fayed T A, El-Sawy M R, et al. Ameliorative effect ofmelatonin against gamma-irradiation-induced oxidative stress and tissueinjury[J]. Ecotoxicology and Environmental Safety,2007,66(2):278-286.
    [85] Shirazi A, Mihandoost E, Mohseni M, et al. Radio-protective effects ofmelatonin against irradiation-induced oxidative damage in rat peripheralblood[J]. Physica Medica-European Journal of Medical Physics,2013,29(1):65-74.
    [86] Assayed M E, El-Aty A M A. Protection of rat chromosomes by melatoninagainst gamma radiation-induced damage[J]. Mutation Research-GeneticToxicology and Environmental Mutagenesis,2009,677(1-2):14-20.
    [87] Sisto M, Lisi S, D’Amore M, et al. Saponins from Tribulus terrestris L. protecthuman keratinocytes from UVB-induced damage[J]. Journal of Photochemistryand Photobiology B: Biology,2012,117:193-201.
    [88] Kalpana K B, Devipriya N, Thayalan K, et al. Protection against X-rayradiation-induced cellular damage of human peripheral blood lymphocytes byan aminothiazole derivative of dendrodoine[J]. Chemico-BiologicalInteractions,2010,186(3):267-274.
    [89] Kanter M, Akpolat M. Vitamin C protects against ionizing radiation damage togoblet cells of the ileum in rats[J]. Acta Histochemica,2008,110(6):481-490.
    [90] Wu Z, Li H, Tu D, et al. Extraction optimization, preliminary characterization,and in vitro antioxidant activities of crude polysaccharides from fingercitron[J]. Industrial Crops and Products,2013,44:145-151.
    [91] Chen R Z, Li S Z, Liu C M, et al. Ultrasound complex enzymes assistedextraction and biochemical activities of polysaccharides from Epimediumleaves[J]. Process Biochemistry,2012,47(12):2040-2050.
    [92] Zhang J, Jia S, Liu Y, et al. Optimization of enzyme-assisted extraction of theLycium barbarum polysaccharides using response surface methodology[J].Carbohydrate Polymers,2011,86(2):1089-1092.
    [93] Yin X, You Q, Jiang Z. Optimization of enzyme assisted extraction ofpolysaccharides from Tricholoma matsutake by response surfacemethodology[J]. Carbohydrate Polymers,2011,86(3):1358-1364.
    [94] Chen W, Wang W P, Zhang H S, et al. Optimization of ultrasonic-assistedextraction of water-soluble polysaccharides from Boletus edulis mycelia usingresponse surface methodology[J]. Carbohydrate Polymers,2012,87(1):614-619.
    [95] Yan Y L, Yu C H, Chen J, et al. Ultrasonic-assisted extraction optimized byresponse surface methodology, chemical composition and antioxidant activityof polysaccharides from Tremella mesenterica[J]. Carbohydrate Polymers,2011,83(1):217-224.
    [96] Ying Z, Han X, Li J. Ultrasound-assisted extraction of polysaccharides frommulberry leaves[J]. Food Chemistry,2011,127(3):1273-1279.
    [97] Zheng X, Yin F, Liu C, et al. Effect of Process Parameters of MicrowaveAssisted Extraction (MAE) on Polysaccharides Yield from Pumpkin[J]. Journalof Northeast Agricultural University (English edition),2011,18(2):79-86.
    [98] Chen Y, Zhao L, Liu B, et al. Application of Response Surface Methodology toOptimize Microwave-assisted Extraction of Polysaccharide from Tremella[J].Physics Procedia,2012,24, Part A:429-433.
    [99] Wang J, Zhang J, Zhao B, et al. A comparison study on microwave-assistedextraction of Potentilla anserina L. polysaccharides with conventional method:Molecule weight and antioxidant activities evaluation[J]. CarbohydratePolymers,2010,80(1):84-93.
    [100] Fu Y J, Liu W, Zu Y G, et al. Breaking the spores of the fungus Ganodermalucidum by supercritical CO2[J]. Food Chemistry,2009,112(1):71-76.
    [101] Hung C F, Hsu B Y, Chang S C, et al. Antiproliferation of melanoma cells bypolysaccharide isolated from Zizyphus jujuba[J]. Nutrition,2012,28(1):98-105.
    [102] Zhao Q, Xie B, Yan J, et al. In vitro antioxidant and antitumor activities ofpolysaccharides extracted from Asparagus officinalis[J]. CarbohydratePolymers,2012,87(1):392-396.
    [103] Xie J H, Shen M Y, Nie S P, et al. Decolorization of polysaccharides solutionfrom Cyclocarya paliurus (Batal.) Iljinskaja using ultrasound/H2O2process[J].Carbohydrate Polymers,2011,84(1):255-261.
    [104] Suárez E R, Kralovec J A, Bruce Grindley T. Isolation of phosphorylatedpolysaccharides from algae: the immunostimulatory principle of Chlorellapyrenoidosa[J]. Carbohydrate Research,2010,345(9):1190-1204.
    [105] Hahn T, Lang S, Ulber R, et al. Novel procedures for the extraction offucoidan from brown algae[J]. Process Biochemistry,2012,47(12):1691-1698.
    [106] Pan Y, Hao Y, Chu T W, et al. Ultrasonic-assisted extraction, chemicalcharacterization of polysaccharides from Yunzhi mushroom and its effect onosteoblast cells[J]. Carbohydrate Polymers,2010,80(3):922-926.
    [107] Yin J Y, Chan B C L, Yu H, et al. Separation, structure characterization,conformation and immunomodulating effect of a hyperbranched heteroglycanfrom Radix Astragali[J]. Carbohydrate Polymers,2012,87(1):667-675.
    [108] Kuang H, Xia Y, Liang J, et al. Structural characteristics of a hyperbranchedacidic polysaccharide from the stems of Ephedra sinica and its effect on T-cellsubsets and their cytokines in DTH mice[J]. Carbohydrate Polymers,2011,86(4):1705-1711.
    [109] Li X Y, Wang Z Y, Wang L, et al. Ultrasonic-assisted extraction ofpolysaccharides from Hohenbuehelia serotina by response surfacemethodology[J]. International Journal of Biological Macromolecules,2012,51(4):523-530.
    [110] Tian Y, Zeng H, Xu Z, et al. Ultrasonic-assisted extraction and antioxidantactivity of polysaccharides recovered from white button mushroom (Agaricusbisporus)[J]. Carbohydrate Polymers,2012,88(2):522-529.
    [111] Yuen S N, Choi S M, Phillips D L, et al. Raman and FT-IR spectroscopicstudy of carboxymethylated non-starch polysaccharides[J]. Food Chemistry,2009,114(3):1091-1098.
    [112] Leeuwen S S, Kralj S, van Geel-Schutten I H, et al. Structural analysis of theα-d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain35-5glucansucrase GTFA enzyme[J]. Carbohydrate Research,2008,343(7):1251-1265.
    [113] Cheng H N, Neiss T G. Solution NMR spectroscopy of foodpolysaccharides[J]. Polymer Reviews,2012,52(2):81-114.
    [114] Zhang A Q, Xiao N N, Deng Y L, et al. Purification and structuralinvestigation of a water-soluble polysaccharide from Flammulina velutipes[J].Carbohydrate Polymers,2012,87(3):2279-2283.
    [115] Li B, Dobruchowska J M, Gerwig G J, et al. Structural investigation ofwater-soluble polysaccharides extracted from the fruit bodies of Coprinuscomatus[J]. Carbohydrate Polymers,2013,91(1):314-321.
    [116] Zhang H, Li W J, Nie S P, et al. Structural characterisation of a novelbioactive polysaccharide from Ganoderma atrum[J]. Carbohydrate Polymers,2012,88(3):1047-1054.
    [117] Cox A D, Brisson J R, Varma V, et al. Structural analysis of thelipopolysaccharide from Vibrio cholerae O139[J]. Carbohydrate Research,1996,290(1):43-58.
    [118]王德遵,张桂芳.[J].牡丹江师范学院学报(自然科学版),2010,(3):24-25.
    [119]马岩,张锐,于小风,等.黄蘑多糖提取物的抗肝癌作用及其机制[J].吉林大学学报(医学版),2005,31(6):886-889.
    [120]杨立红,刘林德,姜华,等.野生元蘑多糖的分离鉴定及其清除氧自由基作用[J].食品科学,2007,28(11):81-85.
    [121]朱惠彬,朱顺星,程纯.黄蘑多糖对H22荷瘤小鼠肿瘤生长及其VEGF表达的影响[J].中国医药导报,2011,(29):29-31.
    [122]马岩,马颖哲,张家颖,等.黄蘑多糖Fb对小鼠免疫功能的调节作用[J].吉林大学学报(医学版),2005,31(5):692-695.
    [123]李晓林,孙国光,马岩.黄蘑多糖不同组分对D-半乳糖致衰老模型小鼠SOD、MDA的影响[J].中国老年学杂志,2006,26(1):86-88.
    [124] Zou Y F, Chen X F, Yang W Y, et al. Response surface methodology foroptimization of the ultrasonic extraction of polysaccharides from Codonopsispilosula Nannf.var.modesta L.T.Shen[J]. Carbohydrate Polymers,2011,84(1):503-508.
    [125] Ma X, Wu H, Liu L, et al. Polyphenolic compounds and antioxidant propertiesin mango fruits[J]. Scientia Horticulturae,2011,129(1):102-107.
    [126] Xu R B, Yang X, Wang J, et al. Chemical Composition and AntioxidantActivities of Three Polysaccharide Fractions from Pine Cones[J]. InternationalJournal of Molecular Sciences,2012,13(11):14262-14277.
    [127] Mateos-Aparicio I, Mateos-Peinado C, Jiménez-Escrig A, et al.Multifunctional antioxidant activity of polysaccharide fractions from thesoybean byproduct okara[J]. Carbohydrate Polymers,2010,82(2):245-250.
    [128] Barahona T, Chandía N P, Encinas M V, et al. Antioxidant capacity of sulfatedpolysaccharides from seaweeds. A kinetic approach[J]. Food Hydrocolloids,2011,25(3):529-535.
    [129] Su X Y, Wang Z Y, Liu J R. In vitro and in vivo antioxidant activity of Pinuskoraiensis seed extract containing phenolic compounds[J]. Food Chemistry,2009,117(4):681-686.
    [130] Tseng Y H, Yang J H, Mau J L. Antioxidant properties of polysaccharidesfrom Ganoderma tsugae[J]. Food Chemistry,2008,107(2):732-738.
    [131] Zhang Y, Wang Z Z. Phenolic composition and antioxidant activities of twoPhlomis species: A correlation study[J]. Comptes Rendus Biologies,2009,332(9):816-826.
    [132] Fan Z L, Wang Z Y, Liu J R. Cold-field fruit extracts exert differentantioxidant and antiproliferative activities in vitro[J]. Food Chemistry,2011,129(2):402-407.
    [133] Yi Y, Zhang M W, Liao S T, et al. Structural features and immunomodulatoryactivities of polysaccharides of longan pulp[J]. Carbohydrate Polymers,2012,87(1):636-643.
    [134] Rao B N, Archana P R, Aithal B K, et al. Protective effect of Zingerone, adietary compound against radiation induced genetic damage and apoptosis inhuman lymphocytes[J]. European Journal of Pharmacology,2011,657(1-3):59-66.
    [135] Kedia-Mokashi N, Makawy A E L, Saxena M, et al. Chromosomal aberrationin the post-implantation embryos sired by tamoxifen treated male rats[J].Mutation Research-Genetic Toxicology and Environmental Mutagenesis,2010,703(2):169-173.
    [136] Qi L, Liu C Y, Wu W Q, et al. Protective effect of flavonoids from Astragaluscomplanatus on radiation induced damages in mice[J]. Fitoterapia,2011,82(3):383-392.
    [137] Wei D F, Wei Y X, Cheng W D, et al. Sulfated modification, characterizationand antitumor activities of Radix hedysari polysaccharide[J]. InternationalJournal of Biological Macromolecules,2012,51(4):471-476.
    [138] Chang S T, Buswell J A. Mushroom nutriceuticals[J]. World Journal ofMicrobiology&Biotechnology,1996,12(5):473-476.
    [139] Zhang W, Wang J, Jin W, et al. The antioxidant activities and neuroprotectiveeffect of polysaccharides from the starfish Asterias rollestoni[J]. CarbohydratePolymers,2013,95(1):9-15.
    [140] Tian L, Zhao Y, Guo C, et al. A comparative study on the antioxidantactivities of an acidic polysaccharide and various solvent extracts derived fromherbal Houttuynia cordata[J]. Carbohydrate Polymers,2011,83(2):537-544.
    [141] Moon J K, Shibamoto T. Antioxidant Assays for Plant and FoodComponents[J]. Journal of Agricultural and Food Chemistry,2009,57(5):1655-1666.
    [142] Osman A M, Wong K K Y, Fernyhough A. ABTS radical-driven oxidation ofpolyphenols: Isolation and structural elucidation of covalent adducts[J].Biochemical and Biophysical Research Communications,2006,346(1):321-329.
    [143] Agrawal S, Kulkarni G T, Sharma V N. A comparative study on theantioxidant activity of methanolic extracts of Terminalia paniculata andMadhuca longifolia[J]. Free Radicals and Antioxidants,2011,1(4):62-68.
    [144] Chen J, Zhang T, Jiang B, et al. Characterization and antioxidant activity ofGinkgo biloba exocarp polysaccharides[J]. Carbohydrate Polymers,2012,87(1):40-45.
    [145] Zhang Z S, Wang X M, Yu S C, et al. Isolation and antioxidant activities ofpolysaccharides extracted from the shoots of Phyllostachys edulis (Carr.)[J].International Journal of Biological Macromolecules,2011,49(4):454-457.
    [146] Liu C H, Wang C H, Xu Z L, et al. Isolation, chemical characterization andantioxidant activities of two polysaccharides from the gel and the skin of Aloebarbadensis Miller irrigated with sea water[J]. Process Biochemistry,2007,42(6):961-970.
    [147] Lichtenstern C, Hofer S, M llers A, et al. Lipid peroxidation in acuterespiratory distress syndrome and liver failure[J]. Journal of Surgical Research,2011,168(2):243-252.
    [148] Reed T T. Lipid peroxidation and neurodegenerative disease[J]. Free RadicalBiology and Medicine,2011,51(7):1302-1319.
    [149] Jiang C, Wang M, Liu J, et al. Extraction, preliminary characterization,antioxidant and anticancer activities in vitro of polysaccharides from Cyclinasinensis[J]. Carbohydrate Polymers,2011,84(3):851-857.
    [150] Zha X Q, Wang J H, Yang X F, et al. Antioxidant properties of polysaccharidefractions with different molecular mass extracted with hot-water from ricebran[J]. Carbohydrate Polymers,2009,78(3):570-575.
    [151] Andriamanantoanina H, Chambat G, Rinaudo M. Fractionation of extractedMadagascan Gracilaria corticata polysaccharides: Structure and properties[J].Carbohydrate Polymers,2007,68(1):77-88.
    [152] Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharidesfrom dried longan pulp using response surface methodology[J]. CarbohydratePolymers,2010,80(1):19-25.
    [153] Shao Q, Deng Y, shen H, et al. Optimization of polysaccharides extractionfrom Tetrastigma hemsleyanum Diels et Gilg using response surfacemethodology[J]. International Journal of Biological Macromolecules,2011,49(5):958-962.
    [154] Li J W, Ding S D, Ding X L. Optimization of the ultrasonically assistedextraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao[J]. Journalof Food Engineering,2007,80(1):176-183.
    [155] Luo Q, Sun Q, Wu L, et al. Structural characterization of animmunoregulatory polysaccharide from the fruiting bodies of Lepistasordida[J]. Carbohydrate Polymers,2012,88(3):820-824.
    [156]李世刚.红芪多糖的纯化与抗癌作用及其机制研究[D]:兰州:兰州大学学位论文,2007:33-37.
    [157] Guo S, Mao W, Li Y, et al. Preparation, structural characterization andantioxidant activity of an extracellular polysaccharide produced by the fungusOidiodendron truncatum GW[J]. Process Biochemistry,2013,48(3):539-544.
    [158] Wang R, Chen P, Jia F, et al. Characterization and antioxidant activities ofpolysaccharides from Panax japonicus C.A. Meyer[J]. Carbohydrate Polymers,2012,88(4):1402-1406.
    [159] Glushka J N, Terrell M, York W S, et al. Primary structure of the2-O-methyl-α-l-fucose-containing side chain of the pectic polysaccharide,rhamnogalacturonan II[J]. Carbohydrate Research,2003,338(4):341-352.
    [160] Yu R, Yang W, Song L, et al. Structural characterization and antioxidantactivity of a polysaccharide from the fruiting bodies of cultured Cordycepsmilitaris[J]. Carbohydrate Polymers,2007,70(4):430-436.
    [161] Liu J, Sun Y, Yu H, et al. Purification and identification of one glucan fromgolden oyster mushroom (Pleurotus citrinopileatus (Fr.) Singer)[J].Carbohydrate Polymers,2012,87(1):348-352.
    [162] Tao F, Zheng Biao G, Zheng Yu J, et al. Isolation and characterization of anacidic polysaccharide from Mesona Blumes gum[J]. Carbohydrate Polymers,2008,71(2):159-169.
    [163] Nandan C K, Sarkar R, Bhanja S K, et al. Structural characterization of aheteropolysaccharide isolated from the rhizomes of Curcuma zedoaria (Sati)[J].Carbohydrate Polymers,2011,86(3):1252-1259.
    [164] Pan D, Wang L, Chen C, et al. Structure characterization of a novel neutralpolysaccharide isolated from Ganoderma lucidum fruiting bodies[J]. FoodChemistry,2012,135(3):1097-1103.
    [165] Zha X Q, Luo J P, Luo S Z, et al. Structure identification of a newimmunostimulating polysaccharide from the stems of Dendrobiumhuoshanense[J]. Carbohydrate Polymers,2007,69(1):86-93.
    [166] Nandi A K, Samanta S, Sen I K, et al. Structural elucidation of animmunoenhancing heteroglycan isolated from Russula albonigra (Krombh.)Fr[J]. Carbohydrate Polymers,2013,94(2):918-926.
    [167]张华林.南药巴戟天活性多糖及小分子成分的研究[D]:广州:中山大学学位论文,2009,98-100.
    [168] Wyffels J T, Luer C A, Walsh C J, et al. In vivo exposure of clearnose skates,Raja eglanteria, to ionising X-radiation: Acute effects on the peripheral blood,spleen, and epigonal and Leydig organs[J]. Fish&Shellfish Immunology,2007,23(2):401-418.
    [169] Xia L, Liu X, Guo H, et al. Partial characterization and immunomodulatoryactivity of polysaccharides from the stem of Dendrobium officinale (Tiepishihu)in vitro[J]. Journal of Functional Foods,2012,4(1):294-301.
    [170] Yu J, Piao B K, Pei Y X, et al. Protective effects of tetrahydropalmatineagainst γ-radiation induced damage to human endothelial cells[J]. LifeSciences,2010,87(1-2):55-63.
    [171] Cao G, Cai H, Cai B, et al. Effect of5-hydroxymethylfurfural derived fromprocessed Cornus officinalis on the prevention of high glucose-inducedoxidative stress in human umbilical vein endothelial cells and its mechanism[J].Food Chemistry,140(1-2):273-279.
    [172] Checker R, Chatterjee S, Sharma D, et al. Immunomodulatory andradioprotective effects of lignans derived from fresh nutmeg mace (Myristicafragrans) in mammalian splenocytes[J]. International Immunopharmacology,2008,8(5):661-669.
    [173] Zhang Y, Sun G, Yang M, et al. Chronic accumulation of cadmium and itseffects on antioxidant enzymes and malondialdehyde in Oxya chinensis(Orthoptera: Acridoidea)[J]. Ecotoxicology and Environmental Safety,2011,74(5):1355-1362.
    [174] Chen, Y G, Shen, Z J, Chen X P. Modulatory effect of Ganoderma lucidumpolysaccharides on serum antioxidant enzymes activities in ovarian cancerrats[J]. Carbohydrate Polymers,2009,78(2):258-262.
    [175] Kozarski M, Klaus A, Nik i M, et al. Antioxidative activities and chemicalcharacterization of polysaccharide extracts from the widely used mushroomsGanoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametesversicolor[J]. Journal of Food Composition and Analysis,2012,26(1-2):144-153.
    [176] Dmitriev L F, Titov V N. Lipid peroxidation in relation to ageing and the roleof endogenous aldehydes in diabetes and other age-related diseases[J]. AgeingResearch Reviews,2010,9(2):200-210.
    [177] Gulec M, Ozkol H, Selvi Y, et al. Oxidative stress in patients with primaryinsomnia[J]. Progress in Neuro-Psychopharmacology&Biological Psychiatry,2012,37(2):247-251.
    [178] Ramachandran L, Nair C K K. Prevention of γ-radiation induced cellulargenotoxicity by tempol: Protection of hematopoietic system[J]. EnvironmentalToxicology and Pharmacology,2012,34(2):253-262.
    [179] Chen X, Nie W, Yu G, et al. Antitumor and immunomodulatory activity ofpolysaccharides from Sargassum fusiforme[J]. Food and Chemical Toxicology,2012,50(3-4):695-700.
    [180] Pecaut M J, Gridley D S, Smith A L, et al. Dose and dose rate effects ofwhole-body proton-irradiation on lymphocyte blastogenesis and hematologicalvariables: Part II[J]. Immunology Letters,2002,80(1):67-73.
    [181] Marciani D J, Press J B, Reynolds R C, et al. Development of semisynthetictriterpenoid saponin derivatives with immune stimulating activity[J]. Vaccine,2000,18(27):3141-3151.
    [182] Jin M, Huang Q, Zhao K, et al. Biological activities and potential healthbenefit effects of polysaccharides isolated from Lycium barbarum L[J].International Journal of Biological Macromolecules,2013,54:16-23.
    [183] Kim J K, Cho M L, Karnjanapratum S, et al. In vitro and in vivoimmunomodulatory activity of sulfated polysaccharides from Enteromorphaprolifera[J]. International Journal of Biological Macromolecules,2011,49(5):1051-1058.
    [184] Shuai X H, Hu T J, Liu H L, et al. Immunomodulatory effect of a Sophorasubprosrate polysaccharide in mice[J]. International Journal of BiologicalMacromolecules,2010,46(1):79-84.
    [185] Sheel M, Engwerda C R. The diverse roles of monocytes in inflammationcaused by protozoan parasitic diseases[J]. Trends in Parasitology,2012,28(10):408-416.
    [186] Bhatia S, Rathee P, Sharma K, et al. Immuno-modulation effect of sulphatedpolysaccharide (porphyran) from Porphyra vietnamensis[J]. InternationalJournal of Biological Macromolecules,2013,57:50-56.
    [187] Yang X, Guo D, Zhang J, et al. Characterization and antitumor activity ofpollen polysaccharide[J]. International Immunopharmacology,2007,7(4):427-434.
    [188] Zhang X R, Zhou W X, Zhang Y X, et al. Macrophages, rather than T and Bcells are principal immunostimulatory target cells of Lycium barbarum L.polysaccharide LBPF4-OL[J]. Journal of Ethnopharmacology,2011,136(3):465-472.
    [189] Chen J R, Yang Z Q, Hu T J, et al. Immunomodulatory activity in vitro and invivo of polysaccharide from Potentilla anserina[J]. Fitoterapia,2010,81(8):1117-1124.
    [190] Vyas D, Kumar S. Purification and partial characterization of a lowtemperature responsive Mn-SOD from tea (Camellia sinensis (L.) O.Kuntze)[J]. Biochemical and Biophysical Research Communications,2005,329(3):831-838.
    [191] Zbigniew T, Wojciech P. Individual and combined effect of anthracene,cadmium, and chloridazone on growth and activity of SOD izoformes in threeScenedesmus species[J]. Ecotoxicology and Environmental Safety,2006,65(3):323-331.
    [192] Qiong L, Jun L, Jun Y, et al. The effect of Laminaria japonicapolysaccharides on the recovery of the male rat reproductive system andmating function damaged by multiple mini-doses of ionizing radiations[J].Environmental Toxicology and Pharmacology,2011,31(2):286-294.
    [193] Zhang J, Yu Y, Zhang Z, et al. Effect of polysaccharide from culturedCordyceps sinensis on immune function and anti-oxidation activity of miceexposed to60Co[J]. International Immunopharmacology,2011,11(12):2251-2257.
    [194] Yoshimoto M, Sakamoto H, Yoshimoto N, et al. Stabilization of quaternarystructure and activity of bovine liver catalase through encapsulation inliposomes[J]. Enzyme and Microbial Technology,2007,41(6-7):849-858.
    [195] Tejera García N A, Iribarne C, Palma F, et al. Inhibition of the catalaseactivity from Phaseolus vulgaris and Medicago sativa by sodium chloride[J].Plant Physiology and Biochemistry,2007,45(8):535-541.
    [196] Qiao D, Ke C, Hu B, et al. Antioxidant activities of polysaccharides fromHyriopsis cumingii[J]. Carbohydrate Polymers,2009,78(2):199-204.
    [197] Kora B, Buzad i B. Selenium supplementation and GSH-Px activity in theIBAT and erythrocytes of cold-adapted rats[J]. Food Research International,2002,35(2-3):221-224.
    [198] Zhang Q, Li N, Zhou G, et al. In vivo antioxidant activity of polysaccharidefraction from Porphyra haitanesis (Rhodephyta) in aging mice[J].Pharmacological Research,2003,48(2):151-155.
    [199] Li X, Zhou A. Preparation of polysaccharides from Acanthopanax senticosusand its inhibition against irradiation-induced injury of rat[J]. CarbohydratePolymers,2007,67(2):219-226.
    [200] Sung H G, Bae H D, Lee J H, et al. Application of LDH enzyme and viableLDH-producing bacteria to prevent lactate accumulation during in vitro rumenfermentation[J]. Animal Feed Science and Technology,2004,117(3-4):235-243.
    [201] Abhishek K, Sohail M, Kumar R, et al. Mutation-538T/C in bonemorphogenetic protein4do not increase the risk in sickle-cell disease withorthopedic complications but strongly associated with increased LDH and uricacid level in Indian patients from Chhattisgarh and Jharkhand states[J]. ClinicaChimica Acta,2010,411(9-10):664-670.
    [202] Qin C, Huang K, Xu H. Protective effect of polysaccharide from the loach onthe in vitro and in vivo peroxidative damage of hepatocyte[J]. The Journal ofNutritional Biochemistry,2002,13(10):592-597.
    [203] Terrasa A M, Guajardo M H, de Armas Sanabria E, et al. Pulmonary surfactantprotein A inhibits the lipid peroxidation stimulated by linoleic acidhydroperoxide of rat lung mitochondria and microsomes[J]. Biochimica etBiophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2005,1735(2):101-110.
    [204] Zhao W, Jiang X, Deng W, et al. Antioxidant activities of Ganoderma lucidumpolysaccharides and their role on DNA damage in mice induced by cobalt-60gamma-irradiation[J]. Food and Chemical Toxicology,2012,50(2):303-309.
    [205] Han Y H, Kim S Z, Kim S H, et al. Arsenic trioxide inhibits the growth ofCalu-6cells via inducing a G2arrest of the cell cycle and apoptosisaccompanied with the depletion of GSH[J]. Cancer Letters,2008,270(1):40-55.
    [206] Liang Q, Sheng Y, Jiang P, et al. The gender-dependent difference of liverGSH antioxidant system in mice and its influence on isoline-induced liverinjury[J]. Toxicology,2011,280(1-2):61-69.
    [207] Hudson V M. Rethinking cystic fibrosis pathology: The critical role ofabnormal reduced glutathione (GSH) transport caused by CFTR mutation[J].Free Radical Biology and Medicine,2001,30(12):1440-1461.
    [208] Ganini D, Canistro D, Jang J J, et al. Ceruloplasmin (ferroxidase) oxidizeshydroxylamine probes: Deceptive implications for free radical detection[J].Free Radical Biology and Medicine,2012,53(7):1514-1521.
    [209] Pradeep K, Park S H, Ko K C. Hesperidin a flavanoglycone protects againstγ-irradiation induced hepatocellular damage and oxidative stress inSprague-Dawley rats[J]. European Journal of Pharmacology,2008,587(1-3):273-280.
    [210] Traber M G, Atkinson J. Vitamin E, antioxidant and nothing more[J]. FreeRadical Biology and Medicine,2007,43(1):4-15.
    [211] Golestani A, Rastegar R, Shariftabrizi A, et al. Paradoxical dose-andtime-dependent regulation of superoxide dismutase and antioxidant capacity byvitamin E in rat[J]. Clinica Chimica Acta,2006,365(1-2):153-159.
    [212] Yao J K, Reddy R, van Kammen D P. Reduced level of plasma antioxidanturic acid in schizophrenia[J]. Psychiatry Research,1998,80(1):29-39.
    [213] Sim o A N C, Dichi J B, Barbosa D S, et al. Influence of uric acid andγ-glutamyltransferase on total antioxidant capacity and oxidative stress inpatients with metabolic syndrome[J]. Nutrition,2008,24(7-8):675-681.
    [214] Campos C, Guzman R, Lopez-Fernandez E, et al. Urinary uric acid andantioxidant capacity in children and adults with Down syndrome[J]. ClinicalBiochemistry,2010,43(3):228-233.
    [215] Azzam E I, Jay-Gerin J P, Pain D. Ionizing radiation-induced metabolicoxidative stress and prolonged cell injury[J]. Cancer Letters,2012,327(1-2):48-60.
    [216] Mansour H H, Hafez H F, Fahmy N M, et al. Protective effect ofN-acetylcysteine against radiation induced DNA damage and hepatic toxicityin rats[J]. Biochemical Pharmacology,2008,75(3):773-780.
    [217] Maluf S W. Monitoring DNA damage following radiation exposure usingcytokinesis-block micronucleus method and alkaline single-cell gelelectrophoresis[J]. Clinica Chimica Acta,2004,347(1-2):15-24.
    [218] Wang H, Wang Y H, Wu W S. Yeast cell cycle transcription factorsidentification by variable selection criteria[J]. Gene,2011,485(2):172-176.
    [219] Zhang Y, Song L, Cai L, et al. Effects of baicalein on apoptosis, cell cyclearrest, migration and invasion of osteosarcoma cells[J]. Food and ChemicalToxicology,2013,53:325-333.
    [220] Selzner N, Liu H, Boehnert M U, et al. FGL2/Fibroleukin mediates hepaticreperfusion injury by induction of sinusoidal endothelial cell and hepatocyteapoptosis in mice[J]. Journal of Hepatology,2012,56(1):153-159.
    [221] Roh Y S, Cho A, Islam M R, et al.3,3′-Diindolylmethane inducesimmunotoxicity via splenocyte apoptosis in neonatal mice[J]. ToxicologyLetters,2011,206(2):218-228.
    [222] Papie M A, Baran J, Bukowska-Straková K, et al. Antileukemic action of(-)-epicatechin in the spleen of rats with acute myeloid leukemia[J]. Food andChemical Toxicology,2010,48(12):3391-3397.
    [223] Sun Y F, Song C K, Viernstein H, et al. Apoptosis of human breast cancercells induced by microencapsulated betulinic acid from sour jujube fruitsthrough the mitochondria transduction pathway[J]. Food Chemistry,2013,138(2-3):1998-2007.
    [224] Guo N, Peng Z L. MG132, a proteasome inhibitor, induces apoptosis in tumorcells[J]. Asia-Pacific Journal of Clinical Oncology,2013,9(1):6-11.
    [225] McConnell K W, Muenzer J T, Chang K C, et al. Anti-apoptotic peptidesprotect against radiation-induced cell death[J]. Biochemical and BiophysicalResearch Communications,2007,355(2):501-507.
    [226] Cheng J, Li N, Cheng Z, et al. Splenocyte apoptotic pathway in micefollowing oral exposure to cerium trichloride[J]. Chemosphere,2011,83(4):612-617.
    [227]杨连君,曹雪涛,于益芝. bcl-2, bax与肿瘤细胞凋亡[J].中国肿瘤生物治疗杂志,2003,10(3):232-234.
    [228] Oyaizu H, Adachi Y, Yasumizu R, et al. Protection of T cells fromradiation-induced apoptosis by Cepharanthin[J]. InternationalImmunopharmacology,2001,1(12):2091-2099.
    [229] Kondo S, Tamura Y, Bawden J W, et al. The immunohistochemicallocalization of Bax and Bcl-2and their relation to apoptosis duringamelogenesis in developing rat molars[J]. Archives of Oral Biology,2001,46(6):557-568.
    [230]张喆,祁志美,张蓉君.基于ITO电极的细胞色素c吸附层的直接电化学[J].物理化学学报,2012,28(5):1163-1168.
    [231]朱宏亮,万立华.小鼠脑组织细胞色素c氧化酶活性、线粒体细胞色素含量与年龄关系[J].重庆医科大学学报,2012,37(12):1041-1044.
    [232] Vaishnav M, MacFarlane M, Dickens M. Disassembly of the JIP1/JNKmolecular scaffold by caspase-3-mediated cleavage of JIP1during apoptosis[J].Experimental Cell Research,2011,317(7):1028-1039.
    [233] Kim H Y, Choi T W, Kim H J, et al. A methylene chloride fraction of Saururuschinensis induces apoptosis through the activation of caspase-3in prostate andbreast cancer cells[J]. Phytomedicine,2011,18(7):567-574.
    [234] Lee J H, Tak J K, Park K M, et al. N-t-butyl hydroxylarnine regulates ionizingradiation-induced apoptosis in U937cells[J]. Biochimie,2007,89(12):1509-1516.
    [235] Furlong H, Mothersill C, Lyng F M, et al. Apoptosis is signalled early by lowdoses of ionising radiation in a radiation-induced bystander effect[J]. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis,2013,741-742:35-43.
    [236] Teijido O, Dejean L. Upregulation of Bcl-2inhibits apoptosis-driven Baxinsertion but favors Bax relocalization in mitochondria[J]. FEBS Letters,2010,584(15):3305-3310.
    [237]吕喆,刘扬,王珍琦,等.低剂量X线照射诱导小鼠胸腺细胞凋亡适应性反应的相关凋亡基因p53、Bcl-2和Bax蛋白表达[J].吉林大学学报(医学版),2004,30(6):850-852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700