人参叶多糖的系统分级和抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参(Panax ginseng C. A. Meyer)是我国传统名贵中药,具有多种功效。多糖是人参的有效成分之一,具有免疫调节、抗肿瘤和降血糖等生物活性。人参根虽有极高的药用价值,但4~6年才收获一次。而人参叶每年都有收获,却没有得到充分的利用。目前,有关人参叶多糖的研究报道已有近20余篇,主要集中在单一级分的分离纯化、结构分析及生物活性等方面,还缺乏对人参叶多糖全面系统的分析。本文用水提方法制备了人参叶水溶性多糖,乙醇沉淀、凝胶过滤和离子交换层析等方法对水溶性人参叶多糖进行了系统的分级,全面分析了各种级分的单糖组成、分子量分布,初步分析了各种级分可能的结构特征,并对各级分的免疫调节和抗肿瘤活性进行了研究,研究结果如下:
     干燥的人参叶经过热水煮提、乙醇沉淀、Sevag法脱蛋白得到人参叶水溶性粗多糖GL,HPLC分析GL的单糖组成为Gal、Ara、GalA、Glc、Man和Rha。GL经过DEAE-Cellulose离子交换柱层析分级,得到四个多糖级分GLN、GLA-1、GLA-2、GLA-3。
     中性糖含量较高的级分GLN为不均一的多糖混合物,通过DEAE-Sepharose FF柱层析分级得到四个级分GLN-1、GLN-2、GLN-3和GLN-4。GLN-1主要由Gal、Ara、Glc和Man组成,糖含量81.5%,其Gal与Ara的摩尔比接近1:1,推测GLN-1是AG型果胶,分子量大约为4000 Da;GLN-2主要由Gal、Ara、Glc、Man和GalA组成,糖含量86.9%,糖醛酸含量7.7%,分子量大约为9600 Da;GLN-3主要由Gal、Ara、GalA、Glc和Man组成,糖含量为65.4%,糖醛酸含量为22.9%,GLN-3在Sepharose CL-6B上呈现两个峰,分子量分别为80000 Da和6500 Da。GLN-4的单糖组成与GLN-3相似,糖含量为45.1%,糖醛酸含量为17.6%,GLN-4在Sepharose CL-6B上也呈现两个峰,分子量分别是47000 Da和10000 Da。
     GLA-1主要含有GalA、Gal和Ara,且GalA含量高达45.1%,推测GLA-1为HG型果胶。GLA-2主要含有Gal、Ara、Rha和GalA,且Rha和GalA含量较高,推测GLA-2是RG-I型果胶。通过DEAE-Sepharose FF柱层析将GLA-1进一步分级,得到四个级分GLA-1aa、GLA-1ab、GLA-1b和GLA-1c,通过HPLC和Sephadex G-75柱层析测定各级分的单糖组成和分子量分布。GLA-1aa级分主要含有Gal,Ara,Glc和Man,其收率很低。GLA-1ab、GLA-1b和GLA-1c主要由Gal、Ara、GalA和Rha构成。根据GLA-1ab和GLA-1b的单糖组成摩尔比分析,推测其可能为RG-I型果胶。GLA-1c的GalA含量为78.1%,推测其可能为HG型果胶。
     应用MTT法检测人参叶多糖在体外对人结肠癌HT-29和HCT116细胞增殖的抑制作用。结果表明人参叶多糖GL、GLA-1和GLA-3对HT-29和HCT116细胞,尤其是高转移性的HCT116细胞增殖有显著的抑制作用,且呈浓度依赖关系。通过PI单染流式细胞术检测细胞周期对其机制进行深入的研究,发现人参叶多糖诱导HCT116细胞阻滞在G0/G1期。
     采用划痕实验检测人参叶多糖对L929细胞的迁移作用,发现人参叶多糖各级分对细胞迁移均有浓度依赖性的抑制作用。其中人参叶多糖GL的抑制作用最强,可能各级分之间存在着协同作用。
     用人参叶多糖GL喂食S-180腋下移植瘤小鼠11天,分别计算抑瘤率、胸腺指数和脾指数,发现三种剂量的人参叶多糖都有不同程度的抑瘤作用,其中200 mg/kg的剂量具有最强的抑制肿瘤生长的功能,抑瘤率为41.76%。另外,GL还能促进荷瘤小鼠的胸腺发育,逆转移植肿瘤对胸腺的抑制作用,同时对脾脏的发育也有明显的促进效果。
Panax ginseng C. A. Meyer (P. ginseng) has been used in China as a traditional medicine for over 2000 years. The polysaccharides from ginseng roots have many bioactivities, such as immunomodulation, anti-tumor and hypoglycemic activities. Up to now, there were about 20 papers reporting the studies of polysaccharides from ginseng leaves on their isolation, structural analysis and bioactivities,but no reports on the total fractionation of polysaccharides from ginseng leaves. In this paper, we reported the results of total fractionation of the polysaccharides from ginseng leaves by a combination of anion-exchange and gel permeation chromatography and the analysis of their sugar composition and molecular weight distribution. Further, their possible structural features were discussed. The immunomodulative and antitumor activities were also studied in mice. The investigation results are as follows:
     Water-soluble polysaccharide (GL) was extracted from dried ginseng leaves with hot water, precipitated with ethanol and deproteinized by the Sevag method. The HPLC result showed that GL mainly contained Gal, Ara, GalA, Glc, Man and Rha. After GL was loaded on DEAE-Cellulose column, four polysaccharide fractions GLN, GLA-1, GLA-2 and GLA-3 were obtained.
     GLN was a neutral sugar-rich mixture and fractionated into four fractions (GLN-1, GLN-2, GLN-3 and GLN-4) by DEAE-Sepharose FF chromatography. High performance liquid chromatography (HPLC) results showed that GLN-1 mainly contained Gal, Ara, Glc and Man. The total carbohydrate content of GLN-1 was 81.5%. As the molar ratio of Gal and Ara in GLN-1 was nearly 1:1, we speculated it was an arabinogalactan and the molecular weight of it was 4000Da. GLN-2 was mainly contained Gal, Ara, Glc, Man and GalA. The total carbohydrate content of GLN-2 was 86.9%, uronic acid content was 7.7%, and the molecular weight was 9600 Da. GLN-3 was rich in Gal and Ara with some Glc and GalA .The content of total carbohydrate of GLN-3 was 65.4%, uronic acid content was 22.9%. GLN-3 showed two populations on Sepharose CL-6B column, with the molecular weights of 80000 Da and 6500 Da, respectively. GLN-4 was similar with GLN-3 in sugar composition. The content of total carbohydrate of GLN-4 was 45.1%, uronic acid content was 17.6%. GLN-4 also showed two populations on Sepharose CL-6B column, with the molecular weights of 47000 Da and 10000 Da, respectively.
     GLA-1 was mainly composed of GalA, Gal and Ara, and GalA content was up to 45.1%, so it might be HG-rich pectin. GLA-2 mainly contained Gal, Ara, Rha and GalA, and the content of Rha and GalA were high, so it might be RG-I-rich pectin. GLA-1 was separated through DEAE-Sepharose FF chromatography eluting by different NaCl concentration to give four fractions (GLA-1aa, GLA-1ab, GLA-1b and GLA-1c). GLA-1aa was mainly contained Gal, Ara, Glc and Man and had a low recovery. GLA-1ab, GLA-1b and GLA-1c were rich in Gal, Ara, GalA and Rha. GLA-1ab and GLA-1b contained 99% and 98.8% total carbohydrate, 34.9% and 49.1% uronic acid, respectively. From the monosaccharide composition features, we speculated GLA-1ab and GLA-1b were RG-I-rich pectins, while GLA-1c was HG-rich pectin.
     The direct effects of ginseng leaves polysaccharides on the proliferation of human colon cancer HT-29 and HCT116 cells was measured by MTT assay. The ginseng leaves polysaccharides GL, GLA-1 and GLA-3 had significant dose-dependent anti-proliferative effect on HT-29 cells and HCT116 cells, especially on highly metastatic cell HCT116. To elucidate the mechanism by which ginseng leaves polysaccharides affect cell proliferation, we carried out cell cycle analyses by flow cytometry after staining with PI. The results showed that ginseng leaves polysaccharides induced G0/G1 cell cycle arrest on human colon cancer HCT116 cells.
     We invested the migration-inhibitory effect of ginseng leaves polysaccharides on L929 cells by wound healing assay. All of the polysaccharides inhibit migration of L929 cell in a dose-dependent mannar. GL has the most significant inhitory effect. Synergistic inhibition might excist among the polysaccharides.
     S-180 tumor cell bearing mice were admistrated with polysaccharide GL for 11 days and then tumor-inhibiting rate, thymus index and spleen index were determined. The results showed that various doses had different effects on tumor-inhibiting rate, thymus index and spleen index. However, the most effective dose was 200 mg.kg-1. Polysaccharide GL inhibited the growth of tumor of S-180 model mice and the tumor-inhibiting rate was 41.76%. GL enhanced the development of thymus as well as spleen of S-180 mice.
引文
[1]郭振楚.糖类化学[M].北京:化学工业出版社,2005.
    [2]谭周进,谢达平.多糖的研究进展[J].食品科技,2002,3:10-12.
    [3]肖剑辉,蒋侬辉,梁宗琦.食药用真菌多糖研究进展[J].生命的化学,2002,22(2):148.
    [4]陈传红,金卫根,李荣同,等.真菌多糖药理作用研究进展[J].时珍国医国药,2006,17(6):933-934.
    [5]严金龙,吕志敏.植物多糖的提取分离和应用[J].化工科技市场,2004(11):41-44.
    [6]张晓静,刘会东.植物多糖提取分离及药理作用的研究进展[J].时珍国医国药,2003,14(8):495-597.
    [7]田庚元.天然多糖的研究和应用(上)[J].上海化工,2000,10:29-31.
    [8]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,2: 90-98.
    [9]田庚元.天然多糖的研究和应用(下)[J].上海化工,2000,11:23-35.
    [10] Yanaoka Y,kawakita T,Kaneko M,et al. Polysaccharide Fration of Zizyphi fructus in augmenting natural killeractivity by oral administration [J]. Biol Pharm Ball,1996,19(7):936-939.
    [11]郑宝东,郑金贵,曾绍校.果蔬多糖的研究现状及应用前景[J].食品科学,2003,24(1):152-155.
    [12]熊子仙.植物多糖与保健[J].云南师范大学学报,2004,24(3):41-43.
    [13]王庭欣,朱惠民,周明河.植物多糖抑瘤活性的研究进展[J].癌变·畸变·突变,2000,12(2):118-120.
    [14]李小定,吴谋成,曾晓波,等.灰树花多糖粗品与纯品的抗肿瘤作用和免疫功能的影响[J].营养学报,2003,25(1):7-9.
    [15]王雪萍.植物多糖研究进展.粮食与油脂[J],2005,8:8-10.
    [16] Khosla,P,Gupta,D D,Nagpal,R K. Effect of Trigonella foenum graecum(Fenugreek)on blood glucose in normal and diabetic rats[J].Indian Journal of Physiology and Pharmacology,1995,39:173-174.
    [17]张拥军.南瓜多糖的分离提取及其降血糖作用的研究[J].食品科技,2001,5:15-18.
    [18]梁英,杨宏志,夏运亮,等.黑木耳硒多糖对小鼠血脂、血硒及氧化物酶的影响[J].营养学报,2000,22(3):250-252.
    [19]张宪党,马弛,张群,等.植物多糖抗辐射损伤作用研究进展[J].中国辐射卫生,2003,12(2):122-123.
    [20]侯华新,黎丹戎,黄桂宽,等.银杏叶多糖在肿瘤放射、化学治疗中的增敏作用研究[J].广西医科大学学报,2005,22(1):29-31.
    [21]宋丽艳.银含细胞培养物多糖和银杏叶多糖生物活性的研究[J].中国生化药物杂志,1999,20(6):278-282.
    [22]蒋岩.梳酸酯化箬叶多糖抗HIV-1机制的初步研究[J].中华实验和临床病毒学志,2000,14(1):56-59.
    [23]吴华振.植物多糖的药理作用及应用进展[J].实用医技杂志,2005,12(7):1803-1804.
    [24]徐晓飞,蒋丽,唐健,等.植物多糖的保健功能及开发前景[J].中国食物与营养, 2007,1:48-50.
    [25]周靓,蒙义文.多糖极其衍生物抗病毒作用研究进展[J].应用与环境生物学报,1997,3(1):82-90.
    [26]王长云,管华诗.多糖抗病毒作用[J].生物工程进展,2000,20(1):17-20.
    [27]王黎明.植物活性多糖构效关系研究进展[J].安徽农学通报,2008,23:45-46.
    [28]肖朱洋.多糖的结构分析与构效关系[J].海峡药学,2007,(3):98-100.
    [29]王兆梅,李琳,郭祀远,等.活性多糖构效关系研究评述[J].现代化工,2002,(3):18-21
    [30]陈倩,穆晓峰.活性多糖构效研究进展[J].甘肃教育学院学报(自然科学版),2003,17(4):56.
    [31]陈惠黎.糖复合物的结构与功能[M].上海:上海医科大学出社,1997,245-300.
    [32]李尔春.天然植物多糖的结构及活性研究进展[J].食品工程,2007,1:44-46.
    [33]陈志强,金杨,王昌禄.多糖结构分析方法的研究[J].饲料工业,2008,6:59-61.
    [34]杜梅,张松.食用菌多糖降血糖机理研究[J].微生物学杂志,2007,27(2):83-87.
    [35]黄益丽,廖鑫凯,李清彪,等.香菇多糖的生物活性[J] .生命的化学,2001,21(5):56.
    [36] Mantovani M S,Bellini M F,Angeli J F,et al.β-Glucans in promoting health:Prenention against mutation and cancer [J]. Mutation Research,2007,7:1-8.
    [37] Zhang L N,Li X L,Xu X J,et al. Correlationbetween antitumor activity,molecular weight,and conformation of lentinan [J]. Carbohydrate Research,2005,340(8):1515-1521.
    [38] Mulloy B,Mourao P A S,Gray E. Structure/functionstudies of anticoagulant sulphated polysaccharides using NMR [J]. Journal of Biotechnology,2000,77(1):123-135.
    [39]赵晓燕,王长云.海洋多糖分子修饰方法研究概况[J] .海洋学,2000,12:20-22.
    [40]孟春,郭养浩,石贤爱,等.海藻多糖生物活性及分子修饰[J].中国生物工程杂志,2004,3:35-39.
    [41]龚敏,朱勤,王彤,等.冬虫夏草多糖的分子结构与免疫活性[J].生物化学杂志,1990,6(6):486-491.
    [42]盛家荣,曾令辉,瞿春,等.多糖的提取、分离及结果分析[J].广西师院学报,1999,16(4):49-53.
    [43]李蒙蒙,张丽颖.国内中药多糖的提取分离及分析研究概况[J].药物分析杂志,2005,25(10):1285-1287.
    [44]周鹏,谢明勇,傅博强.多糖的结构研究[J].南昌大学学报(理科版), 2001,25(2): 197-204.
    [45]张萍,王金东,肖新月,等.人参化学成分分析方法的研究进展[J].中草药,2004,35(12):112-115.
    [46]曹立亚.人参多糖化学的研究进展[J].中草药,1988,20(6):36-41.
    [47]霍霞,李大岩,刘春峰.人参叶现代研究概况[J].中国医药卫生,2005,6(23):36-37.
    [48]刘桂英.人参叶化学成分及其生物活性研究[D]:[博士学位论文].长春:吉林大学化学学院,2009.
    [49]王志学,张永煜,刘明生,等.人参茎叶中黄酮类成分的研究[J].沈阳药学院学报,l985,29(4):284-287.
    [50]李静,卫永第.野山参叶挥发油化学成分的研究[J].中草药,1997,27(4):205-206.
    [51]王慧,刘在群,王建辉,等.人参茎叶挥发油中倍半萜烯化合物的分离与鉴定[J].吉林大学自然科学学报,2001,1(1):88-90.
    [52]刘在群,王慧,林英杰,等.人参茎叶挥发油中含氧化合物的分离与结构鉴定[J].应用化学,2002,19(2):196-198.
    [53]于荣敏,马文霞,张辉,等.银杏细胞培养物多糖与银杏叶多糖的研究[J].中国生化药物杂志,1990,20(5):217-220.
    [54]钱进.人参叶杂多糖的化学性质和抗补体活性[J].国外医药(植物药分册), 1991,5:230.
    [55]张甲生,李成义,安汝国,等.吉林人参各部位中微量元素的测定[J],白求恩医科大学学报,1987,5:408-411.
    [56] Konno C,Sugiyama K,Kano M,et al. Isolation and hypoglycaemic activity of Panaxans A,B,C,D and E,Glycans of Panax ginseng Roots[J].Planta Med,1984,50(5):434.
    [57] Hikino H,Oshima Y,Suzuki Y,et al. Isolation and hypoglycaemic activity of Panaxans F,G and H,Glycans of Panax ginseng Roots [J].Shayakugaku Zasshi,1985,39(4):331.
    [58] Oshima Y,Konno C,Hikino H. Isolation and hypoglyc- aemic activity of Panaxans I,J,K and L,Glycans of Panax ginseng Roots[J].Ethnopharmacol,1985,14:255.
    [59] Konno C,Hikino H. Isolation and hypoglycaemic activity of Panaxans M,N,O and P, Glycans of Panax ginseng Roots[J].Int.J.Crude Drug Res,1987,25:53.
    [60] Konno C,Murakami M,Oshima Y,et al. Isolation and hypoglycaemic activity of Panaxans Q,R,S,T and U,Glycans of Panax ginseng Roots [J].J.Ethnopharmacol,1985,14:69.
    [61] Tomoda M,Shimada K,Konno C,et al. Partial structure of Panaxan A a Hypoglycaemic Glycan of Panax ginseng Roots[J].Planta Medica,1984,50(5):436.
    [62] Tomoda M,Hiraabayashi K,Shimizu N,et al. Characterisation of two novel polysaccharides having immunological activities from the root of Panax giseng[J].Biol Pharm Bull,1993,16(11):1087.
    [63]朱果,肖绍容,彭树林,等.人参叶中多糖的研究[J].中草药,1984(8):8.
    [64]刘莉菲,张翼伸.人参叶水溶性多糖的研究-酸性杂多糖PA的纯化与结构的研究[J] .东北师大学报自然科学版,1988,3:103-107.
    [65] Gao Q P,Kiyohara H,Cyong J C,et al.Characterization of anti-complementary acidic heteroglycans from the leaves of Panax ginseng C.A. Meyer [J]. Carbohydrate Ressearch,1988,181:175-187.
    [66] Gao Q P,Kiyohara H,Cyong J C,et al.Chemical properties and anticomplemen- tary activities of polysaccharide fractions from roots and leaves of Panax ginseng[J]. Planta medica,1989,55(1):912.
    [67] Somoda Y,Kasahara T,Mukaida N,et al.Stimulation of interleukin-8 production by giseng[J].Immunophamacology,1998,38:287.
    [68]台桂花,张翼伸,梁忠岩.人参茎中水溶性多糖的研究[J].生物化学与生物物理学报,1988,20(2):119.
    [69]刘春兰.人参果中水溶性多糖的分离、纯化及鉴定[J] .中央民族大学学报,1995,4(2):142-147.
    [70]刘春兰.人参果中杂多糖F的结构研究[J].首都师范大学学报,1996,17(2):74-78.
    [71]刘春兰.人参果水溶性多糖与其蛋白质的关系研究[J].中央民族大学学报(自然科学版),1997,6(1):49-52.
    [72]刘春兰,张翼伸,李润秋.人参果中水溶性多糖的研究:杂多糖F的分离提纯与结构分析[J].药学学报,1988 ,23(11):863.
    [73] Tomoda M,Hirabayashi K,Shimizu N,et al. The core structure of Ginsenan PA, aphagocytosis-activating polysaccharide from the root of Panaxginseng[J].Biol.Pharm. Bull.,1994,17 (9):1287.
    [74] Tomoda M,Takeda K,Shimizu N,et al.Characterization of two acidic polysacch- arides having immunologicalactivities from the root of Panax ginseng[J]. Biol.Pharm.Bull.,1993,16(1):22.
    [75] Sun X B,Matsumoto T,Kiyohara H,et al. Cytoprotective activity of pectic-plysaccharides from the root of Panax ginseng[J]. J .Ethnopharmacology,1991,31:101.
    [76] Shin K,Kiyohara H,Matsumoto T,et al.Rhamnogalacturonan II dimers cross-linked by borate diesters from the leaves of panax ginseng C.A. Meyer are responsible for expression of their IL-6 production enhancing activities[J].Carbohydrate research,1998,307(1-2):97-106.
    [77] Filisetti-Cozzi T M,Carpita N C. Measurement of uronic acids without interference from neutral sugars [J].Anal Biochem,1991,197:157-162.
    [78] Kim Y S,Kang K S,Kim S I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng:Comparison of effects of neutral and acidic polysaccharide fraction[J]. Archives of Pharmacal Research,1990,13(4):330-337.
    [1]徐翠莲,杜林洳,樊素芳,苏惠,万郑凯.多糖的提取、分离纯化及分析鉴定方法研究[J].河南科学, 2009, 27(12), 1524-1529.
    [2]韦巍,李雪华.多糖的研究进展[J].国外医学药学分册, 2005,32(3): 179-184.
    [3] Zhang S,Xu C,Santschi P H. Chemical composition and 234Th(IV)binding of extracellular polymeric substances(EPS)produced by the marine diatom Amphora sp.[J]. Marine Chemistry,2008,112(1-2):81-92.
    [4] Dubois M,Gilles K A,Hamilton J K,et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28:350-356.
    [5] Blumenkrantz N,Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489.
    [6] Sedmark J J,Grossberg S E. A rapid,sensitive and versatile assay for protein using Coomassie brilliant blue G250[J]. Analytical Biochemistry,1979,79:544-552.
    [7] Honda S , Nakamura J.High-Performance Liquid Chromatography of Reducing Carbohydrate as Strongly Ultraviolet-Absorbing and Electrochemically Sensitive 1-Phenyl-3-methyl-5-pyrazolone Derivatives [J].Analytical Biochemistry,1989,180:351-357.
    [8] Fu D T,A.O’Neill R.Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography [J].Analytical Biochemistry,1995,227:377-384.
    [9]张惟杰.糖复合物生化研究技术[M].浙江大学出版社,1999.
    [10] Zhang X,Yu L,Bi H T,et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer.Carbohydrate Polymers [J]. 2009,77(3),544-552.
    [1]刘锐.多糖类物质的研究进展[J].安徽农业科学, 2005, 33(9): 1722-1725.
    [2]张惟杰.糖复合物生化研究技术[M].浙江大学出版社,1999.
    [3] Dubois M,Gilles K A,Hamilton J K,et al.Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28:350-356.
    [4] Blumenkrantz N,Asboe-Hansen G. New method for quantitative determination of uronic acids.[J].Analytical Biochemistry,1973,54:484-489.
    [5] Honda S , Nakamura J. High-Performance Liquid Chromatography of Reducing Carbohydrate as Strongly Ultraviolet-Absorbing and Electrochemically Sensitive 1-Phenyl-3-methyl-5-pyrazolone Derivatives [J].Analytical Biochemistry,1989,180:351-357.
    [6] Fu D T,A.O’Neill R.Monosaccharide Composition Analysis of Oligosaccharides and Glycoproteins by High-Performance Liquid Chromatography [J].Analytical Biochemistry,1995,227:377-384.
    [6] Zhang X,Yu L,Bi H T,et al. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer.Carbohydrate Polymers [J]. 2009,77(3),544-552.
    [8] Gao Q P,Kiyohara H,Cyong J C,et al.Chemical properties and anticomplementary activities of polysaccharide fractions from roots and leaves of Panax ginseng. Planta medica[J],1989,55(1):912.
    [9] Gao Q P,Kiyohara H,Cyong J C,et al.Characterization of anti-complementary acidic heteroglycans from the leaves of Panax ginseng C.A. Meyer[J].Carbohydrate Ressearch,1988,181:175-187.
    [10] Kwang-Soon S,Hiroaki K,Tsukasa M,et al.RhamnogalacturonanⅡfrom the leaves of Panax ginseng C.A.Meyer as a macrophage Fc receptor expression-enhancing polysaccharide[J]. Carbohydrate Research,1997, 239-249.
    [11]刘莉菲,张翼伸.人参叶水溶性多糖的研究—酸性杂多糖PA的纯化与结构的研究[J].东北师大学报自然科学版,1988(3):103-107.
    [1] Wasser S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol Biotechnol[J]. 2003,60: 258-274.
    [2] Ramakrishnan R, Antonia S, Gabrilovich DI. Combined modality immunotherapy and chemotherapy: A new perspective. Cancer Immunol Immunother [J]. 2008,57: 1523-1529.
    [3] Jung ID et al. 5-fluorouracil inhibits nitric oxide production through the inactivation of IκB kinase in stomach cancer cells. Biochem Pharmacol [J]. 2002,64:1439-1445.
    [4] Suzuki, Y., Hikino, H. Mechanisms of hypoglycemic activity of Panaxans A and B, glycans of Panax ginseng roots: Effects on the key enzymes of glucose metabolism in the liver of mice. Phototherapy Research [J]. 1989,3:15-19.
    [5] Kim, Y.S., Kang, K.S., Kim, S.I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Archives of Pharmacal Research [J]. 1990,13: 330-337.
    [6] Fu, P. et al. Chemical properties and anti-tumoractivity of polysaccharides from roots of panax ginseng. Journal of Norman Bethune University of medical science [J].1994,20: 439-441.
    [7] Song, J. Y.et al. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. International Immunopharmacology [J].2002,2: 857-865.
    [8] Shin, M. J.et al. Enhancement of antitumor effects of paclitaxel (taxol) in combination with red ginseng acidic polysaccharide (RGAP). Planta Medica [J]. 2004,70: 1033-1038.
    [9] Lee, J. H.et al. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydrate Research [J]. 2006,341: 1154-1163.
    [10] Choi KT. Botanical characteristics, pharmacological effects and medicinal components of korean panax ginseng C A meyer. Acta Pharmacol Sin [J]. 2008,29: 1109-1118.
    [11] Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature Protocols [J]. 2006,1: 1458-1461.
    [12] Fan YY et al. The inhibitory effect of ginseng pectin on L-929 cell migration. Archives of Pharmacal Research[J]. 2010, 33: 681-689
    [13] Fan YY et al. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides. Carbohydrate Polymers [J]. Carbohydrate Polymers [J]. 2010,81: 340–347.
    [14]侯元,霍德胜,魏艳君,等.草苁蓉多糖的抗肿瘤作用及免疫调节作用[J].吉林大学学报(医学版),2007, 6:1022-1025.
    [15]张峰,高群,孔令雷,等.黄精多糖抗肿瘤作用的实验研究[J],中国实用医药, 2007,21:95-96.
    [16] Ni WH et al. Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity, Carbohydrate Res [J]. 2009, 344:2512-2518.
    [17] Ni WH et al.Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-fluorouracil. Journal of medicinal Food [J]. 2010,13:1-8.
    [18] Lee YS, et al. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from panax ginseng. Anticancer Res [J]. 1997,17: 323-331.
    [19] Kim KH, et al. Acidic polysaccharide from panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med [J]. 1998,64: 110-115.
    [20] King ML, Murphy LL. Role of cyclin inhibitor protein p21 in the inhibition of HCT116 human colon cancer cell proliferation by american ginseng (panax quinquefolius) and its constituents. Phytomedicine [J]. 2009,17: 261-268.
    [21] Olano-Martin E et al. Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res [J]. 2003,23: 341-346.
    [22] Hairong Cheng et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Medical Oncology [J]. DOI: 10.1007/s12032-010-9449-8
    [23]陈学军,陈鸿清,姚梅坤.药用植物多糖研究进展[J].海峡药学,1999,11:3-5.
    [24]王统一,赵兵,王玉春.多糖免疫调节和抗肿瘤研究进展[J].过程工程学报,2006,6:674-682.
    [25] Peng Y F et al.Structure and Antitumor Activities of the Water-soluble Polysaccharides from Ganoderma tsugae Mycelium [J].Carbohydr Polym, 2005,59: 385-392.
    [26] Ishurda O,Kennedy J F. The Anti-cancer Activity of Polysaccharide Prepared from Libyan dates (Phoenix dactylifera L.)[J]. Carbohydr Polym,2005,59: 531- 535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700