Caenorhabditis elegans早期胚胎发育极性相关基因之间的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞极性(cell polarity)是多种不同类型细胞的共同特征,对细胞的分化和功能有重要作用。在C. elegans中par基因家族包括par-1到par-6六种基因,除par-2以外,其余几种在C. elegans、果蝇、哺乳动物中都有同源物存在。par基因的突变会导致受精卵极性以及很多早期不对称现象消失。除此之外PAR在细胞连接、代谢和癌症方面也有重要意义。细胞命运决定因子cdc-42在该过程中也有重要作用,但这几种基因之间的相互作用还不太清楚。本文通过原位杂交、RNAi等方法在mRNA和蛋白水平对几种基因间的相互作用进行了研究。
     通过构建发夹结构形成双链RNA(dsRNA)的方法和双T7启动子L4440为载体形成dsRNA的方法进行RNAi载体的构建,通过细菌喂食法进行RNAi分析,发现两种方法都可以取得较高的干扰率。保证了以后转基因虫体的RNAi分析结果。
     本文对par基因在mRNA水平和蛋白水平的表达情况进行了分析。通过原位杂交检测了par基因在mRNA水平基因之间的相互作用,发现:par-1、par-2、par-3、par-5、par-6的mRNA都在卵母细胞、早期胚胎和雌雄同体成虫生殖腺中分布。其中par-2和par-4对其它几种par基因的mRNA表达起到重要的作用,par-2突变导致par-1、par-3、par-6的表达量减少;par-4突变时,par-1、par-5表达量都减少了,但par-2和par-4之间没有明显的作用。另外par-5突变的情况下,导致par-1和par-3 mRNA表达量增加。par-3突变也会导致par-2和par-5的表达量改变。par-6突变的情况下,其它几种par基因的mRNA在约256细胞的胚胎开始,分布发生改变,由原来的细胞质均匀分布变为后端的局域分布,集中在胚胎后端。暗示:par-4对par-1、par-3和par-5 mRNA的表达有促进作用;par-1、par-3与par-5相互抑制,par-1对par-2有抑制作用,par-2是par-1表达所需。par-6抑制par-3和par-5 mRNA的表达,同时par-2对par-6又有明显的促进作用。
     分析PAR-2、PAR-5和PAR-6的GFP在C. elegans和par突变体中的分布情况,发现par-1突变的情况下PAR-2::GFP的后端皮层分布前移,而PAR-6::GFP的皮层分布消失。在par-2或者par-5突变的情况下,PAR-6的前端皮层不对称分布消失,在整个皮层中都有分布。同样par-5、par-6突变的情况下,PAR-2::GFP在皮层的不对称分布也消失了。
     cdc-42原位杂交结果显示,其mRNA的分布情况与par基因的分布情况类似,也是在卵母细胞、早期胚胎和成虫生殖腺中分布。par-4对cdc-42 mRNA的表达也起到重要的作用,par-4突变的情况下,cdc-42由原来的均匀分布变为细胞外周分布。par-1和par-5突变会导致cdc-42的表达量降低,par-2突变则会导致cdc-42的表达量增加。
Cell polarity is a crucial factor for a variety of cellular and developmental processes. par family contains six par genes, from par-1 to par-6. In Caenorhabditis elegans, mutations in six par genes, par-1 through par-6, cause the earliest and most extensive polarity defects in the zygote, eliminate many early asymmetries. Except par-2, the other PARs have orthologs in mammals and Drosophila. PAR proteins play important roles in cell junction, metabolism and cancer. Furthermore, the cell polarity regulator cdc-42 also plays an important role in this process. But the interaction of these genes is not clear. Thus, using RNA interference and in situ hybridization, we have done some work on the interaction of these genes in C. elegans.
     RNAi was performed using the bacteria feeding method to produce RNA interference. Double-Stranded RNA expressed by either hair-pin structures in pBluescript II SK(+) vector or L4440 with two T7 promoters, both methods proved via experiments have produced effective and specific RNA interference. To explore the interaction of par gene, we examined their expression of mRNA in C. elegans wild type and par mutants by in situ hybridization. The results show that par-1, par-2, par-3, par-5 and par-6 mRNA are all distributed extensively in oocyte, early embryos and the gonad of hermaphrodits. par-2 and par-4 are essential for other par mRNA expression. par-1, par-3 and par-6 mRNA decreased in par-2 mutant, the expression of par-1 and par-5 mRNA decreased in par-4 mutant. But there is no obvious direct interaction betweem par-2 and par-4. In addition, the absence of par-5 gene results in the increase of par-1 and par-3 mRNA expression. And the absence of par-3 gene also results in the increase of par-2 and par-5 mRNA expression. In par-6 mutant, from about 256 cells of embryo, par mRNA distribution are different, mRNA distributed in the posterior part of the embryo but not even in the embryo. We have conclude that par-4 promotes the expression of par-1, par-3 and par-5; par-1 and par-3 repress par-5, and par-1 represses par-2, but par-2 is required in par-1 expression. par-6 represses the expression of par-3 and par-5 mRNA, while par-2 has obvious stimulation to par-6.
     To test the distribution of PAR-2, PAR-5 and PAR-6 GFP in C. elegans wild type and par mutant via RNAi, we found that the posterier cortical PAR-2::GFP extend toward the anterior, while the cotical PAR-6::GFP disappeared in par-1 mutant via par-1 RNAi. In par-2 or par-5 mutant via RNAi, the anterior cortical PAR-6::GFP extend to the entire cell cortical. PAR-2::GFP can accumulate in the cortex, but can’t get enriched in the posterior in the absence of par-5 or par-6.
     The distribution of cdc-42 mRNA in C. elegans wild type and par mutants via in situ hybridization shows similar results to par genes’in situ hybridization. cdc-42 mRNA is also distributed extensively in oocyte, early embryos and gonad of hermaphroditism. par activity is required for the expression of cdc-42 mRNA, especially par-4. In par-4 mutant, cdc-42 mRNA distributed in the periphery of zygote while which uniformly distributed in wild type. The expression of cdc-42 mRNA decreased in par-1 or par-5 mutant, but increased in par-2 mutant. Key Words: Caenorhabditis elegans; cell polarity; par; cdc-42
引文
[1] Brenner S. The genetics of Caenorhabditis elegans [J]. Genetics. 1974, 77 (1): 71-94.
    [2] Sulston JE, Horvitz HR. Post embryonic cell lineages of the nematode Caenorhabditis elegans [J]. Dev. Biol. 1977, 56 (1): 110-156.
    [3] Lambie EJ, Kimble J. Genetic control of cell interactions in nematode [J]. Dev. Annu Rev Genet. 1991, 25 : 411-436.
    [4] Sulston JE, Schierenberg E, White J G, et al. The Embryonic cell lineage of the nematode Caenorhabditis elegans [J]. Dev. Biol. 1983, 100 (1): 64-119.
    [5] Kemphues KJ, Priess JR, Morton DG, et al. Identification of genes required for cytoplasmic localization in early C. elegans embryos [J]. cell. 1988, 52: 311-320.
    [6] Wallenfang MR, Seydoux G. Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process [J]. Nature, 2000, 408: 89-92.
    [7] Goldstein B, Hird SN. Specification of the anteroposterior axis in Caenorhabditis elegans [J]. Dev. 1996, 122: 1467-1474.
    [8] Bowerman B. Maternal control of pattern formation in the early C. elegans embryo [J]. Curr. Top. in Dev. Biol. 1998, 39: 73-118.
    [9] Huang NN, Darcy E. et al. MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans [J]. Dev. 2002, 129: 747-759.
    [10] Kay AJ, Hunter CP. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans [J]. Curr Biol. 2001, 11: 474–481.
    [11] Bowerman B, Shelton CA. Cell polarity in the early Caenorhabditis elegans embryo [J]. Curr Opin Genet Dev. 1999, 9: 390-395.
    [12] Nelson WJ, Grindstaff KK. Cell polarity: par for the polar course [J]. Curr. Biol. 1997, 7: R562-R564.
    [13] Labouesse M, Mango S. Patterning the C. elegans embryo [J]. Trends Genet. 1999, 15: 307-313.
    [14] Rose LS, Kemphues KJ. Early patterning of the C. elegans embryo [J]. Annu Rev Gene. 1998, 32: 521-545.
    [15] Eaton S, Simons K. Apical, basal, and lateral cues for epithelial polarization [J]. Cell. 1995, 82: 5-8.
    [16] Drubin DG, Nelson WJ. Origins of cell polarity [J]. Cell. 1996, 84: 335-344.
    [17] Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis [J]. Cell. 1996, 84:345-357.
    [18] Suzuki A, Ohno S. The PAR-aPKC system: lessons in polarity [J]. J. Cell Sci. 2006, 119: 979-987.
    [19] Shigeo Ohno. Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity [J]. Curr. Opin. Cell Biol. 2001, 13: 641-648.
    [20] Kuchinke U, Grawe F, Knust E. Control of spindle orientation in Drosophila by the par-3-related PDZ-domain protein Bazooka [J]. Curr Biol. 1998, 8: 1357-1365.
    [21] Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmet—rically distributed [J]. Cell. 1995, 81(4): 611-620.
    [22] Nance J, Munro EM, Priess JR. C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation [J]. Dev. 2003, 130(22): 5339-5350.
    [23] Hurd DD, Kemphues KJ. PAR-1 is required for morphogenesis of the Caenorhabditis elegans vulva [J]. Developmental Biology. 2003, 253: 54-65.
    [24] Drewes G, Ebneth A. Mandelkow EM MAPs, MARKs and microtubule dynamics [J]. Trends Biochem Sci. 1998, 23(8): 307-311.
    [25] Lizcano JM, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1 [J]. EMBO J. 2004, 23: 833-843.
    [26] Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways [J]. Annu Rev Biochem. 2006, 75: 137-163.
    [27] Hurov JB, Watkins JL, Piwnica-Worms H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity [J]. Curr Biol. 2004, 14: 736-741.
    [28] Suzuki A, Hirata M, Kamimura K, et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity [J]. Curr. Biol. 2004, 14: 1425-1435.
    [30] Kusakabe M, Nishida E. The polarity-inducing kinase par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC [J]. EMBO J. 2004, 27: 4190-4201.
    [31] Inglis JD, Lee M, Hill RE. A novel tyrosine kinase-related sequence on mouse chromosome 5 [J]. Mamm Genome. 1993, 4(5): 285-287.
    [32] Peng CY, Graves PR, Ogg S, et al. C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding [J]. Cell Growth Differ. 1998, 9(3): 197-208.
    [33] Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption [J]. Cell. 1997, 89:297-308.
    [34] Trinczek B, Brajenovic M, Ebneth A, et al. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes [J]. J Biol Chem. 2004, 279: 5915-5923.
    [35] Bessone S, Vidal F, Le Bouc Y, et al. EMK protein kinase-null mice: dwarfism and hypofertility associated with alterations in the somatotrope and prolactin pathways [J]. Dev Biol. 1999, 214: 87-101.
    [36] Hurov JB, Stappenbeck TS, Zmasek CM, et al. Immune system dysfunction and autoimmune disease in mice lacking Emk (Par-1) protein kinase [J]. Mol Cell Biol. 200, 21: 3206-3219.
    [37] Jonathan BH, Mei Huang, et al. Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate, decreased adiposity, and insulin hypersensitivity in vivo [J]. PANS. 2007, 104(13): 5680-5685
    [38] Parsa I. Loss of aMr 78,000 marker in chemically induced transplantable carcinomas and primary carcinoma of human pancreas [J]. Cancer Research. 1998, 48: 265-272.
    [39] Ono T, Kawabe T, Sonta S, et al. Assignment of MARK3 alias KP78 to human chromosome band 14q32.3 by in situ hybridization [J]. Cytogenet Cell Genet. 1997, 79: 101-102.
    [40] Kato T, Satoh S, Okabe H, et al. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis [J]. Neoplasia. 2001, 3: 4-9.
    [41] Beghini A, Magnani I, Roversi G, et al. The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines [J]. Oncogene. 2003, 22: 2581-2591.
    [42] Hueso M, Beltran V, Moreso F, et al. Splicing alterations in human renal allografts: detection of a new splice variant of protein kinase Par1/Emk1 whose expression is associated with an increase of inflammation in protocol biopsies of transplanted patients. Biochim. Biophys [J]. Acta. 2004, 1689: 58-65.
    [43] Muller J, Ory S, Copeland T, et al. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1 [J]. Mol. Cell. 2001, 8: 983-993.
    [44] Sun TQ, Lu B, Feng JJ, et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signaling [J]. Nat. Cell Biol. 2001, 3: 628-636.
    [45] Penton A, Wodarz A, Nusse R. A mutational analysis of dishevelled in Drosophila defines novel domains in the Dishevelled protein as well as novel suppressing alleles of axin [J]. Genetics. 2002, 161: 747–762.
    [46] Ossipova O, Dhawan S, Sokol S, et al. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development [J]. Dev. Cell. 2005, 8: 829-841.
    [47] Bayraktar J, Zygmunt D, Carthew RW. Par-1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo [J]. J. Cell Sci. 2006, 119: 711-721.
    [48] Gerhart J. Warkany lecture: signaling pathways in development [J]. Teratology. 1999, 60: 226-239.
    [49] Pavel Tomancak, Fabio Piano, Veit Riechmann, et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation [J]. Nature cell biology. 2000, 2: 458-460.
    [50] Boy L, Guo S, Levitan D, et al. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos [J]. Dev. 1996, 122: 3075-3084.
    [51] Cheng NN. Genetic and developmental analysis of par-2 a gene required for cytoplasmic localization and cleavage patterning in Caenorhabditis elegans [D]. 1991, Ph. D. thesis, Cornell University, Ithaca, New York.
    [52] Watts JL, Morton DG, Bestman J, et al. The C. elegans par-4 gene encodes a putative serine-threonine required for establishing embryonic asymmetry [J]. Dev. 2000, 127: 1467-1475.
    [53] Morton DG., Roes JM, Kemphues KJ. par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis [J]. Genetics. 1992, 130: 771-790.
    [54] Crittenden SL, Rudel D, Binder J, et al. Genes required for GLP-1 asymmetry in the early Caenorhabditis elegans embryo [J]. Dev. Biol. 1999, 181: 36-46.
    [55] Hung TJ, Kemphues KJ. PAR-6 is a conserved PDZ domain containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos [J]. Dev. 1999, 126: 127-135.
    [56] Smith DP, Spicer J, Smith A, et al. The mouse Peutz-Jeghers syndrome gene Lkb1 encodes a nuclear protein kinase [J]. Hum. Mol. Genet. 1999, 8: 1479-1485.
    [57] Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome [J]. Nature. 1999, 391: 184-187.
    [58] Jenne DE, Reimann H, Nezu J, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase [J]. Nat. Genet. 1998, 18: 38-43.
    [59] Zhuang ZG, Di GH, Hou YF, et al. Relationship between LKB1 gene and invasion-related factors of breast cancer cells [J]. 2007, 87(2): 81-84.
    [60] Cheeks RJ, Canman JC, Gabriel WN, et al. C. elegans PAR Proteins Function by Mobilizing and Stabilizing Asymmetrically Localized Protein Complexes [J]. Curr. Biol. 2004, 14: 851-862.
    [61] Cheng NN, Kirby CM, Kemphues KJ. Control of cleavage spindle orientation Caenorhabditis elegans: the role of the genes par-2 and par-3 [J]. Genetics. 1995, 139: 549-559.
    [62] Wang Y, Oh SW, Deplancke B, et al. C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO [J]. Mechanisms of Ageing and Development. 2006, 127: 741-747.
    [63] Ji Li, Muneesh Tewari, Marc Vidal, et al. The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans [J]. Dev. Biol. 2007, 301: 82-91.
    [64] Watts JL, Etemad-Moghadam B, Guo S, Boyd L, et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3 [J]. Dev. 1996, 122: 3133-3140.
    [65] Nishimura T, Kato K, Yamaguchi T, Fukata Y, et al. Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity [J]. Nat Cell Biol. 2004, 6(4): 328-334.
    [66] Akimoto K, Takahashi R, Moriya S, Nishioka N, et al. EGF or PDGF receptors activate atypical PKC lambda through phosphatidylinositol 3-kinase [J]. EMBO J. 1996, 15: 788-798.
    [67] Kotani K, Ogawa W, Matsumoto M, et al. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes [J]. Mol Cell Biol. 1998, 18: 6971-6982.
    [68] Sanchez P, De Carcer G, Sandoval IV, et al. Localization of atypical protein kinase C isoforms into lysosome targeted endosomes through interaction with p62 [J]. Mol Cell Biol. 1998, 18: 3069-3080.
    [69]Moscat J, Diaz-Meco MT. The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters [J]. EMBO Rep. 2000, 1: 399-403.
    [70] Suzuki A, Yamanaka T, Hirose T, et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures [J]. J Cell Biol. 2001, 152: 1183-1196.
    [71] Joberty G, Petersen C, Gao L, Macara IG. The cell-polarity protein P?ar6 links Par3 and atypical protein kinase C to Cdc42 [J]. Nat Cell Biol. 2000, 2: 531-539.
    [72] Izumi Y, Hirose T, Tamai Y, et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3 [J]. J Cell Biol. 1998, 143: 95-106.
    [73] Noda Y, Takeya R, Ohno S, et al. Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C [J]. Genes Cell. 2001, 6: 107-119.
    [74] Lin D, Edwards AS, Fawcett JP, Mbamalu G, et al. A mammalian PAR-3-PAR-6 complex implicated inCdc42/Rac1 and aPKC signalling and cell polarity [J]. Nat Cell Biol. 2000, 2: 540-547.
    [75] Nagai-Tamai Y, Mizuno K, Hirose T, et al. Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells [J]. Genes Cells. 2002, 7: 1161-1171.
    [76] Harris TJ, Peifer M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila [J]. Cell Biol. 2005, 170: 813-823.
    [77] Nam SC, Choi KW. Interaction of Par-6 and Crumbs complexes is essential for photoreceptor morphogenesis in Drosophila [J]. Dev. 2003, 130: 4363-4372. [78 ]Tabuse Y, Izumi Y, Piano F, et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans [J]. Dev. 1998, 125: 3607-3614.
    [79] Suzuki A, Ishiyama C, Hashiba K, et al. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization [J]. J. Cell Sci. 2002, 115: 3565-3573.
    [80] Hutterer A, Betschinger J, Petronczki M, et al. Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis [J]. Dev. Cell. 2004, 6: 845-854.
    [81] Cuenca AA, Schetter A, Aceto D, et al. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases [J]. Dev. 2003, 130: 1255-1265.
    [82] Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila-PAR allels and differences. Science [J]. 2002, 298: 1946-1950.
    [84] Benton R, St Johnston D. A conserved oligomerization domain in Drosophila Bazooka/PAR-3 is important for apical localization and epithelial polarity [J]. Curr. Biol. 2003, 13: 1330-1334.
    [85] Vaccari T, Ephrussi A. The fusome and microtubules enrich Par-1 in the oocyte, where it effects polarization in conjunction with Par-3, BicD, Egl, and dynein [J]. Curr. Biol. 2002, 12: 1524-1528.
    [86] Cox DN, Lu B, Sun TQ, et al. Drosophila par-1 is required for oocyte differentiation and microtubule organization [J]. Curr. Biol. 2001, 11: 75-87.
    [83] Shulman JM, Benton R, St Johnston D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole [J]. Cell. 2000, 101: 377-388.
    [87] Wodarz A, Ramrath A, Grimm A. and Knust, E. Drosophila atypical protein kinase C associates with bazooka and controls polarity of epithelia and neuroblasts [J]. J. Cell Biol. 2000, 150: 1361-1374.
    [88] Bohm H, Brinkmann V, Drab M, et al. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity [J]. Curr. Biol. 1997, 7: 603-606.
    [89] Gotta M. At the heart of cell polarity and the cytoskeleton [J]. Dev. Cell. 2005, 8: 629-633.
    [90] Baas AF, Kuipers J, van der Wel NN, et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD[J]. Cell. 2004, 116: 457-466.
    [91] Mertens AE, Rygiel TP, Olivo C, et al. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the par polarity complex [J]. J. Cell Biol. 2005, 170: 1029-1037.
    [92] Johnson K, Wodarz A. A genetic hierarchy controlling cell polarity [J]. Nat. Cell Biol. 2003, 5: 12-14.
    [93] Martin SG, St Johnston D. A role for Drosophila LKB1 in anterior posterior axis formation and epithelial polarity [J]. Nature. 2003, 421: 379-384.
    [94] Etienne-Manneville S, Hall A. Rho GTPases in cell biology [J]. Nature. 2002, 420: 629-635.
    [95] Burbelo PD, Drechsel D, Hall A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases [J]. J. Biol. Chem. 1995, 270: 29071-29074.
    [96] Kroschewski R, Hall A, Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells [J]. Nat. Cell Biol. 1999, 1: 8-13.
    [97] Yasuda S, Oceguera-Yanez F, et al. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature [J]. 2004, 428: 767-771.
    [98] Takaishi K, Sasaki T, Kotani H, et al. Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK References cells [J]. J Cell Biol. 1997, 139: 1047-1059.
    [99] Etienne-Manneville S, Hall A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk [J]. Curr. Opin. Cell Biol. 2003, 15: 67-72.
    [100] Garrard SM, Capaldo CT, Gao L, et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6 [J]. EMBO J. 2003, 22: 1125-1133.
    [101] Johansson A, Driessens M, Aspenstrom P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1 [J]. J. Cell Sci. 2000, 113: 3267-3275.
    [102] Qiu RG, Abo A, Steven Martin G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation [J]. Curr. Biol. 2000, 10: 697-707.
    [103] Aceto D, Beers M, Kemphues KJ. Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans [J]. Dev Biol. 2006, 299(2): 386-397.
    [104] Gotta M, Abraham MC, Ahringer J. CDC-42 controls early cell polarity and spindle orientation in C. elegans [J]. Curr. Biol. 2001, 11: 482-488.
    [105] Waring DA, Kenyon C. Selective silencing of cell communication influences anteroposterior pattern formation in C. elegans [J]. Cell. 1990, 60: 123-131.
    [106] Hunter CP, Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos [J]. Cell. 1996, 87: 217-226.
    [107] Draper BW, Mello CC, Bowerman B, et al. MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos [J]. Cell. 1996, 87: 205-216.
    [108] Siomi H, Choi M, Siomi M C, et al. Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome [J]. Cell. 1994, 77: 33-39.
    [109] Bowerman B, Ingram MK, Hunter CP. The maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos [J]. Dev. 1997, 124: 3815-3826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700