云锦杜鹃菌根及其菌根真菌多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杜鹃花科(Ericaceae)大多数植物的根系在自然生境中形成一种特殊类型的内生菌根共生体,即杜鹃花类菌根(也称为欧石南类菌根)(Ericoid mycorrhizas,ERM).ERM对于改善植物营养吸收、增强对重金属离子的抗性、缓解环境因子的胁迫等方面具有重要的作用。人工接种ERM真菌对某些杜鹃花科植物的生长有明显促进作用。为了发掘和利用菌根的潜能,满足生态建设和园艺生产的需要,国际园艺学界对ERM进行了相关研究,特别是近年来这一问题受到广泛关注。我国杜鹃花科植物分布广泛,但对ERM研究几乎空白,尚未见到相关正式报道。云锦杜鹃(Rhododendron fortuneiL.)是原产我国的杜鹃花科杜鹃花属大叶常绿杜鹃花种类之一,观赏价值高且抗逆性突出,为珍贵的育种资源,因而在国际园艺史上占有重要地位。但是以该植物为代表的大叶常绿杜鹃花的引种栽培,一直是困扰我国园林园艺界的难题。本研究以云锦杜鹃为试验材料首次对我国ERM及其菌根真菌多样性进行分析,获得了大量的ERM真菌资源和显著的幼苗接种效应,将对推动我国ERM的研究、菌根技术在园林中的应用及杜鹃花引种栽培和繁育等技术问题的解决具有重要的意义。论文通过对云锦杜鹃菌根显微结构、分离真菌的形态及其遗传多样性、接种效应等方面的探索性研究,获得了以下主要结论:
     1.利用扫描电镜、锥虫兰染色压片和树脂半超薄切片法首次对自然生境中云锦杜鹃的毛根菌根侵染率和显微结构进行研究。结果显示:毛根表面不形成根毛结构,而是包裹着一层或致密或疏松的菌丝。菌根真菌的侵染一般发生在营养根和生长根的成熟根段,总侵染率比较高,都在65%以上。菌根与毛根解剖结构类似,由1层表皮细胞、1-2层皮层细胞和狭小中柱组成,表皮细胞内具有典型的ERM菌丝体结构。云锦杜鹃菌根90%以上含有菌丝体的表皮细胞壁加厚不明显。菌根表皮细胞内有两类形态差异明显的菌丝复合体:一类为粗菌丝形成紧密菌丝圈和另一类为细菌丝形成松散菌丝圈。
     2.作者对Pearson & Read(1973)建立的杜鹃花科植物根系内生真菌分离技术进行了优化,首次改良马丁氏培养基并成功应用于ERM真菌的分离,提高了真菌分离的效率。试验从4个云锦杜鹃自然分布地的根系中分离了280个菌株,开始了我国ERM真菌资源多样性的研究。通过对菌落形态、菌丝体显微特征、rDNA-ITS片段的RFLP图谱分析,把280个菌株分为17个类型(14个RFLP类型和3个未能进行分子鉴定的类型)。根据rDNA-ITS序列比对和Bootstrap检验结果:云锦杜鹃菌根分离真菌的主体仍是子囊菌,其rDNA-ITS序列与已知分离菌株序列相似性为89%—99%,14个RFLP类型中,有7个类型(即50%的类型)与现已经发现的杜鹃花类菌根真菌亲缘关系密切,分别为Oidiodendron maius Barron、Cryptosporiopsis ericae Siglersp.nov和5种Epacrid root endophyte同源或近缘种;2个类型为黑色有隔内生菌类(Dark Septate Root Endophytes,DSE),即Phialocephala类菌株;3个为未知类型的子囊菌类,1个为枝状枝孢霉类,1为未知菌种类型。研究还发现:同一地带的4个云锦杜鹃群落菌根分离真菌都具有丰富的多样性,大部分菌种类型在不同样地间具有一致性,70%以上的菌株类型为2个以上的样地共有;但不同样地的菌株类型也表现了明显的趋异性,华顶山和幕阜山森林公园主导菌株为Phialocephala fortinii wang &Wilcox类,而四明山森林公园和黄山风景区为Oidiodendron maius Barron类菌株。
     3.将分离到的真菌菌落接种云锦杜鹃幼苗,锥虫兰染色压片镜检幼苗毛根内是否具有ERM菌丝体,作为初步判断ERM真菌的标准。结果显示:17个菌株类型中,9个类型33个菌株接种苗毛根内检测到ERM结构,8个类型没有观察到ERM结构。初步确定9个菌株类型为ERM真菌,其中5个类型为其他ERM植物的菌根真菌同源或近缘类型,分别为Oidiodendron maius Barron及4个不同的Epacris root associatedfungus类菌株,2个类型,即Cladosporium cladosporioides和Fungal sp.R27近缘菌株,为本研究首次分离的新ERM真菌类型,Cryptosporiopsis ericae Sigler sp.nov1和Phialocephala fluminis Shearer,JL Crane & MA Mill.近缘类型是2个首次合成ERM的菌株类型。
     4.研究首次对多种类型的ERM菌株的接种效应进行研究。通过14个类型的菌株接种效应的统计分析表明:不论是否为ERM真菌菌株,绝大多数对接种幼苗的生长没有伤害作用;对云锦杜鹃接种幼苗具有明显促进作用的菌株都是确认的ERM真菌,其中大部分为其他ERM植物分离菌根真菌的同源种或近缘种。其中首次发现5个类型(3个Epacris root associated fungus、C.ericae、Fungal sp.R27的近缘菌株)的菌株能显著地增加接种幼苗的生物量。不同类型ERM菌株或同一类型不同菌株在接种效应上差异很大,接种苗干重的增加率多在20-250%之间,最高可达400%。5个ERM菌株在不同氮源培养基上纯培养和幼苗接种试验表明:不同的ERM菌株能够吸收单一有机氮源,并且能帮助寄主氮营养的吸收从而促进幼苗生物量的增加。菌株在不同氮源培养基上接种效应差异显著,5个菌株接种苗在有机氮BSA、精氨酸培养基上生物量增加显著高于氨态氮和对照培养基上的幼苗。
     以上研究结果表明:菌根在云锦杜鹃的生长发育中占有重要地位,菌根的形成对其幼苗的生长具有关键作用。接种菌根真菌,实现幼苗的早期菌根化,有希望成为解决大叶常绿杜鹃花繁育中幼苗生长缓慢、死亡率高等问题的一个良策。研究获得的菌种资源和技术方法,为优良菌剂的研制及菌根技术的应用奠定了基础,同时为探索植物与真菌之间的共生机制建立了良好的模式。因此,本研究实践价值和科学意义深远。
Most members of family Ericaceae have a distinctive form of the symbiosis referred to as ericoid mycorrhiza (ERM), which appear to be able to mobilize nutrients from organic matter and alleviate certain environmental stresses, such as readily available metals, poor or very free drainge and high or tow temperatures et al., and so facilitate the establishment and survival of Ericaceae. And some ERM fungal strains were found beneficial for the growth of Ericaceous plants in vitro or nurseries. In order to understand and utilize the mycorrhizal potentials, and satisfy the requirement of ecology constructing and horticulture producing, ericoid mycorrhiza has attracted abroad attention in overseas. In China, various ericaceous species are distributed widely in various types of forest vegetation. However, no fungal isolates have been reported from the roots of those plants. Rhododendron fortunei L., a broadleaf rhododendron, is originated and distributed widely in China. The research focus on the diversity of ericoid mycorrhizal fungi isolated from the hair roots of R. fortunei in natural habitats in China. The main experimental results are as follows:
     The microstructure and colonial rate of mycorrhizal root of R. fortunei were observed with electron microscope scanning and fresh mount of hair root stained with trypan blue and resin sectioning. The results showed that mean percent root cell colonization of hair roots from natural sites were over 65%; the hair roots consisted of one layer of epidermis cells and 1-2 layers cortical cells surrounding the stele, they did not form root hair and were covered with loose or compact fungal mantle; the presence of the mycorrhizal fungus in epidermal cells did not appear to disrupt the primary tissue structure of the root, except that mature epidermal contain ericoid mycorrhizal hyphal coils; the fungal complex were mostly observed in epidermal cells and the cell wall of 90% epidermal cells with fungus were not obviously thickened; as judged by the size and structure of the fungal complex, at least two types of fungi appeared to form mycorrhizal coils in epidermal cells. One type was a thick mycelium fungus which formed tight coils, the other was a thin mycelium fungus formed loose coils.
     We successfully modified the method of isolation of ericoid mycorrhizal fungi according to Pearson & Read (1973) from the ericaceous hair roots. Firstly Martin agar medium was modified and introduced to ERM fungi isolation. So the contamination rate of bacterium and actinomycetes were greatly decreased. In total, 280 slow-growing fungal isolates were obtained from hair roots of R. fortunei from 4 natural habitats. The isolates were initially grouped as 17 types based on the results of ITS-RFLP analysis and the colonial characters. ITS sequences were obtained for representative isolates from each RFLP type and compared phylogenetically with sequences for known ericoid mycorrhizal endophytes and selected ascomycetes. Most of fungal isolates were also ascomycetes, and the sequence similarity is 89%-99%. 7 types of 14 RFLP types are related to known ericoid mycorrhizal endophytes, such as Oidiodendron maius、Epacris microphylla root associated fungus、Epacrid root endophyte sp.. Cryptosporiopsis ericae et al.; 2 types are Phialocephala-like strains; 2 types are unclassified ascomycetes; 1 type is similar to Cladosporium cladosporioides; 1 type is unknown fungal strains. Among the fungal strains, over 70% types were Simultaneously isolated from the hair roots of 2 natural sites. The fungal isolate types are also different among 4 natural sites. Phialocephala fortinii-like strains are the dominant fungal isolates from Huading and Mufu mountain forest parks, while Oidiodendron maius strains are dominant in the isolates from the other two Rhododendron fortunei habitats.
     In order to verify ericoid mycorrhiza status, fungal strains of each type were inoculated on the seedlings of R. fortunei in vitro. During the inoculation experiment the most seedlings remained healthy with well-developed root system. Based on the results of fresh mount of hair roots stained with trypan blue, 9 types, 33 fungal strains, were initially identified as ERM fungi with typical ericoid mycorrhizal coils in epidermal cells of hair roots; 8 types were not detected fungal coils in the hair roots of inoculated seedlings. Among the 9 types putative ERM strains, 5 types were identified as Oidiodendron maius and different Epacris root associated fungus which are ERM fungi from other ERM plants; 3 types were confirmed as Cladosporium cladosporioides, Cryptosporiopsis ericae and Phialocephala ftuminis; 1 fungal type was unknown strains.
     Most ERM fungal strains showed obviously beneficial to growth of the seedlings, normally the biomass of colonized seedlings increased by 20-250%, the highest being 400%. Some Epacris root associated fungus, C. ericae and unknown fungal isolates were firstly shown significantly positive effects on the colonized seedlings. At the same time, 5 ERM fungal strains were tested for the ability to provide their host with access to inorganic and organic N. Regardless of which mycorrhizal fungus colonized the roots and which nitrogen source was provided; mycorrhizal plants grew better than nonmycorrhizal plants. There were, however, differences among the fungi in use of the N source. Colonized seedlings on nitrate and organic nitrogen grew much better than on ammoniacal nitrogen and control medium, especially on BSA medium.
     In conclusion, we suggested that the presence of ericoid mycorrhizal associations play an important role in success of R. fortunei at natural habitats and the growth of the seedlings at artificial conditions. In vitro or nursery inoculating seedlings with ERM strains maybe a good applied technique to resolve some problems in Rhododendron propagation and cultivation.
引文
[1]鲍思伟.自然降温过程中云锦杜鹃抗寒适应性研究-水分、渗透调节物的动态变化与低温半致死温度的关系.福建林业科技,2005,32(2):13-16
    [2]毕国昌,臧穆,郭秀珍.滇西北高山针叶林区主要林型下外生菌根真菌的分布.林业科学,1989,25(1):33-39
    [3]边才苗,金则新.天台山云锦杜鹃的开花与结实特性.园艺学报,2006,33(1):101-104
    [4]边才苗,金则新.云锦杜鹃林根际微生物及其生化特性的研究.土壤学报,2004,41(6):849-853
    [5]蔡卫东.林木菌根生物技术研究与应用现状简述.安徽林业科技,1998(2):43
    [6]陈可可,宣宇.滇西北亚高山针叶林带的外生菌根调查.云南植物研究,1986,8(3):229-304.
    [7]陈羽,弓明钦,仲崇禄等.菌根制剂在华南地区林业及农业的应用.广东林业科技,2004,20(4):50-53
    [8]戴玉明.湿地松菌根化育苗试验.安徽农业科学.2000,28(2):236
    [9]丁炳扬,方云亿.浙江杜鹃花属的研究.杭州大学学报,1989,16(2):194-200.
    [10]丁炳扬,吴欢笑,张慧明等.浙江杜鹃花属植物种子形态及其分类学意义.西北植物学报,1995,15(6):36-42
    [11]董甜,张惠文,张粤等.长白山四种赤杨丛枝菌根真菌侵染多样性的巢式PCR-RFLP 分析.应用生态学报,2006,17(10):1796-1800
    [12]方瑞征,闵天禄.杜鹃属植物区系的研究.云南植物研究,1995,17(4):359-379.
    [13]傅立国,陈潭秋,郎楷永等.中国高等植物,青岛:青岛出版社,2003,553-720
    [14]盖京苹,冯固,李晓林.丛枝菌根真菌的生物多样性研究进展.土壤,2005,37(3):236-242
    [15]弓明钦,陈应龙,仲崇录.菌根研究与应用.北京:中国林业出版社,1997,30-32
    [16]弓明钦,徐大平,促崇录.菌根生物多样性及其应用研究.北京:中国林业出版社,2000.146-150
    [17]关庆义.苗圃土壤熏蒸后阔叶树苗木的生长和内生菌根的发育.辽宁林业科技,1982,(1):15-22
    [18]管康林,吴欢笑,张慧明等.华顶山云锦杜鹃林衰退原因及对策.浙江林学院学报,2001,18(2):195-197
    [19]管康林,吴家森,范义荣等.云锦杜鹃林衰退原因及对策.浙江林学院学报 2001,18:195-197
    [20]郭秀珍,毕国昌.林木菌根及应用技术.北京:中国林业出版社,1989,126-131
    [21]韩桂云,孙铁珩,李培军等.外生菌根真菌在大型露天煤矿生态修复中的应用研究.应用生态学报,2002,12(9):1150-1152
    [22]何绍江,毛新国,李传涵.VA菌根化杉树苗抗酚能力的研究.湖北农学院学报,1999,19(2):107-109
    [23]花晓梅.林木菌根研究.北京:中国科学技术出版社,1995,323.
    [24]蒋家淡,林延生,詹正宜等.菌根生物技术应用现状与研究进展.江西农业大学学报,2001,23(2):216-219
    [25]蒋家慧,李敏,袁玉清等.花卉菌根研究进展.莱阳农学院学报,2002,19(1):27
    [26]蒋盛岩,张志光.真菌的分子生物学鉴定方法研究进展.生物学通报,2002,37(10):4-6
    [27]金培锋,边才苗,杨武杰等.云锦杜鹃种子繁育及幼树移栽试验.浙江林业科技,2007,27(2):34-36,53
    [28]金则新,李钧敏,顾奇萍.云锦杜鹃自然居群遗传多样性的ISSR分析.园艺学报,2006,33(6):1263-1267
    [29]柯世省,杨敏文.水分胁迫对云锦杜鹃光合生理和光温响应的影响.园艺学报,2007,34(4):959-964
    [30]柯世省.土壤干旱胁迫对云锦杜鹃水分利用效率的影响.河南师范大学学报:自然科学版,2007,35(2):150-153
    [31]匡治州,许杨.核糖体rDNA ITS序列在真菌学研究中的应用.生命的化学,2004,24(2):120-122
    [32]雷增普.外生菌根对植物根部病害病原菌拮抗作用研究.林业科学,1989,25(6):502-507
    [33]李钧敏,金则新,杨蓓芬.云锦杜鹃总黄酮含量及成分分析.西北林学院学报,2004,19(1):110-112
    [34]李晓红,肖宜安,龙婉婉等.井冈山自然保护区云锦杜鹃群落物种多样性研究.浙江林业科技,2005,25:17-20
    [35]李玉萍,王蕤,周银莲.树木菌根真菌美味红菇内源激素的提取及鉴定.真菌学报,1988.7(4):239-244
    [36]廖正乾,钟武洪.菌根菌在松类育苗造林中的应用研究.林业科技开发,1998,(4):28-29
    [37]林鹤鸣,周玉枝,姜凤歧等.外生菌根促进油松人工幼林生长的应用研究.沈阳农业大学学报,2001,32(4):274-277
    [38]林晓民,李振岐,王少先.真菌rDNA的特点及在外生菌根菌鉴定中的应用.西北农业学报 2005,14(2):120-125
    [39]刘润进,陈应龙.菌根学(第一版).北京:科学出版社,2007,161-162
    [40]刘永书.杜鹃花属植物的引种驯化.植物引种驯化集刊(第8集),1993:31-39
    [41]孟繁荣等编著.林木菌根学.东北林业大学也版社.1996,11-189
    [42]王金发,何炎明主编.细胞生物学实验教程.科学出版社,2004,22-37
    [43]王灶安主编.植物显微技术(农学专业用).农业出版社,1992,55-65
    [44]吴家森,庞加钱,周祖耀等.华顶山云锦杜鹃林地土壤肥力分析.浙江林业科技,2002,22(2):26-28
    [45]邢来君,李明春编著.普通真菌学.北京:高等教育出版社,1999,38,270-275
    [46]徐素琴.北美森林苗圃苗木根病及防治.林业译丛,1980(1):86-96
    [47]于琼花,张有珍.周平山等.天目杜鹃嫩枝扦插繁育试验.林业实用技术,2004(6):23-24
    [48]张长芹,罗吉风,苏玉芬.六种杜鹃花耐旱适应性研究.广西植物,2002,22(2):174-176
    [49]张春英,戴思兰.常绿杜鹃花叶片耐热性指标研究.观赏园艺学会年会论文集,2006,409-412
    [50]张春英,戴思兰.杜鹃花的育种发展及现代育种.观赏园艺学会年会论文集,2005,216-218
    [51]张春英,戴思兰.杜鹃花类菌根研究进展.北京林业大学学报,2008(in press)
    [52]于芳,张春英,尹丽娟等.云锦杜鹃试管苗菌根真菌接种技术及其效应研究.福建农林大学学报,2008(in press)
    [53]张纪中.微生物分类学.上海:复旦大学出版社,1991,157-239
    [54]张立中.树木菌根的应用.辽宁林业科技,1984(5):2-7,12
    [55]张良诚.森林树木的抗冻性.林木译丛,1980(1):58-64
    [56]章荷生.辽宁省西部林木菌根真菌应用技术研究.辽宁林业科技,1988(5):39-47
    [57]赵斌,何绍江.微生物学实验(第一版).北京:科学出版社,2002,88-89
    [58]赵丽娟,李家湘,邓家兴.湖南平江幕阜山云锦杜鹃群落特征的分析.中南林学院学报,2005,25(2):81-84
    [59]赵志鹏,郭秀珍.外生菌根真菌纯培养的生态学研究.林业科学研究,1989,2(2):136-141
    [60]浙江省植物志编辑委员会.浙江植物志(第5卷).杭州:浙江科学技术出版社,1989,9-10
    [61]朱春艳,李志炎,鲍淳松等.云锦杜鹃组培快繁技术研究.中国农学通报,2006,22(5):335-337
    [62]朱有勇,王云月.大丽轮枝菌核糖体基因ITS区段的特异扩增.植物病理学报,1999,29(3):250-255
    [63]Aanen D K,Kuyper T W,Hoekstra R F.A widely distributed ITS polymorphism with in a biological species of the extomycorrhizal fungus Hebeloma velutipes.Mycological Research 2001,105(3):284-290
    [64]Addy H D,Hambleton S,Currah R S.Dlstribution and molecular characterization of the root endophyte Phialocephala fortinii along an environmental gradient in the boreal forest of Alberta.Mycological Research.2000,104:1213-1221
    [65]Ahlich K,Rigling D,Holdenrieder O,et al.Dark septate hyphomycetes in Swiss conifer forest soils surveyed using Norway-spruce seedlings bait.Soil Biology and Biochemistry.1998,30(8-9):1069-1075
    [66]Allen T R.,Miller T,Berch S M,et al.Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhiral roots.New Phytologist.2003,160:255-272
    [67]Amicucci A,Zambonelli A,Giomaro G.Identification of ectomycorrhizal fungi of the genus Tuber.Molecular Ecology.1998,7(3):273-277
    [68]Anderson I C,Chambers S M,Cairney J W G.ITS2 RFL P and ITS sequence diversity in Pisolithus from central and eastern Australian sclerophyll forests.Mycological Research,2001,105(11):1304-1312
    [69]Anderson J B,Stasovski E.Molecular phylogeny of northern hemisphere species of Armillaria.Mycologia.1992,84:505-516
    [70]Ashford A.E.,Allaway W.G.,Reed M.L.A Possible Role for the Thick-walled Epidermal Cells in the Mycorrhizal Hair Roots of Lysinema ciliatum R.Br.and other Epacridaceae.Annals of Botany.1996,77:375-381
    [71]Bascot F,Wipf D,DiBattista C,et al.DNA polymorphism in morels:PCR-RFLP analysis of the ribosomal DNA spacers and microsatellite primed PCR.Mycological Research.1996,100:63-71
    [72]Bcchko J,Klassen G R.Detection of length heterogeneity in the ribo somal DNAof Pyth ium ultimum by PCR amplification of the intergenic region.Current genetics.1990,18:203-205
    [73]Bending G D,Read D J.Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi.Mycol Res.1997,101:1384-1354
    [74]Bending G D,Read D J.Nitrogen mobilization from protein polyphenol complex by ericoid and ectomycorrhizal fungi.Soil Biology Biochemistry.1996,28:1603-1612
    [75]Berth S M,Allen T R,Berbee M L.Molecular detection,community structure and phylogeny of ericoid mycorrhizal fungi.Plant and Soil.2002,244:55-66
    [76]Berger R,Perotto S,Girlanda M,et al.Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant(Quercus ilex).Mol.Ecol.2000,9:1639-1650
    [77]Bever JD,Smith SE,Smith FA.Host-specificity of AM fungal population growth rates can generate feedback on plant growth.Diversity and integration in mycorrhizas.Plant and Soil.2002,244(1-2):281-290
    [78]Bonfante P,Lanfranco L,Cometti V.Inter and intra-specific variability in strains of the ectomycorrhizal fungus Suillus.Microb Res.1997,152(3):287-292
    [79]Bonfante P.Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris.Trans.Br.Mycol.Soc.1980,75:320-325
    [80]Bonfante-Fasolo P,Berta G,Gianinazzi-Pearson V.Ultrastructure aspects of endomycorrhiza in the Ericaceae.Ⅱ.Host- endophyte relationship in Vaecium myrtillus L.New Phytol.1981,89:219-224
    [81]Bonfante-Fasolo P,Gianinazzi-Pearson,V.Ultrastructure aspects of endomycorrhiza in the Ericaceae.Ⅰ.Naturally infected hair roots of Calluna vulgaris L.Hull.New Phytol.1979,83:739-744
    [82]Bougoure D S,Cairney,J W G.Fungi associated with hair roots of Rhododendron lochiae (Ericaceae)in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods.Environmental Microbiology.2005,7(11):1743-1754
    [83]Bradly R,Burt A J,Read D.J.Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vuigaris.Nature(Lond.)1981,292:335-337
    [84]Briggs L,Ashford A E.Structure and composition of the thick wall in hair root epidermal cells of Woollsia pungens.New Phytol.2001,149:219-232
    [85]Burke R M,Cairney J W G.Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid state fermentation conditions.Mycological research.1997,101:1135-1139
    [86]Cairney J W G,Ashford A E.Biology of mycorrhizal associations of epacrids (Ericaceae).Tansley Review No.135.New Phytol.2002,154:305-326
    [87]Cairney J W G,Burke R M.Do ecto and ericoid mycorrhizal fungi produce peroxidase activity.Mycorrhiza.1998,8:61-65
    [88]Cairney J W G,Meharg A A.Ericoid mycorrhiza:a partnership that exploits harsh edaphic conditions.European Journal of Soil Science.2003,54:735-740
    [89]Cairney J W G,Sawyer N A,Sharpies J M,et al.Intraspecific variation in nitrogen source utilization by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae(Read)Korf and Kernan.Soil Biology & Biochemistry.2000,32:1319-1322
    [90]Cardes M,Bruns T D.ITS primers with enhanced specthcity for basidiomyceted-application to the identification of mycorrh izae and rusts.Molecular Ecology.1993,2:113-118
    [91]Chaanin J A and Preil w.Kalktolerante unterlagen ermoeglichen kultur von Rhododendron auch auf unguenstigen standort.TASPO gartenbaumagazin.1996,44-46
    [92]Chen A,Chambers S M,Cairney J W G.Utilization of organic nitrogen and phosphorus sources by mycorrhizal endophytes of Woollsia pungens(Cav.)F.Muell.Mycorrhiza,1999,8:181-187
    [93]Crayn D.M.& Quinn C.J.The evolution of the atpβ-rbcL intergenic spacer in the epacrids (Ericales)and its systematic and evolutionary implications.Molecular Phyiogenetics and evolution.2000,16:238-252
    [94]Diaz A,Green I,Benvenuto M,et al.Are ericoid mycorrhizas a factor in the success of Calluna vulgaris heathland restoration.Restoration Ecology.2006,14(2):187-195
    [95]Dobernig G B,Haselwandter K.Effect of ferric iron on the release of siderphores by ericoid mycorrhizal fungi.In:Read D J,Lewis L H,Fitter A H,et al.Mycorrhizas in ecosystem:CAB International-London.Oxford:Oxford university press.1992:252-257
    [96]Duchesne LC,Anderson J B.Location and direction of transcription of the 5S rRNA gene in Armillaria.Mycological Research,1990,94:266-269
    [97]Egger K N,Sigler L.Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosoma I DNA.Mycologia.1993,85:219-230
    [98]Farmer D J,Sylvia D M.Variation in the rDNA ITS of ectomycorrhizal fungi.Mycol Res.1998,102(7):859-865
    [99]Feibelman T,Bayman P,Cibula W G.Length variation in the internal transcribed spacer of ribo somal DNA in chanterelles.Mycological Research.1994,98:614-618
    [100]Gardes M,Fortin J A,M ueller GM,et al.Restriction fragment length polymorphisms in the nuclear ribosomal DNA of four Laccaria spp.:L.bicolor,L.laccata,L.proxima,and L.amethystine.Phytopathology.1990,80:1312-1317
    [101]Gardes M,Bruns T.ITS primers with enhanced specific for basidlomycete application to the identification of mycorrhizae and rusts.Molecular Ecology,1993,2:113-118
    [102]Gonzalez V,Arenal F,Platas G,et al.Molecular typing of Spanish species of Amanita by restriction analysis of the ITS region of the DNA.Mycological Research.2002,106(8):903-910
    [103]Grünig C R,Sieber T N,Rogers SO,Holdenrieder O.Spatial distribution of dark septate endophytes in a confined forest plot.Mycological Reearch.2002,106:832-840
    [104]Hambleton S,Currah R S,Egger K N.Phylogenetic relationships of ascomycetous root endophytes of the Ericaceae inferred from 18S rDNA sequence analysis.In:Ahonen-Jonnarth U,Danell E,Fransson P,Karén O,Lindahl B,Rangel I,Finlay R,eds.Abstracts of the Second International Conference on Mycorrhiza.Uppsala.Sweden:Swedish University of Agriculture Science.1998,78
    [105]Hambleton S,Egger K N,Currah R S.The genus Oidiodendron:species delimitation and phylogenetic relationships based on nuclear ribosomal DNA analysis.Mycologia.1998,90:854-869
    [106]Hambleton S,Currah R S.Fungal endophytes from the roots of alpine and boreal Ericaceae.Canada Journal of Botany.1997,75:1570-1581
    [107]Henrion B,Letacon F,Martin F.Rapid identification of genetic variation of ectomycorrhizal fungi by amplificationof ribosomal RNA genes.New Phytol.1992,122:289-298
    [108]Hijr M,Hosny M,van Tuinen,et al.Intraspecific ITS polymorphism in Scutello sporacatanea (Glomales,Zygomycota)is structured w ith in multinucleate spores.Fungal Genetic and Biology.1999,26:141-151
    [109]Horton T R,Bruns T D.Multiple-host fungi are the most frequent and abundant extomycorrhizal types in a mixed stand of Douglas fir(Pseudotsuga menziesii)and bishop pine (Finus muricata).New Phytoi.1998,139:331-339
    [110]Hu J G,Vick B A.Target region amplification polymorphism:a novel marker technique for plant genetyping.Plant Mol Biol Rep.2003,21:289-294
    [111]Hughes KW,Petersen RH,Johnson JE,et al.Infragenic phylogeny of Collybia based on sequences of ribosomal ITS and LSU regions.Mycological Research,2001,105(2):164-172
    I112]Hutton B.J.,Dixon K.W.And Sivastithamparam.K.Ericoid endophytes of Western Australian heaths(Epacridaceae).New Phyrtol 1994,127:557-566
    [113]Iracabal B,Labarere J.Restriction site and length polymorphism of the rRNA unit in the cultivated basidiomycete Pleurotus comucopiae.Theoretical and Applied Genetics.1994,88:824-830
    [114]Jansa J,Vosatka M.In vitro and post vitro inoculation of micropropagated rhododendrons with ericoid mycorrhizal fungi.Applied Soil Ecology.2000,15(2):125-136
    [115]Jennifer N.Bennett.Cindy E.Prescott.Organic and inorganic nitrogen nutrition of western red cedar,western hemlock and salal in mineral N-limited cedar-hemlock forests.Oecologla.2004,141:468-476
    [116]Johansson M.Fungal associations of Danish Calluna vulgaris roots with special reference to ericoid mycorrhiza.Plant and Soil 2001,231:225-232
    [117]Jorgen P,Peter H,Alf E,et al.Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field.Oecologia.2003,137:252-257
    [118]Jumpponen A,Dark septate endophytes-are they mycorrhizal? Mycorrhiza.2001,11:207-211
    [119]Jumpponen A,Trappe J M.Dark septate endophytes:a review of facultative biotrophic rootcolonizing fungi.New Phytol.1998,140:295-310
    [120]Karen O,Hogberg N,Dah lberg A,et al.Inter and intraspecific variation in the ITS2 region of rRNA of ectomycorrhizal fungi in Fenno scandia as detected by endonuclease analysis.New Phytol.1997,136:313-326
    [121]Karen O,Hogberg N,Dah lberg A,et al.Inter and intra-specific variation in the ITS2 region of rRNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis.New Phytol.1997,136:313-326
    [122]Koron D,Gogala N.The use of mycorrhizal fungi in the growing of blueberry plants(Vaccinium corymbosura L.).Acta Horticulturae.2000,525:101-106
    [123]Kosola KR,Workmaster BA,Spada PA.Inoculation of cranberry(Vaccinium macrocarpon)with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx.New Phytol.,2007,176(1):184-196
    [124]Lacourt I,Girlanda M,Perotto S,et al.Nuclear ribosomal sequence analysis of Oidiodendron.towards a redefinition of ecologically relevant species.New Phytol.2001 149:565-576
    [125]Leake J R,Miles W.Phosphodiesters as phosphorus sources for mycorrhizal fungi and their host plants.1.Phosphodiesterase production and the utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphus ericae(Read)Korf and Kernan.New Phytol 1996,132:435-444
    [126]Leake J R,Read D J.Experiments with ericoid mycorrhiza.In:Norris J R,Read D J,Varma A K.Techniques for mycorrhizal research:methods in microbiology,London:Academic Press,1991,435-436
    [127]Liu R J,Wang F Y.Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi.Mycorrhiza.2003,13:123-127
    [128]Lloyd M S A,Chambers S,Dodd M,et al.Diversity of the ribosomal internal transcribed spacers with in and among isolates of Glomus mosseae and related mycorrhizal fungi.New Phytol.1996,133:103-111
    [129]Martin F,Diez J,Dell B,et al.Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences,New Phytol.2002,153(2):345-357
    [130]Marrs R H,Bannister P.The adaptation of Calluna vulgaris(L.)Hull to contrasting soil types.New Phytol.1978,81:753-761
    [131]Martino E,Franco B,Piccoli G,et al.Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizai fungus Oidiodendron mainus.Molecular & Cellular Biochem istry.2002,231(1-2):179-185.
    [132]Martino E,Perotto S,Parsons R,et al.Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites.Soil Biology & Biochemistry,2003,35:133-141.
    [133]Martino E,Turnan K,Girlanda M,et al.Ericoid mycorrhizal fungi from heavy metal polluted soils:their identification and growth in the presence of zinc ions.Mycological Research.2000,104:338-344.
    [134]Massicotte H B,Melville L H,Peterson R L.Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada.Can.J.Bot 2005,83:1057-1064
    [135]Masuhara G,kimura S,Katsuya K.Seasonal changes in the mycorrhizae of Bletilla striara (Orchidaeae).Transaction of the Mycological Society of Iapan.1988,29(1):25-31
    [136]Mclean C B,Cunnington J H,Lawrie A C.Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae.New Phytol.,1999,144:351-358
    [137]Mclean C,Lawrie A C.Patterns of root colonization in Epacridaceous plants collected from different sites.Annals of Botany.1996,77:405-411
    [138]Meharg A A,Cairney J W G.Co-evolution of mycorrhizal symbionts and their hosts to metalcontaminated environments.Advances in Ecological Research.2000,30:69-112.
    [139]Midgley D J,Chambers S M,Cairney J W G.Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighbouring Ericaceae plants in the field.Plant and Soil 2004,259:137-151
    [140]Miller O K J.Taxonomy of Ecto-and Ectendomycorrhizal fungi.In:Schenck N C ed.Methods and Principle of Mycorrhizal Research.1982,91-101.
    [141]Monni S,Salemaa M,Millar N.The tolerance of Empetrum nigrum to copper and nicke.Environmental Pollution.2000,109:221-229.
    [142]Monni S,Salemaa M,White C,et al.Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter,in southwest Finland.Environmental Pollution.2000,109:211-219.
    [143]Monreal M,Berth S M,Berbee M.Molecular diversity of ericoid mycorrhizal fungi.Can.J.Bot.1999,77:1580-1594.
    [144]Myers M D,Leake J R.Phosphodiesters as phosphorus sources for mycorrhizal fungi and their host plants.Ⅱ.Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon Ait.Hew Phytol.1996,132:445-452.
    [145]Naik B S,Shashikala J,Krishnamurthy Y L.Study on the diversity of endophytic communities from rice(Oryza sativa L.)and their antagonistic activities in vitro.Microbiological Research,2008(in press)
    [146]Newman E I,Heap A J,Lawley R A.Abundance of mycorrhizas and root surface microorganisms of plantago lanceolata in relation to soil and vegetaton A multi-variateaproach.New Phytol.1981,89:95-108
    [147]Norris J.R.,Read D.J.,Varma A.K.Techniques for mycorrhizal research:methods in microbiology.London:Academic Press,1991,435-436.
    [148]O'Conner PT,Smith SE,Smith FA.Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland.New Phytol.2002,154:1,209 -218
    [149]Olsson P A,Munzenberger B,Mahmood S,et al.Molecular and anatomical evidence for a three-way association between Pinus sylvestris and the ectomycorrh izal fungi Suillus bovines and Gomphidius roseus.Mycol.Res.2000,104(11):1372-1378.
    [150]Pritsch K,Boule H,Munch J C.Characterization and identification of black alder ectomycorrhizas by PCR-R FLP analyses of the rRNA internal transcribed spacer(ITS).New Phytol.1997,137:357-369
    [151]Patchara P P,Osborn T C,Williams P H et al.Genetic analysis and identification of amplified fragment length polymorphism marker linded to the almla virulenc gene of Lepeosphaeria mucnlans.Phytopatho.1998(88):1068-1072.
    [152]Pearson V,Read D J.The biology of mycorrhiza in Ericaceae,I:The isolation of the endophyte and synthesis of mycorrhizas in aseptic cultures.New Phytol.1973,72:371-379
    [153]Peintner U,Moser M M,Thomas K A,et al.First records of ectomycorrhizal Cortinarius species(Agaricales,Basidiomycetes)from tropical India and their phyiogenetic position based on rDNA ITS sequences.Mycological Research.2003,107(4):485- 494
    [154]Peretto R,Perotto S,Faccio A,Bonfante-Fasolo P.Cell surface in Calluna vulgaris L.hair roots.In situ localization of polysaccharidic components.Protoplasma.1990,155:1-18
    [155]Perotto S,Bonfante P.Genetic and functional diversity of ericoid mycorrhizal fungi.Symbiosis.1998,25:19-27
    [156]Perotto S,Girlanda M,Martino E.Ericoid mycorrhizal fungi:some new perspectives on old acquaintances.Plant and Soil 2002,244:41-53.
    [157]Peterson R L,Massicotte H B,Melville L H.Mycorrhizas:anatomy and cell biology.NRC Research Press,Ottawa.CABI Publishing.2004
    [158]Peterson T A W,Mueller C,Englander L.Anatomy and ultrastructure of a Rhododendron rootfungus association.Can.J.Bot.1980,58(23):2421-2433.
    [159]Pieter V,Rene H,Marjo B,et al.AFL P:a new technique for DNA fingerprinting.Nucleic Acids Research.1995,23(21):4407-4414.
    [160]Powell C L.The effect of ericoid mycorrhizal fungus Pezizella ericae(Read)on the growth and nutrition of seedling of blueberry(Vaccinium corymbosum L.).J.Amer.Soc.Hort.Sci.1982,107(6):1012-1015.
    [161]Pritsch K,Boule H,Munch J C.Characterization and identification of black alder ectomycorrhizas by PCR-RFLP analyses of the rRNA internal transcribed spacer(ITS).New Phytol,1997,137:357-369
    [162]Read D J.Mycorrhizas in ecosystems.Experlentia.1991,46:376-390
    [163]Read D J.Pezizella ericae sp.nov.The perfect state of a typical mycorrhizal endophyte of Ericaceae.Transactions of the British Mycological Society.1974,63:381-382
    [164]Read D J.The structure and function of the ericoid mycorrhizal root.Annals of Botany.1996,77:365-374
    [165]Sakakibara S M,Jones M D,Gillespie M,et al.A comparison of ectomycorrhiza identification based on morphtyping and PCR-RFL P analysis.Mycological Research.2002,106(8):868-878
    [166]Seviour R J,Willing R R,Chilvers G A.Bassidiocarps associated with ericoid mycorrhizas.New Phytol.1973,72:381-385
    [167]Sharpies J M,Chambers S M,Meharg A A,et al.Genentic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites.New Phytol 2000,148:153-162
    [168]Sharples J M,Meharg A A,Chambers S M,et al.Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae.Plant Physiology.2000,124:1327-1334.
    [169]Sharples J M,Meharg A A,Chambers S M,et al.Arsenate resistence in the ericoid mycorrhizal fungus Hymenoscyphus ericae.New Phytol.2001,151(1):265-270.
    [170]Sharples J M,Meharg A A,Chambers S M,et al.Symbiotic solution to arsenic contamination.Nature.2000,40(4):951-952.
    [171]Sigler L,Allan T,Lim S R,et al.Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America.Studies in Mycology.2005,53:53-62
    [172]Singh G,Mukerji K G.Ericoid Mycorrhiza Isolation and Identification.In:Mukerji K G,Manoharachary C,Chamola B P.Techniques in mycorrhizal studies.Netherlands,Dordrecht:Kluwer Academic Publishers.2002,345-383.
    [173]Smith S E,Read DJ.Mycorrhizal symbiosis.London,UK:Academic Press,1997.
    [174]Sokolovski S G,Meharg Y A,Maathuis F J.M.Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae.New Phytol.2002,155:525-530.
    [175]Starrett M C,Blazich F A,Shafer S R,et al.In vitro colonization of micropropagated Pieris floribunda by ericoid mycorrhizae.I.Establishment of mycorrhizae on microshoots.HortScience.2001,36(2):353-356.
    [176]Starrett M C.Isolation,storage,and use of ericoid mycorrhizal fungi for improved acclimatization and subsequent growth of micropropagated Pieris floribunda.USA,North Carolina State:University of North Carolina State.1996,43-45
    [177]Steinke E,Williams P G,Ashford A E.The structure and fungal associates of mycorrhizas in Leucopogon parviflorus(Andr.)Lindl.Annals of Botany.1996,77:413-419
    [178]Strandberg M,Johannsson M.Uptake of nutrients in Calluna vulgaris seed plants growth with and without mycorrhiza.For.Ecol.Mgmt.1999,114:129-135
    [179]Stribley D P,Read D J.The biology of mycorrhiza in Ericaceae Ⅳ.The effects of mycorrhizal infection on the uptake of 15N from labeled soil by Vaccinium macrocarpon Ait.New Phytol 1974,73:1149-1155
    [180]Thomas K A,Peintner U,Moser M M,et al.Anamika,a new mycorrhizal genus of Cortinariaceae from india and its phylogenetic position based on ITS and LSU sequences.Mycological Research.2002,106(2):245- 251
    [181]Usuki F,Abe J P,Kakishima M.Diversity of ericoid mycorrhizl fungi isolated from hair roots of Rhododendron obtusum var.Kaempferi in a Japanese red pine forest Mycoscience.2003,44:97-102
    [182]Usuki F,Narisawa K.Formation of structures resembling ericoid mycorrhizas by the root endophytic fungus Heteroconium chnetospira within roots of Rhododendron obtusum var.kaempferi.Mycorrhiza.2005,15:61-64.
    [183]Vandenkoornhuyse P,Leywal C.SSU rDNA sequencing and PCR-fingerprinting reveal genetic variation with in Glomus mosseae.Mycologia.1998,90(5):791-797
    [184]Vohnik M,Albrechtova J,Vosatka M,The inoculation with Oidiodendron maius and Phialocephala fortinii alter sphosphorus and nitrogen uptake,foliar C:N ratio and root biomass distribution in Rhododendron cv.Azurro.Symbiosis.2005,40(2):87-96
    [185]Walter Magor.The history of Rhododendron.American Rhododendron Society Notes.2002
    [186]White T J,Bruns T,Lee S,et al.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In PCR Protocols:M.A.Innis,D.H.Gelfand,J.J.Sninsdy&T.J.W h ite,eds.A guide to methods and applications.Academic Press(San Diego),1990.315-322
    [187]Xiao G,Berch S M.Diversity and abundance of ericoid mycorrhizal fungi to form mycorrhizal fungi of Gaultheria shallon on forest clearcut.Canadian Journal Botany.1996,74:337-346
    [188]Xiao G,Berch S M.Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver island and impacts on growth in vitro of Gaultheria shallon.Mycorrhiza.1999,9:145-149
    [189]Xiao G,Berch S M.The ericoid mycorrhizal fungi of Gaultheria shallon.Mycologia.1992,84:470-471
    [190]Yang W Q,Goulart B L,Demchak.Assessing organic nitrogen acquisition of ericoid mycorrhizae in highbush blueberry(Vaccinium corymbosum L.)plants by using an ~(15)N Tracer.HortScience.1998,33:467
    [191]Yang W Q,Goulart B L,Demchak.Nitrogen acquisition efficiency of ericoid mycorrhizae in high-bush blueberry(Vaccinium corymbosum L.)plants.HortScience.1998,33:467-468
    [192]Zabeau M,Vos P.Selective restriction fragment amplification:a general method for DNA fingarprints.European Patent Application 0534858,1993
    [193]Zang M,Chen K K.Ectomycorrhizal fungi associated with alpine conifers from southwestern China.Acta Mycol.Sin.1990,9(2):128-136
    [194]Zijlstra J D,Hof P V,Baar J,et al.,Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass,Deschampsia fleexuosa.Studies In Mycology.2005,53:147-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700