内源酶生物预处理强化污泥厌氧消化效能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥厌氧消化是目前应用最为广泛的污泥处理方法,但其处理周期长,需要大量的基建投资和占地面积。基于污泥胞外聚合物(EPS)的化学组成,在处置污泥中加入水解酶进行预处理,不仅能够提高污泥的厌氧可生化性,缩短消化时间,而且具有容易控制、不产生二次污染的优点。本文以内源酶产生菌的分离与筛选为基础,开展了环境因素对其生长及产酶特性的影响、菌株的发酵动力学特征及发酵液的酶学特性等基础研究。并利用菌株发酵液作为内源性水解酶处理污泥,考察了不同处理方式和条件对污泥水解酸化的影响。将预处理后污泥进行厌氧消化,通过BMP(Biochemical Methane Potential)实验,考察预处理对污泥产气、有机物去除效果和微生物群落的影响,并对内源酶预处理污泥强化厌氧消化效能的机制进行了探讨。
     经富集、分离和筛选,从污泥中优选得到4株高效产酶菌株,且能在灭菌污泥中生长产酶。其中,菌株WYDF和WYZZ分别属于枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis),主要产生淀粉酶;菌株WYC和WYE均属嗜水气单胞菌(Aeromonas hydrophila),主要产生蛋白酶。培养温度、碳源、氮源、培养液初始pH都可以影响菌株的生长和酶的产生。在优化培养条件下,经34h的发酵,菌株WYDF、WYZZ、WYC和WYE的蛋白酶活性可分别达到121、158、671、和552U/mL;WYDF和WYZZ的淀粉酶活性分别达到162和158U/mL。胞外酶分子量分析结果表明,该4株菌所产生的淀粉酶和蛋白酶具有多样性,可用于组成复杂的胞外聚合物和细胞溶出物的水解。
     以分离得到的菌株发酵培养液作为内源性水解酶预处理污泥,考察单一的内源酶或任意两种内源酶等量复配后,处理温度、时间、不同内源性水解酶复配比例对预处理效果的影响。结果表明,在中温范围内,内源酶预处理污泥的最佳温度为37℃,在此温度下,发酵7h即可达到较为理想的污泥水解效果。菌株WYDF产生的内源水解酶37℃下处理污泥28h时SCOD和VFAs增量分别为3152和1803mg/L,此时SCOD/TCOD达到最大值11.1%,与未处理污泥相比SCOD和VFAs含量分别提高了142%和219%;使粒径在2001000m固体颗粒减少,粒径在3070m的絮体量增加。随着预处理时间的延长,各试样中VFAs的乙酸含量逐渐降低。优化内源淀粉酶和蛋白酶配比,研究不同配比对预处理效果的影响,结果发现利于有机物的溶出和VFAs产生的比例均在1:3时最佳。
     通过生物化学甲烷势的研究发现,37℃下内源水解酶预处理,促使污泥产气量增加、产气稳定性增强;例如WYDF内源酶单独处理后,其厌氧消化25d产气量由原污泥633mL提升至702mL,VS去除率由36.02%增至39.14%,甲烷产率由137mL CH4/g VSadded提升至161mL CH4/g VSadded。与单一内源酶预处理相比较,两种内源酶复配后更能有效的提高污泥厌氧消化性能;不同内源酶配比存在最优比例。
     通过污泥粒径、表面特征、内源酶的稳定性和微生物群落分析,内源酶预处理污泥强化厌氧消化效能的主要机理包括:内源酶水解胞外聚合物为厌氧消化菌群提供了可直接利用的碳源和能源,促使产酸发酵菌迅速繁殖,进而促进产甲烷菌群的滋生与壮大;胞外聚合物的消失使细菌细胞壁得以暴露加速了其在厌氧消化过程中的溶胞速度;内源酶可持续作用于细菌细胞释放的碳水化合物和蛋白质加速了厌氧消化进程。
Anaerobic digestion has been widely adopted for the treatment of municipal sludge before final diposal; it is considered a major and essential part of a modern WWTP. In terms of the composition of Extracellular Polymeric Substance, adding hydrolase may be another pretreatment way to enhance sludge biogegradability and reduce hydraulic retention time.
     In this work, hydrolyse producing bacteria were isolated from waste activated sludge; effects of cultivation condition and nutritional factors on enzyme producting capability, the basic property of the model of batch liquid fermentation kinetics and enzymatic characteristics of stains were investigated; the fementation liquid which containing hydrolase was adding to waste activated sludge as endogenouse hydrolase to strengthen the sludge hydrolysis efficiency, and effect of different temperatures, time, enzyme on hydrolytic and acidification. Biochemical Methane Potential (BMP)tests were carried out to assess sludge biodegradability, in the same time, mechanism of endogenouse hydrolase strengthen anaerobic digestion of sludge was discussed.
     Four strains with high and steady amylase or protease activity were isolated from sludge; furthermore, the strains can be cultured in sterilized sludge, retaining partial enzymatic activity. Physiological and biochemical analysis showed that the strain was Bacillus subtilis, cillus licheniformis, Aeromonas hydrophilaand and Aeromonas hydrophila respectively, and we named them WYDF、WYZZ、WYC and WYE. WYDF and WYZZ produce amylase, mainly; WYC and WYE produce protease. Bacteria growth mass and enzyme producing activity were effected by carbon source, nitrogen source and initial pH; the growth and enzyme producing is not simultaneous, and both of them kinetics were established. The crude enzyme fementation of the four strains were separation and purification, the results show that each of each crude enzyme is different and the mixture of several kinds enzyme.
     The effects of temperatures, time and mixed proportion of two kinds of endogenous enzyme on sludge pretreatment efficiency were investigated. The results showed that temperature of pretreatment play a critical role in the enzyme hydrolysis sludge progress; at the middle temperature,37℃is suitable for endogenous enzyme pretreatment,and7h is enough for a efficient sludge solubilization. Endogenous which procuded by strain WYDF presents the strongest ability to hydrolyze and acidize the sludge. The concentration of SCOD and VFAs increased by as much as142%and219%when the sludge was treated for28h, at37℃compared to a control (without adding of endogenous hydrolysis); SCOD/TCOD reach up to11.1%; solid particle ranged from200to1000m was reduced, the number of3070m increased. All samples, the acetic acid content increased with respect to pretreatment duration.
     Effect of proportion between amylase and protease on pretreatment efficiency was studied. The result showed that the ratio was1:3which was beneficial to produce VFAs and organic dissolution.
     Biochemical Methane Potential tests were carried out to evaluate the effect of different enzyme pretreatment condition on sludge subsequent anaerobic digestion. It shows that pretreated sludge by endogenous no matter which strain the anaerobic digestion efficiency was impoved. For the sludge pretreated by WYDF, volatile solids removal rate, VS removal rate and methane productivity were improved from633to702mL,36.02%to39.14,137to161mL CH4/g VSadded, respectively. It was compared to untreated sludge, at the end of the test (25d). Mixed enzyme improved sludge anaerobic degradation compared with hydrolase used alone; optimal proportion exists in different endogenous hydrolase for sludge pretreatment.
     The change of sludge surface configurationin were observed before and after enzymatic treat by scanning electron microscope, and the change of particle size was messured, in order to provide some insights into sludge disintegration process. Results indicate that endogenous enzyme disintegrate sludge, improve the bioavailbility, reduce the number of larger size solid by hydrolysis EPS and destroy the structure of filamentous bacteria. In addition, enzyme will not only act on sludge in the process of pretreatment, but it will also continue to play a role in the subsequent anaerobic digestion.
     Microbial community was detected by DGGE technology; the figure demonstrated that pretreated sludge results in an increase in microorganism species in the earlier stage of anaerobic digestion, compared to control; it observed no change with further digestion.
引文
[1]王芬.超声破解对污泥特性的影响机制与零剩余污泥排放工艺研究[D].天津大学,2006:121.
    [2] Wilén B, Lumley D, Mattsson A, et al. Relationship between floc compositionand flocculation and settling properties studied at a full scale activated sludgeplant[J]. Water Research,2008,42(16):44044418.
    [3] Sheng G P, Yu H Q. Characterization of extracellular polymeric substances ofaerobic and anaerobic sludge using three dimensional excitation andemission matrix fluorescence spectroscopy[J]. Water Research,2006,40(6):12331239.
    [4] McSwain B S, Irvine R L, Hausner M, et al. Composition and distribution ofextracellular polymeric substances in aerobic flocs and granular sludge[J].Applied and Environmental Microbiology,2005,71(2):10511057.
    [5] Sheng G, Xu J, Luo H, et al. Thermodynamic analysis on the binding of heavymetals onto extracellular polymeric substances (EPS) of activated sludge[J].Water Research,2013,47(2):607614.
    [6] Sheng G P, Yu H Q, Li X Y. Extracellular polymeric substances (EPS) ofmicrobial aggregates in biological wastewater treatment systems: A review[J].Biotechnology Advances,2010,28(6):882894.
    [7] Bala S S, Yan S, Tyagi R D, et al. Extracellular polymeric substances (EPS)producing bacterial strains of municipal wastewater sludge: isolation,molecular identification, EPS characterization and performance for sludgesettling and dewatering.[J]. Water Reaserch,2010,44(7):22532266.
    [8] Barnabe S, Brar S K, Tyagi R D, et al. Pre treatment and bioconversion ofwastewater sludge to value added products Fate of endocrine disruptingcompounds[J]. Science of the Total Environment,2009,407(5):14711488.
    [9] Chen Y, Luo J, Yan Y, et al. Enhanced production of short chain fatty acid byco fermentation of waste activated sludge and kitchen waste under alkalineconditions and its application to microbial fuel cells[J]. Applied Energy,2013,102:11971204.
    [10] Lin Y H, Zheng H X, Juan M L. Biohydrogen production using wasteactivated sludge as a substrate from fructose processing wastewatertreatment[J]. Process Safety And Environmental Protection,2012,90(3SI):221230.
    [11] Mller J. Disintegration as a key step in sewage sludge treatment[J]. WaterScience and Technology,2000,41(8):123130.
    [12] Gal I A, Dosta J, Mata Alvarez J. Use of hydrolyzed primary sludge asinternal carbon source for denitrification in a SBR treating reject water vianitrite[J]. Industrial&engineering chemistry research,2006,45(22):76617666.
    [13] Aravinthan V, Mino T, Takizawa S, et al. Sludge hydrolysate as a carbonsource for denitrification[J]. Water Science and Technology,2000,43(1):191199.
    [14]佟娟.剩余污泥碱性发酵产生的短链脂肪酸作为生物脱氮除磷碳源的研究[D].同济大学,2008:132.
    [15] Bezawada J, Yan S, Tyagi R D, et al. Comparison of protease activities indifferent Bacillus licheniformis strains using wastewater sludge and syntheticsoy medium as raw material[J]. Environmental Technology,2010,31(1):6372.
    [16] Brar S K, Verma M, Tyagi R D, et al. Entomotoxicity, protease and chitinaseactivity of Bacillus thuringiensis fermented wastewater sludge with a highsolids content[J]. Bioresource Technology,2009,100(19):43174325.
    [17] Yezza A, Tyagi R D, Valéro J R, et al. Bioconversion of industrial wastewaterand wastewater sludge into Bacillus thuringiensis based biopesticides in pilotfermentor[J]. Bioresource Technology,2006,97(15):18501857.
    [18] Yezza A, Tyagi R D, Valéro J R, et al. Correlation between entomotoxicitypotency and protease activity produced by Bacillus thuringiensis var. kurstakigrown in wastewater sludge[J]. Process Biochemistry,2006,41(4):794800.
    [19] Zhuang L, Zhou S G, Wang Y Q, et al. Mosquito biolarvicide production bysequential fermentation with dual strains of Bacillus thuringiensis subsp.israelensis and Bacillus sphaericus using sewage sludge[J]. BioresourceTechnology,2011,102(2):15741580.
    [20] More T T, Yan S, John R P, et al. Biochemical diversity of the bacterial strainsand their biopolymer producing capabilities in wastewater sludge[J].Bioresource Technology,2012,121:304311.
    [21] Kampas P, Parsons S A, Pearce P, et al. An internal carbon source forimproving biological nutrient removal[J]. Bioresource Technology,2009,100(1):149154.
    [22] Abughararah Z H, Randall C W. The effect of organic compounds onbiological phosphorus removal[J]. Water Science and Technology,1991,23(46):585594.
    [23] Soares A, Kampas P, Maillard S, et al. Comparison between disintegrated andfermented sewage sludge for production of a carbon source suitable forbiological nutrient removal[J]. Journal of Hazardous Materials,2010,175(1–3):733739.
    [24] Park K Y, Lee J W, Song K G, et al. Ozonolysate of excess sludge as a carbonsource in an enhanced biological phosphorus removal for low strengthwastewater[J]. Bioresource Technology,2011,102(3):24622467.
    [25] Zhang L, Zhang S J, Wang S Y, et al. Enhanced biological nutrient removal ina simultaneous fermentation, denitrification and phosphate removal reactorusing primary sludge as internal carbon source[J]. Chemosphere,2013,91(5):635640.
    [26] Tong J, Chen Y G. Enhanced biological phosphorus removal driven byshort chain fatty acids produced from waste activated sludge alkalinefermentation[J]. Environmental Science&Technology,2007,41(20):71267130.
    [27] Kim T H, Nam Y K, Park C, et al. Carbon source recovery from wasteactivated sludge by alkaline hydrolysis and gamma ray irradiation forbiological denitrification[J]. Bioresource Technology,2009,100(23):56945699.
    [28] Yuan H Y, Chen Y G, Zhang H X, et al. Improved bioproduction ofshort chain fatty acids (SCFAs) from excess sludge under alkalineconditions[J]. Environmental Science&Technology,2006,40(6):20252029.
    [29] Appels L, Baeyens J, Degreve J, et al. Principles and potential of theanaerobic digestion of waste activated sludge[J]. Progress in Energy andCombustion Science,2008,34(6):755781.
    [30]郭亮.污水厂剩余污泥水解及其厌氧发酵产氢技术研究[D].湖南大学,2009:139.
    [31]魏素珍,肖本益,刘俊新.碱处理和热处理对污泥发酵产氢途径的影响[J].科学通报,2009,54(21):32913300.
    [32]任南琪,王宝贞,马放.厌氧活性污泥工艺生物发酵产氢能力研究[J].中国环境科学,1995,15(06):401406.
    [33] Li C L, Fang H. Fermentative hydrogen production from wastewater and solidwastes by mixed cultures[J]. Critical Reviews in Environmental Science AndTechnology,2007,37(1):139.
    [34]蔡木林,刘俊新.污泥厌氧发酵产氢的影响因素[J].环境科学,2005,26(02):98101.
    [35] Cai M L, Liu J X, Wei Y S. Enhanced biohydrogen production from sewagesludge with alkaline pretreatment[J]. Environmental Science&Technology,2004,38(11):31953202.
    [36]朱小峰,郭亮,李小明,等. S TE预处理污泥厌氧发酵产氢[J].太阳能学报,2010,31(10):12571263.
    [37]刘常青,张江山,牛冬杰,等.初始pH对酸性预处理污泥厌氧发酵产氢的影响[J].环境科学,2008(09):26282632.
    [38] Wang C C, Chang C W, Chu C P, et al. Producing hydrogen from wastewatersludge by Clostridium bifermentans[J]. Journal of Biotechnology,2003,102(1):8392.
    [39] McCarty P L, Smith D P. Anaerobic wastewater treatment[J]. Environmentalscience&technology,1986,20(12):12001206.
    [40]汪群慧,刘建丽,艾恒雨,等.提高污泥厌氧消化效率的溶胞预处理技术[J].黑龙江大学自然科学学报,2006,22(5):614618.
    [41] Carrère H, Dumas C, Battimelli A, et al. Pretreatment methods to improvesludge anaerobic degradability: A review[J]. Journal of Hazardous Materials,2010,183(1–3):115.
    [42] Climent M, Ferrer I, Baeza M D, et al. Effects of thermal and mechanicalpretreatments of secondary sludge on biogas production under thermophilicconditions[J]. Chemical Engineering Journal,2007,133(13):335342.
    [43] Dohányos M, Zábranská J, Jenícek P. Enhancement of sludge anaerobicdigestion by using of a special thickening centrifuge[J]. Water Science andTechnology,1997,36(11):145153.
    [44] Kuglarz M, Karakashev D, Angelidaki I. Microwave and thermal pretreatmentas methods for increasing the biogas potential of secondary sludge frommunicipal wastewater treatment plants[J]. Bioresource Technology,2013,134:290297.
    [45] Carlsson M, Lagerkvist A, Morgan Sagastume F. The effects of substratepre treatment on anaerobic digestion systems: A review[J]. WasteManagement,2012,32(9):16341650.
    [46] Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludgedisintegration for improving anaerobic stabilization[J]. Water Research,2001,35(8):20032009.
    [47] Erden G, Filibeli A. Ultrasonic pre treatment of biological sludge:consequences for disintegration, anaerobic biodegradability, andfilterability[J]. Journal of Chemical Technology and Biotechnology,2010,85(1):145150.
    [48] Wang Q, Kuninobu M, Kakimoto K, et al. Upgrading of anaerobic digestionof waste activated sludge by ultrasonic pretreatment[J]. BioresourceTechnology,1999,68(3):309313.
    [49] Khanal S K, Grewell D, Sung S, et al. Ultrasound applications in wastewatersludge pretreatment: A review[J]. Critical Reviews in Environmental Scienceand Technology,2007,37(4):277313.
    [50] Shimizu T, Kudo K, Nasu Y. Anaerobic waste activated sludge digestion abioconversion mechanism and kinetic model[J]. Biotechnol Bioeng,1993,41(11):10821091.
    [51] Tiehm A, Nickel K, Neis U. The use of ultrasound to accelerate the anaerobicdigestion of sewage sludge[J]. Water Science and Technology,1997,36(11):121128.
    [52] Bougrier C, Albasi C, Delgenes J P, et al. Effect of ultrasonic, thermal andozone pre treatments on waste activated sludge solubilisation and anaerobicbiodegradability[J]. Chemical Engineering and Processing,2006,45(8):711718.
    [53] Appels L, Degreve J, Van der Bruggen B, et al. Influence of low temperaturethermal pre treatment on sludge solubilisation, heavy metal release andanaerobic digestion[J]. Bioresource Technology,2010,101(15):57435748.
    [54] Bougrier C, Delgenes J P, Carrere H. Impacts of thermal pre treatments on thesemi continuous anaerobic digestion of waste activated sludge[J].Biochemical Engineering Journal,2007,34(1):2027.
    [55] Ferrer I, Ponsa S, Vazquez F, et al. Increasing biogas production by thermal(70degrees C) sludge pre treatment prior to thermophilic anaerobicdigestion[J]. Biochemical Engineering Journal,2008,42(2):186192.
    [56] Kim J, Park C, Kim T H, et al. Effects of various pretreatments for enhancedanaerobic digestion with waste activated sludge[J]. Journal of Bioscience andBioengineering,2003,95(3):271275.
    [57]万晓,张妍,张超,等.水热技术在污泥减量化和资源化中的应用[J].中国建设信息(水工业市场),2010(08):5557.
    [58]欧阳二明. ASBR处理水热改性污泥的工艺及微生物特性研究[D].北京:清华大学,2009:136.
    [59] Neyens E, Baeyens J. A review of thermal sludge pre treatment processes toimprove dewaterability[J]. Journal of Hazardous Materials,2003,98(13):5167.
    [60]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005,26(01):6871.
    [61] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilisation of sewagesludge through thermalhydrolysis three years of experience with full scaleplant[J]. Water Science and Technology,2000,42(9):8996.
    [62] Cesbron D, Deleris S, Debellefontaine H, et al. Study of competition forozone between soluble and particulate matter during activated sludgeozonation[J]. Chemical Engineering Research and Disign,2003,81(A9):11651170.
    [63] Chu L B, Yan S T, Xing X H, et al. Enhanced sludge solubilization bymicrobubble ozonation[J]. Chemosphere,2008,72(2):205212.
    [64] Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonizedbiosolids[J]. Water Research,2000,34(8):23302336.
    [65] Zhang D, Chen Y G, Zhao Y X, et al. New Sludge Pretreatment Method toImprove Methane Production in Waste Activated Sludge Digestion[J].Environmental Science&Technology,2010,44(12):48024808.
    [66]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水,1997,23(01):1015.
    [67] Tait K, Skillman L C, Sutherland I W. The efficacy of bacteriophage as amethod of biofilm eradication[J]. Biofilm,2002,18(4):305311.
    [68] Hantula J, Kurki A, Vuoriranta P, et al. Ecology of Bacteriophages InfectingActivated Sludge Bacteria[J]. Applied and Environmental Microbiology,1991,57(8):21472151.
    [69] Lee S H, Chung C W, Yu Y J, et al. Effect of alkaline protease producingExiguobacterium sp YS1inoculation on the solubilization and bacterialcommunity of waste activated sludge[J]. Bioresource Technology,2009,100(20):45974603.
    [70] Kavitha S, Adish Kumar S, Yogalakshmi K N, et al. Effect of enzymesecreting bacterial pretreatment on enhancement of aerobic digestionpotential of waste activated sludge interceded through EDTA[J]. BioresourceTechnology,2013,150:210219.
    [71] Yang Q, Luo K, Li X M, et al. Enhanced efficiency of biological excesssludge hydrolysis under anaerobic digestion by additional enzymes[J].Bioresource Technology,2010,101(9):29242930.
    [72] Tang Y, Yang Y L, Li X M, et al. The isolation, identification of sludge lysingthermophilic bacteria and its utilization in solubilization for excess sludge[J].Environ Technol,2012,33(8):961966.
    [73] Lindberg A A. Bacterial surface carbohydrates and bacteriophageadsorption[J]. Surface carbohydrates of the prokaryotic cell,1977,1:289356.
    [74] Ewert D L, Paynter M J B. Enumeration of bacteriophages and host bacteriain sewage and the activated sludge treatment process[J]. Applied andenvironmental microbiology,1980,39(3):576583.
    [75] Weinbauer M G. Ecology of prokaryotic viruses[J]. FEMS MicrobiologyEcology,2004,28(2):127181.
    [76] Withey S, Cartmell E, Avery L M, et al. Bacteriophages potential forapplication in wastewater treatment processes[J]. Science of the TotalEnvironment,2005,339(13):118.
    [77] Adams M H, Park B H. An enzyme produced by a phage–host cell system: II.The properties of the polysaccharide depolymerase.[J]. Virology,1956,2:719736.
    [78] Goldman G, Starosvetsky J, Armon R. Inhibition of biofilm formation on UFmembrane by use of specific bacteriophages[J]. Journal of MembraneScience,2009,342(12):145152.
    [79] Karam J, Nicell J A. Potential applications of enzymes in waste treatment[J].Journal of Chemical Technology and Biotechnology,1997,69(2):141153.
    [80] Parawira W. Enzyme research and applications in biotechnologicalintensification of biogas production[J]. Critical Reviews in Biotechnology,2012,32(2):172186.
    [81] Nicell J A. Environmental applications of enzymes[J]. InterdisciplinaryEnvironmental Review,2001,3(1):1441.
    [82] Parmar N, Singh A, Ward O P. Enzyme treatment to reduce solids andimprove settling of sewage sludge[J]. Journal of Industrial Microbiology&Biotechnology,2001,26(6):383386.
    [83] Ahuja S K, Ferreira G M, Moreira A R. Utilization of enzymes forenvironmental applications[J]. Critical Reviews in Biotechnology,2004,24(23):125154.
    [84] Li X S, Ma H Z, Wang Q H, et al. Isolation, identification of sludge lysingstrain and its utilization in thermophilic aerobic digestion for waste activatedsludge[J]. Bioresource Technology,2009,100(9):24752481.
    [85] Bruni E, Jensen A P, Angelidaki I. Comparative study of mechanical,hydrothermal, chemical and enzymatic treatments of digested biofibers toimprove biogas production[J]. Bioresource Technology,2010,101(22):87138717.
    [86] Venugopal V, Alur M D, Nerkar D P. solubilization of fish proteins usingimmobilized microbial cells[J]. Biotechnology and Bioengineering,1989,33(9):10981103.
    [87] Rashed I, Akunna J, El Halwany M M, et al. Improvement in the efficiency ofhydrolysis of anaerobic digestion in sewage sludge by the use of enzymes[J].Desalination and Water Treatment,2010,21(13):280285.
    [88] Whiteley C, Enongene G, Pletschke B, et al. Co digestion of primary sewagesludge and industrial wastewater under anaerobic sulphate reducingconditions: enzymatic profiles in a recycling sludge bed reactor[J]. WaterScience and Technology,2003,48(4):129138.
    [89]罗琨,杨麒,李小明,等.外加酶强化剩余污泥水解的研究[J].环境科学,2010,31(03):763767.
    [90] Wawrzynczyk J, Recktenwald M, Norrlow O, et al. Solubilisation of sludgeby combined chemical and enzymatic treatment[J]. African Journal ofBiotechnology,2007,6(17):19941999.
    [91] Sesay M L, Ozcengiz G, Sanin F D. Enzymatic extraction of activated sludgeextracellular polymers and implications on bioflocculation[J]. WaterResearch,2006,40(7):13591366.
    [92] Davidsson A, la Cour Jansen J. Pre treatment of wastewater sludge beforeanaerobic digestion hygienisation, ultrasonic treatment and enzyme dosing[J].Vatten,2006,62(4):335340.
    [93] Dean C R, Ward O P. Nature of Escherichia coli cell lysis by culturesupernatants of Bacillus species.[J]. Applied and environmental microbiology,1991,57(7):18931898.
    [94] Barjenbruch M, Kopplow O. Enzymatic, mechanical and thermalpre treatment of surplus sludge[J]. Advances In Environmental Research,2003,7(3):715720.
    [95] Pagliero E, Dideberg O, Vernet T, et al. The PECACE domain: a new familyof enzymes with potential peptidoglycan cleavage activity in Gram positivebacteria[J]. BMC genomics,2005,6(1):19.
    [96] Brown M J, Lester J N. Metal removal in activated sludge: the role ofbacterial extracellular polymers[J]. Kampas,1979,13(9):817837.
    [97]宋勇,施周,陈世洋,等.水解溶菌酶污泥减量过程中的污泥特性[J].中国环境科学,2012,32(06):10071010.
    [98]赵维纳,李小明,杨麒,等.嗜热酶溶解法促进剩余污泥减量行为研究[J].中国给水排水,2007,23(23):2933.
    [99] Wawrzynczyk J, Recktenwald M, Norrlow O, et al. The function ofcation binding agents in the enzymatic treatment of municipal sludge[J].Water Reaserch,2008,42(67):15551562.
    [100]梁利华,阚振荣.嗜热菌及嗜热酶的研究应用[J].微生物生态学研究进展——第五届微生物生态学术研讨会论文集,2003.
    [101] Van Den Burg B. Extremophiles as a source for novel enzymes[J]. Currentopinion in microbiology,2003,6(3):213218.
    [102] Sakai Y, Aoyagi T, Shiota N, et al. Complete decomposition of biologicalwaste sludge by thermophilic aerobic bacteria[J]. Water Science andTechnology,2000,42(9):8188.
    [103]张少强,李小明,杨麒,等.污泥嗜热菌好氧消化与传统高温好氧消化的效果对比[J].中国给水排水,2007,23(13):9194.
    [104]赵维纳.嗜热酶溶解法促进剩余污泥减量的行为研究[D].湖南大学,2008:82.
    [105] H ner A, Mason C A, Hamer G. Death and lysis during aerobic thermophilicsludge treatment: characterization of recalcitrant products[J]. Water Research,1994,28(4):863869.
    [106]杨洁.碱和超声波预处理技术促进污泥厌氧消化效能及机理研究天津大学,2008:115.
    [107] GB/T235272009蛋白酶制剂[S].北京:中国标准出版社,2009.
    [108]史永昶,姜涌明.五种α淀粉酶测活方法的比较研究[J].微生物学通报,1995,23(6):371373.
    [109]卢磊.血红密孔菌漆酶的纯化及其基因在毕赤酵母中的表达[D].东北林业大学,2007:50.
    [110] Lin Y Q, Wang D H, Wu S Q, et al. Alkali pretreatment enhances biogasproduction in the anaerobic digestion of pulp and paper sludge[J]. Journal ofHazardous Materials,2009,170(1):366373.
    [111] Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonizedbiosolids[J]. Water Research,2000,34(8):23302336.
    [112] Sheng G P, Zhang M L, Yu H Q. Characterization of adsorption properties ofextracellular polymeric substances (EPS) extracted from sludge.[J]. ColloidsSurface B Biointerfaces,2008,62(1):8390.
    [113] Lagerkvist A, Chen H. Control of two step anaerobic degradation ofmunicipal solid waste (MSW) by enzyme addition[J]. Water Science andTechnology,1993,27(2):4756.
    [114] Lee I, Evans B R, Woodward J. The mechanism of cellulase action on cottonfibers: evidence from atomic force microscopy[J]. Ultramicroscopy,2000,82(1):213221.
    [115] Frolund B, Griebe T, Nielsen P H. Enzymatic activity in the activated sludgefloc matrix.[J]. Appl Microbiol Biotechnol,1995,43(4):755761.
    [116] Burgess J E, Pletschke B I. Hydrolytic enzymes in sewage sludge treatment:A mini review[J]. Water SA,2008,34(3):343349.
    [117] Yu G H, He P J, Shao L M, et al. Extracellular proteins, polysaccharides andenzymes impact on sludge aerobic digestion after ultrasonic pretreatment.[J].Water Research,2008,42(89):19251934.
    [118]侯宁.生物破乳剂产生菌的特性及破乳效能研究[D].哈尔滨工业大学,2009:138.
    [119]周德庆.微生物学教程[M].高等教育出版社,2002.
    [120]曹煜成,李卓佳,吴灶和,等.地衣芽孢杆菌胞外蛋白酶的纯化及特性分析[J].水生生物学报,2006,30(03):262268.
    [121]姜涌明,史永昶,隋德新.枯草芽孢杆菌86315α淀粉酶的研究Ⅱ.分离提纯,性质及动力学[J].江苏农学院学报,1992,13(2):4756.
    [122] Rogers J C. Conserved amino acid sequence domains in alpha amylasesfrom plants, mammals, and bacteria[J]. Biochemical and biophysical researchcommunications,1985,128(1):470476.
    [123] Zacaria J, Delamare A, Costa S, et al. Diversity of extracellular proteasesamong Aeromonas determined by zymogram analysis[J]. Journal of AppliedMicrobiology,2010,109(1):212219.
    [124] Rai C L, Struenkmann G, Mueller J, et al. Influence of ultrasonicdisintegration on sludge growth reduction and its estimation byrespirometry[J]. Environmental science\&technology,2004,38(21):57795785.
    [125]胡凯.污泥预处理—厌氧消化工艺性能及预处理过程中有机物变化[D].哈尔滨工业大学,2011:214.
    [126] Wagner M, Ivleva N P, Haisch C, et al. Combined use of confocal laserscanning microscopy (CLSM) and Raman microscopy (RM): Investigationson EPS Matrix[J]. Water Research,2009,43(1):6376.
    [127] Sponza D T. Investigation of extracellular polymer substances (EPS) andphysicochemical properties of different activated sludge flocs understeady state conditions[J]. Enzyme and Microbial Technology,2003,32(34):375385.
    [128] Foladori P, Tamburini S, Bruni L. Bacteria permeabilisation and disruptioncaused by sludge reduction technologies evaluated by flow cytometry[J].Water Research,2010,44(17):48884899.
    [129] Parmar N, Singh A, Ward O P. Characterization of the combined effects ofenzyme, pH and temperature treatments for removal of pathogens fromsewage sludge[J]. World Journal Of Microbiology&Biotechnology,2001,17(2):169172.
    [130]席北斗,魏自民,刘鸿亮,等.有机固体废弃物管理与资源化技术[M].国防工业出版社,2006:319.
    [131] Confer D R, Logan B E. Location of protein and polysaccharide hydrolyticactivity in suspended and biofilm wastewater cultures[J]. Water Research,1998,32(1):3138.
    [132] Goel R, Mino T, Satoh H, et al. Enzyme activities under anaerobic andaerobic conditions inactivated sludge sequencing batch reactor[J]. WaterResearch,1998,32(7):20812088.
    [133] Christ O, Wilderer P A, Angerhofer R, et al. Mathematical modeling of thehydrolysis of anaerobic processes[J]. Water Science and Technology,2000,41(3):6165.
    [134] Shao L, Wang T, Li T, et al. Comparison of sludge digestion under aerobicand anaerobic conditions with a focus on the degradation of proteins atmesophilic temperature[J]. Bioresource Technology,2013,140:131137.
    [135] Kidak R, Wilhelm A M, Delmas H. Effect of process parameters on theenergy requirement in ultrasonical treatment of waste sludge[J]. ChemicalEngineering and Processing,2009,48(8):13461352.
    [136] Higgins M J, Novak J T. Characterization of exocellular protein and its rolein bioflocculation[J]. Journal of Environmental Engineering,1997,123(5):479485.
    [137] Dimock R, Morgenroth E. The influence of particle size on microbialhydrolysis of protein particles in activated sludge[J]. Water Research,2006,40(10):20642074.
    [138] Cadoret A, Conrad A, Block J C. Availability of low and high molecularweight substrates to extracellular enzymes in whole and dispersed activatedsludges[J]. Enzyme and Microbial Technology,2002,31(12):179186.
    [139] Yu H Q, Fang H. Acidification of mid and high strength dairywastewaters[J]. Water Research,2001,35(15):36973705.
    [140] Thomas L, Jungschaffer G, Spr O Ssler B. Improved sludge dewatering byenzymatic treatment[J]. Water Science and Technology,1993,28(1):189192.
    [141] Liu Y, Fang H H. Influences of extracellular polymeric substances (EPS) onflocculation, settling, and dewatering of activated sludge[J]. Critical Reviewsin Environmental Science and Technology,2003,33(3):237273.
    [142]王凯军,许晓鸣.丝状菌污泥膨胀理论分析[J].中国给水排水,2001,17(03):6669.
    [143] Chu L B, Yan S T, Xing X H, et al. Progress and perspectives of sludgeozonation as a powerful pretreatment method for minimization of excesssludge production[J]. Water Research,2009,43(7):18111822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700