不同时期产前应激对大鼠子代行为学及分子生物学的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本实验通过建立两个不同时期的产前应激大鼠动物模型,观察不同时期产前应激对子代大鼠的行为学、细胞因子白介素18 (interleukin 18, IL-18)及细胞外信号调节激酶(Mitogn activated protein kinase kinase 1, MEK-1)的影响,从而探讨产前应激敏感期及性别效应的病理生理机制,以期为与产前应激相关的疾病的发病机制的研究提供依据。
     方法
     将SD妊娠大鼠随机分成3组,对照组在妊娠期间不给予任何刺激;中期应激组在从妊娠第9-14天给予束缚刺激;晚期妊娠组从妊娠第15-20天给予束缚刺激。待子代出生后第21天断奶并将雌雄大鼠分笼饲养。子代成年后即出生后第75天分别进行敞箱实验、新事物实验、蔗糖喜爱实验、前脉冲抑制及惊恐反射实验和强迫游泳实验5种行为学测试及检测大鼠海马的IL-18和MEK-1。
     结果
     一.行为学实验结果:
     1.敞箱实验:结果显示与对照组雄性子代相比孕晚期产前刺激雄性子代的敞箱总路程减少(p<0.05),中央区域总路程减少(p<0.05),中央区域停留时间减少(p<0.01)。
     2.新事物实验:结果显示与对照组雄性子代接触新事物的时间相比孕中期产期应激组雄性子代(p<0.01)及孕晚期产期应激组雄性子代(p<0.05)均减少。
     3.糖水消耗实验:结果显示与对照组雄性子代相比孕中期产前应激组雄性子代平均体重糖水消耗量降低(p<0.05)。
     4.前脉冲及惊恐抑制实验:结果显示在前脉冲抑制反应中孕中期产前应激组子代与对照组子代相比反应减低(p<0.05);在惊恐反应孕晚期产前应激子代与对照组子代相比反应增高(p<0.01)。
     5.强迫游泳实验:结果显示与对照组子代相比孕晚期的产前应激组雌子代(p<0.05)和雄性子代(p<0.01)的“绝望”行为增加,而孕中期产前应激组仅雄性子代大鼠“绝望”行为增加(p<0.05)。
     二.背侧海马和腹侧海马的IL-18含量及MEK-1阳性细胞检测结果:
     1.IL-18结果显示与对照组相比孕晚期产前应激可导致雌性子代的腹侧海马IL-18含量增加(p<0.05),而孕中期产前应激对子代海马IL-18含量的无影响(p>0.05)。
     2.MEK-1阳性细胞结果显示与对照组相比孕晚期可以导致背侧海马MEK-1的表达增加(p<0.01)及腹侧海马MEK-1的表达下降(p<0.05),而孕中期对海马的MEK-1的表达无影响(p>0.05)。
     结论
     1.孕中期和孕晚期产期应激均可导致子代行为学的改变,但孕晚期产前应激对子代行为学的影响更多。
     2.不同性别的产前应激子代大鼠行为学改变存在差异,产前应激对雄性子代的影响高于对雌性子代的影响。
     3.孕晚期产前应激可导致子代大鼠海马的炎性因子IL-18分泌增加及MEK-1信号蛋白表达异常。
     4.腹侧和背侧海马的“功能分离”可能与MEK-1信号蛋白的表达及其相关的丝裂原活化蛋白激酶(Mitogen-activated protein kinases, MAPKs)信号传导途径有关。
     5.IL-18可能参与MEK-1信号蛋白的表达的调控。
Aims:
     In this study, through established two different periods prenatal stress rat model to observe two different pregnancy stress periods affect on offspring's behavior, interleukin-18 and extracellular signal-regulated kinase MEK-1. The purpose of this study is to explore the pathophysiological mechanisms of sensitive period of prenatal stress and gender effect and to provide the evidence for the diseases which associated with prenatal stress.
     Methods:
     The SD pregnant rats were randomly divided into 3 groups, the control group was left undisturbed throughout the pregnancy, the mid pregnancy stress group was gave restraint stress from GD 9-14 day and the late pregnancy group from GD15-20. Offspring were weaned 21 days after birth and left undisturbed until the behavior test at 75 day. The behavior tests including open field test, novel object test, sucrose preference test, prepulse inhibition test and forced swimming test. After that the IL-18 and the MEK-1 of hippocampus were been tested.
     Results:
     The behavior tests result:
     1.Open field test:The result showed that compare to the control male offspring the later prenatal stress group male offspring reduced in total distance (p<0.05), the central total distance (p<0.05) and the central duration time (p<0.01)
     2.Novel object test:The result showed that compared to the control male offspring both mid prenatal stress group (p<0.01) and later prenatal stress groups (p<0.05) were reduce in the time spent on the novel object.
     3.Sucrose preference test:The result showed that compare to the control male offspring the mid prenatal stress male offspring had lower average weight of sugar consumption (p<0.05)
     4. Prepulse inhibition test:The result showed that in the prepulse inhibition reactivity the mid prenatal stress offspring had lower reaction than control group offspring (p<0.05); in the startle reactivity the later prenatal stress offspring had higher reaction than control group offspring (p<0.01)
     5.Forced swimming test:The result showed that compare to the control group offspring the later prenatal stress female offspring (p<0.05) and male offspring (p<0.01) were increased the "depression" behavior and mid prenatal stress group just male offspring increased the "depression" behavior (p<0.05)
     The IL-18 and MEK-1 result:
     1.The IL-18 result showed that the later prenatal stress could lead female offspring ventral hippocampus of IL-18 to increase (p<0.05),while no affected on mid prenatal stress's offspring (p>0.05)
     2.MEK-1 result showed that the later prenatal stress could lead dorsal hippocampus to increase (p<0.01) and ventral hippocampus to reduce (p<0.05), while no affected on mid prenatal stress's offspring (p>0.05)
     Conclusion:
     1.Both mid prenatal stress and later prenatal stress could change offspring behavior and later prenatal stress could lead more behavior change than mid prenatal stress.
     2.There was different behavior change between different gender offspring and the prenatal stress could lead more behavior change in male than female offspring.
     3.The later prenatal stress could lead IL-18 to increase and MEK-1 abnormal express in hippocampus.
     4.The dorsal and ventral hippocampus "function separate" may related to the MEK-1 signaling relation protein and MAPKs signal transduction pathway.
     5.IL-18 may involved in regulate the MEK-1 signaling expression.
引文
1. Fowden, A.L., D.A. Giussani, and A.J. Forhead, Intrauterine programming of physiological systems:causes and consequences. Physiology (Bethesda),2006.21:p.29-37.
    2. Huizink, A.C., E.J. Mulder, and J.K. Buitelaar, Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull,2004.130(1):p.115-42.
    3. Brouwers, E.P.M., A.L. Van Baar, and V.J.M. Pop, Maternal anxiety during pregnancy and subsequent infant development. Infant Behav.,2001:p.95-106.
    4. Holmes, M.C. and J.R. Seckl, The role of 11beta-hydroxysteroid dehydrogenases in the brain. Mol Cell Endocrinol,2006.248(1-2):p.9-14.
    5. Khashan, A.S., et al., Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry,2008.65(2):p.146-52.
    6. Kinney, D.K., et al., Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord,2008.38(3):p.481-8.
    7. Malaspina, D., et al., Acute maternal stress in pregnancy and schizophrenia in offspring:a cohort prospective study. BMC Psychiatry,2008.8:p.71.
    8. Barker, D.J., Intrauterine programming of adult disease. Mol Med Today,1995.1(9):p. 418-23.
    9. Morley-Fletcher, S., et al., Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. European Journal of Neuroscience,2003.18(12):p.3367-74.
    10. Maccari, S. and S. Morley-Fletcher, Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology,2007.32 Suppl 1:p. S10-5.
    11. Pruett, S.B., Stress and the immune system. Pathophysiology,2003.9(3):p.133-153.
    12. Meyer, U., J. Feldon, and B.K. Yee, A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull,2009.35(5):p.959-72.
    13. Pace, T.W., F. Hu, and A.H. Miller, Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun,2007.21(1):p.9-19.
    14. Maes, M., Evidence for an immune response in major depression:a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry,1995.19(1):p.11-38.
    15. Yoo, J.K., et al., IL-18 induces monocyte chemotactic protein-1 production in macrophages through the phosphatidylinositol 3-kinase/Akt and MEK/ERK1/2 pathways. J Immunol,2005. 175(12):p.8280-6.
    16. Seckl, J.R. and M.J. Meaney, Glucocorticoid programming. Ann N Y Acad Sci,2004.1032:p. 63-84.
    17. Meyer, U., J. Feldon, and O. Dammann, Schizophrenia and autism:both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res,2011.69(5 Pt 2):p. 26R-33R.
    18. Sadaghiani, M.M. and E. Saboory, Prenatal stress potentiates pilocarpine-induced epileptic behaviors in infant rats both time and sex dependently. Epilepsy Behav,2010.18(3):p. 166-70.
    19. Louvart, H., S. Maccari, and M. Darnaudery, Prenatal stress affects behavioral reactivity to an intense stress in adult female rats. Brain Res,2005.1031(1):p.67-73.
    20. Pahkla, R., J. Harro, and L. Rago, Behavioural effects of pinoline in the rat forced swimming, open field and elevated plus-maze tests. Pharmacol Res,1996.34(1-2):p.73-8.
    21. Bevins, R.A. and J. Besheer, Object recognition in rats and mice:a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc,2006.1(3): p.1306-11.
    22. Willner, P., et al., Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl),1987.93(3):p.358-64.
    23. Li, L., S. Steidl, and J.S. Yeomans, Contributions of the vestibular nucleus and vestibulospinal tract to the startle reflex. Neuroscience,2001.106(4):p.811-21.
    24. Paylor, R. and J.N. Crawley, Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology (Berl),1997.132(2):p.169-80.
    25. Meyer, U., et al., Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia. Schizophr Bull, 2010.36(3):p.607-23.
    26. Bilge, S., et al., Chronic treatment with fluoxetine and sertraline prevents forced swimming test-induced hypercontractility of rat detrusor muscle. Pharmacol Rep,2008.60(6):p.872-9.
    27. Brenes Saenz, J.C., O.R. Villagra, and J. Fornaguera Trias, Factor analysis of Forced Swimming test, Sucrose Preference test and Open Field test on enriched, social and isolated reared rats. Behav Brain Res,2006.169(1):p.57-65.
    28. Braastad, B.O., Effects of prenatal stress on behaviour of offspring of laboratory and farmed mammals. Applied Animal Behaviour Science,1998.61:p.159-180.
    29. Biala, Y.N., et al., Prenatal stress diminishes gender differences in behavior and in expression of hippocampal synaptic genes and proteins in rats. Hippocampus,2010.
    30. Dahlof, L.G., E. Hard, and K. Larsson, Influence of maternal stress on offspring sexual behaviour. Anim Behav,1977.25(4):p.958-68.
    31. Sachser, N. and S. Kaiser, Prenatal social stress masculinizes the females'behaviour in guinea pigs. Physiol Behav,1996.60(2):p.589-94.
    32. Velazquez-Moctezuma, J., E. Dominguez Salazar, and M.L. Cruz Rueda, The effect of prenatal stress on adult sexual behavior in rats depends on the nature of the stressor. Physiol Behav,1993.53(3):p.443-8.
    33. Takahashi, L.K., C. Haglin, and N.H. Kalin, Prenatal stress potentiates stress-induced behavior and reduces the propensity to play in juvenile rats. Physiol Behav,1992.51(2):p. 319-23.
    34. Weinstock, M., et al., Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res,1992.595(2):p.195-200.
    35. Grimm, V.E. and B. Frieder, The effects of mild maternal stress during pregnancy on the behavior of rat pups. Int J Neurosci,1987.35(1-2):p.65-72.
    36. Hochart, G., et al., [An unusual case of corneal proliferative epitheliopathy]. Bull Soc Ophtalmol Fr,1984.84(10):p.1135-6.
    37. Rosenwasser, A. and A. Wirz-Justice, Circadian rhythms and depression:clinical and experimental models. Physiology and Pharmacology of Biological Rhythms,1997. 125(Springer, Berlin):p.457-486.
    38. Dallman, M.F., Moments in time--the neonatal rat hypothalamo-pituitary-adrenal axis. Endocrinology,2000.141(5):p.1590-2.
    39. Uno, H., et al., Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Brain Res Dev Brain Res,1990.53(2):p.157-67.
    40. Silvagni, A., et al., Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell:an 'in vivo'microdialysis study in adolescent and young adult rats. European Journal of Neuroscience,2008.28(4):p. 744-58.
    41. McArthur, S., et al., Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol,2005.17(8):p. 475-82.
    42.蔡春凤 and周宗奎,产前母亲心理压力对儿童心理行为发展影响的研究述评.心理科学进展,2009.17(4):p.p.753-758.
    43. Huizink, A.C., et al., Stress during pregnancy is associated with developmental outcome in infancy. J Child Psychol Psychiatry,2003.44(6):p.810-8.
    44. Weinstock, M., Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol,2001.65(5):p.427-51.
    45. DiPietro, J.A., et al., Maternal psychological distress during pregnancy in relation to child development at age two. Child Dev,2006.77(3):p.573-87.
    46. Davis, E.P., et al., Effects of prenatal betamethasone exposure on regulation of stress physiology in healthy premature infants. Psychoneuroendocrinology,2004.29(8):p.1028-36.
    47. Rice, F., I. Jones, and A. Thapar, The impact of gestational stress and prenatal growth on emotional problems in offspring:a review. Acta Psychiatr Scand,2007.115(3):p.171-83.
    48. van Os, J. and J.P. Selten, Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry,1998.172:p.324-6.
    49. Watson, J.B., et al., Prenatal teratogens and the development of adult mental illness. Dev Psychopathol,1999.11(3):p.457-66.
    50. Hosseini-sharifabad, M. and H. Hadinedoushan, Prenatal stress induces learning deficits and is associated with a decrease in granules and ca3 cell dendritic tree size in rat hippocampus Anatomical Science International 2007.82(4):p.211-217.
    51. Morley-Fletcher, S., et al., Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res,2003.989(2):p.246-51.
    52. Morley-Fletcher, S., et al., Prenatal stress affects 3,4-methylenedioxymethamphetamine pharmacokinetics and drug-induced motor alterations in adolescent female rats. Eur J Pharmacol,2004.489(1-2):p.89-92.
    53. Vallee, M., et al., Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J Neurosci, 1997.17(7):p.2626-36.
    54. Palanza, P., Animal models of anxiety and depression:how are females different? Neurosci Biobehav Rev,2001.25(3):p.219-33.
    55. Bowman, R.E., et al., Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters. Endocrinology,2004.145(8):p.3778-87.
    56. Taylor, D.C., Differential rates of cerebral maturation between sexes and between hemispheres. Evidence from epilepsy. Lancet,1969.2(7612):p.140-2.
    57. Beversdorf, D.Q., et al., Timing of prenatal stressors and autism. J Autism Dev Disord,2005. 35(4):p.471-8.
    58. Sadaghiani, M.M. and E. Saboory, Prenatal stress potentiates pilocarpine-induced epileptic behaviors in infant rats both time and sex dependently. Epilepsy Behav,2010.
    59. Kofman, O., The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci Biobehav Rev,2002.26(4):p.457-70.
    60. Martinez-Tellez, R.I., et al., Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse,2009.63(9):p. 794-804.
    61. Kohman, R.A., et al., Age increases vulnerability to bacterial endotoxin-induced behavioral decrements. Physiol Behav,2007.91(5):p.561-5.
    62. Meijer, A., Child psychiatric sequelae of maternal war stress. Acta Psychiatr Scand,1985. 72(6):p.505-11.
    63. Wust, S., et al., Birth weight is associated with salivary cortisol responses to psychosocial stress in adult life. Psychoneuroendocrinology,2005.30(6):p.591-8.
    64. Ward, I.L. and J. Weisz, Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology,1984.114(5):p.1635-44.
    65. Ward, I.L., Prenatal stress feminizes and demasculinizes the behavior of males. Science,1972. 175(17):p.82-4.
    66. Frye, C.A. and J. Wawrzycki, Effect of prenatal stress and gonadal hormone condition on depressive behaviors of female and male rats. Horm Behav,2003.44(4):p.319-26.
    67. Marcondes, F.K., et al., Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol Behav,2001.74(4-5):p.435-40.
    68. Okamura, H., et al., Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature,1995.378(6552):p.88-91.
    69. Ushio, S., et al., Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol,1996. 156(11):p.4274-9.
    70. Arend, W.P., G. Palmer, and C. Gabay, IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev,2008.223:p.20-38.
    71. Gracie, J.A., Interleukin-18 as a potential target in inflammatory arthritis. Clin Exp Immunol, 2004.136(3):p.402-4.
    72. Sugawara, S., et al., Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol,2001.167(11):p.6568-75.
    73. Bazan, J.F., J.C. Timans, and R.A. Kastelein, A newly defined interleukin-1? Nature,1996. 379(6566):p.591.
    74. de Saint-Vis, B., et al., The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol,1998.160(4):p.1666-76.
    75. Takeuchi, M., et al., Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor ("interleukin-18") in mouse intestinal epithelial cells. Cell Tissue Res,1997.289(3):p.499-503.
    76. Udagawa, N., et al., Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med,1997.185(6):p.1005-12.
    77. O'Neill, L.A. and C.A. Dinarello, The IL-1 receptor/toll-like receptor superfamily:crucial receptors for inflammation and host defense. Immunol Today,2000.21(5):p.206-9.
    78. Sims, J.E., IL-1 and IL-18 receptors, and their extended family. Curr Opin Immunol,2002. 14(1):p.117-22.
    79. Netea, M.G., et al., Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med,2006.12(6):p.650-6.
    80. Kalina, U., et al., Genomic organization and regulation of the human interleukin-18 gene. Scand J Immunol,2000.52(6):p.525-30.
    81. Tomura, M., et al., A critical role for IL-18 in the proliferation and activation of NK1.1+ CD3-cells. J Immunol,1998.160(10):p.4738-46.
    82. Avruch, K., Constructing ethnicity:culture and ethnic conflict in the new world disorder. Am J Orthopsychiatry,2001.71(3):p.281-9.
    83. Pearson, G., et al., Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions. Endocr Rev,2001.22(2):p.153-83.
    84. Sergi, B. and I. Penttila, Interleukin 18 receptor. J Biol Regul Homeost Agents,2004.18(1):p. 55-61.
    85. Sekiyama, A., et al., A stress-induced, superoxide-mediated caspase-1 activation pathway causes plasma IL-18 upregulation. Immunity,2005.22(6):p.669-77.
    86. Sugama, S., et al., The adrenal gland is a source of stress-induced circulating IL-18. J Neuroimmunol,2006.172(1-2):p.59-65.
    87. Wang, N., et al., Interleukin-18 mRNA expression in the rat pituitary gland. J Neuroimmunol, 2006.173(1-2):p.117-25.
    88. Conti, B., et al., Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res,1999.67(1):p.46-52.
    89. Sugama, S., et al., Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res,2002.958(1):p.1-9.
    90. Andres, K.H., M. von During, and R.W. Veh, Subnuclear organization of the rat habenular complexes. J Comp Neurol,1999.407(1):p.130-50.
    91. Silver, R., et al., Mast cells in the brain:evidence and functional significance. Trends Neurosci,1996.19(1):p.25-31.
    92. Hayashi, A., et al., Maternal stress induces synaptic loss and developmental disabilities of offspring. Int J Dev Neurosci,1998.16(3-4):p.209-16.
    93. Schmitz, C., et al., Depression:reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry,2002.7(7):p.810-3.
    94. Fanselow, M.S. and H.W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron,2010.65(1):p.7-19.
    95. McEown, K. and D. Treit, The role of the dorsal and ventral hippocampus in fear and memory of a shock-probe experience. Brain Res,2009.1251:p.185-94.
    96. Santarelli, L., et al., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science,2003.301(5634):p.805-9.
    97. Banasr, M., et al., Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol Psychiatry,2006.59(11):p.1087-96.
    98. Sahay, A. and R. Hen, Adult hippocampal neurogenesis in depression. Nat Neurosci,2007. 10(9):p.1110-5.
    99. Weina, C., et al., Effects of prenatal stress on neurons and neuronal ultrastructure of developing hippocampus in rats. Chinese Journal of pathophysiology 2003.19(12):p. 1614-1617.
    100. Gehart, H., et al., MAPK signalling in cellular metabolism:stress or wellness? EMBO Rep, 2010.11(11):p.834-40.
    101. Cheung, C., et al., Autistic disorders and schizophrenia:related or remote? An anatomical likelihood estimation. PLoS One,2010.5(8):p. e12233.
    102. Carroll, L.S. and M.J. Owen, Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med,2009.1(10):p.102.
    103. Coe, C.L., et al., Prenatal stress diminishes the cytokine response of leukocytes to endotoxin stimulation in juvenile rhesus monkeys. J Clin Endocrinol Metab,2002.87(2):p.675-81.
    104. Wright, R.J., et al., Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med,2010.182(1):p.25-33.
    [1]. Brouwers, E.P.M., A.L. Van Baar, and V.J.M. Pop, Maternal anxiety during pregnancy and subsequent infant development. Infant Behav.,2001:p.95-106.
    [2]. Holmes, M.C. and J.R. Seckl, The role of 11beta-hydroxysteroid dehydrogenases in the brain. Mol Cell Endocrinol,2006.248(1-2):p.9-14.
    [3]. Khashan, A.S., et al., Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry,2008.65(2):p.146-52.
    [4]. Kinney, D.K., et al., Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord,2008.38(3):p.481-8.
    [5]. Malaspina, D., et al., Acute maternal stress in pregnancy and schizophrenia in offspring:a cohort prospective study. BMC Psychiatry,2008.8:p.71.
    [6]. Barker, D.J., Intrauterine programming of adult disease. Mol Med Today,1995.1(9):p. 418-23.
    [7]. Morley-Fletcher, S., et al., Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. European Journal of Neuroscience,2003.18(12):p.3367-74.
    [8]. Schneider, M.L., et al., Sensory processing disorder in a primate model:evidence from a longitudinal study of prenatal alcohol and prenatal stress effects. Child Dev,2008.79(1):p. 100-13.
    [9]. Pasquali, R., et al., The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann N Y Acad Sci,2006.1083:p.111-28.
    [10].Welberg, L.A., J.R. Seckl, and M.C. Holmes, Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone:possible implications for behaviour. Neuroscience,2001.104(1):p.71-9.
    [11].Dallman, M.F., Moments in time--the neonatal rat hypothalamo-pituitary-adrenal axis. Endocrinology,2000.141(5):p.1590-2.
    [12].Silvagni, A., et al., Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell:an 'in vivo' microdialysis study in adolescent and young adult rats. European Journal of Neuroscience,2008.28(4):p. 744-58.
    [13].McArthur, S., et al., Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol,2005.17(8):p. 475-82.
    [14].Morley-Fletcher, S., et al., Prenatal stress in rats predicts immobility behavior in the forced swim test. Effects of a chronic treatment with tianeptine. Brain Res,2003.989(2):p.246-51.
    [15].Morley-Fletcher, S., et al., Prenatal stress affects 3,4-methylenedioxymethamphetamine pharmacokinetics and drug-induced motor alterations in adolescent female rats. Eur J Pharmacol,2004.489(1-2):p.89-92.
    [16].Morley-Fletcher, S., et al., Chronic treatment with imipramine reverses immobility behaviour, hippocampal corticosteroid receptors and cortical 5-HT(1A) receptor mRNA in prenatally stressed rats. Neuropharmacology,2004.47(6):p.841-7.
    [17].Louvart, H., et al., Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology,2005.30(4):p. 316-24.
    [18].Elenkov, I.J., Glucocorticoids and the Th1/Th2 balance. Ann N Y Acad Sci,2004.1024:p. 138-46.
    [19].Glaser, R. and J.K. Kiecolt-Glaser, Stress-induced immune dysfunction:implications for health. Nat Rev Immunol,2005.5(3):p.243-51.
    [20].Kay, G., et al., Prenatal stress depresses immune function in rats. Physiol Behav,1998.63(3): p.397-402.
    [21].Llorente, E., et al., Effect of prenatal stress on the hormonal response to acute and chronic stress and on immune parameters in the offspring. J Physiol Biochem,2002.58(3):p.143-9.
    [22].Sobrian, S.K., et al., Gestational exposure to loud noise alters the development and postnatal responsiveness of humoral and cellular components of the immune system in offspring. Environ Res,1997.73(1-2):p.227-41.
    [23].Pincus-Knackstedt, M.K., et al., Prenatal stress enhances susceptibility of murine adult offspring toward airway inflammation. J Immunol,2006.177(12):p.8484-92.
    [24].Coe, C.L. and H.R. Crispen, Social stress in pregnant squirrel monkeys (Saimiri boliviensis peruviensis) differentially affects placental transfer of maternal antibody to male and female infants. Health Psychol,2000.19(6):p.554-9.
    [25].Coe, C.L. and G.R. Lubach, Prenatal origins of individual variation in behavior and immunity. Neurosci Biobehav Rev,2005.29(1):p.39-49.
    [26]. Vanbesien-Mailliot, C.C., et al., Prenatal stress has pro-inflammatory consequences on the immune system in adult rats. Psychoneuroendocrinology,2007.32(2):p.114-24.
    [27].蔡春凤 周宗奎,产前母亲心理压力对儿童心理行为发展影响的研究述评.心理科学进展,2009.17(4):p.753-758.
    [28].Barker, D.J., Fetal programming of coronary heart disease. Trends Endocrinol Metab,2002. 13(9):p.364-8.
    [29].Huizink, A.C., et al., Stress during pregnancy is associated with developmental outcome in infancy. J Child Psychol Psychiatry,2003.44(6):p.810-8.
    [30]. Weinstock, M., Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol,2001.65(5):p.427-51.
    [31].DiPietro, J.A., et al., Maternal psychological distress during pregnancy in relation to child development at age two. Child Dev,2006.77(3):p.573-87.
    [32].Davis, E.P., et al., Effects of prenatal betamethasone exposure on regulation of stress physiology in healthy premature infants. Psychoneuroendocrinology,2004.29(8):p. 1028-36.
    [33]. Rice, F., I. Jones, and A. Thapar, The impact of gestational stress and prenatal growth on emotional problems in offspring:a review. Acta Psychiatr Scand,2007.115(3):p.171-83.
    [34]. Van Os, J. and J.P. Selten, Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry,1998.172:p.324-6.
    [35]. Watson, J.B., et al., Prenatal teratogens and the development of adult mental illness. Dev Psychopathol,1999.11(3):p.457-66.
    [36].Frye, C.A. and J. Wawrzycki, Effect of prenatal stress and gonadal hormone condition on depressive behaviors of female and male rats. Horm Behav,2003.44(4):p.319-26.
    [37].Keshet, G.I. and M. Weinstock, Maternal naltrexone prevents morphological and behavioral alterations induced in rats by prenatal stress. Pharmacol Biochem Behav,1995.50(3):p. 413-9.
    [38].Vallee, M., et al., Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J Neurosci, 1997.17(7):p.2626-36.
    [39].Hosseini-sharifabad, M. and H. Hadinedoushan, Prenatal stress induces learning deficits and is associated with a decrease in granules and ca3 cell dendritic tree size in rat hippocampus Anatomical Science International 2007.82(4):p.211-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700