GEP100在表皮生长因子诱导的肿瘤细胞迁移中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的研究表明,EGF是人类恶性肿瘤细胞迁移过程中起着关键趋化作用的诱导因子,EGF可通过GEP100起始下游信号。另一方面,GEP100参与调控与细胞迁移相关的细胞-基质黏附以及细胞骨架的重构,但目前GEP100在恶性肿瘤细胞迁移中的分子调节机制尚不清楚。本研究在建立体外EGF诱导MDA-MB-231乳腺癌细胞和HepG2肝癌细胞迁移模型的基础上,研究了GEP100、Arf6和ERK1/2-uPAR-Rac1信号通路在EGF诱导的MDA-MB-231乳腺癌细胞和HepG2肝癌细胞迁移中作用及作用的可能机制,以期为深入阐明恶性肿瘤浸润和转移机制提供理论依据。
     本研究发现:
     1、GEP100能调控EGF所诱导的MDA-MB-231乳腺癌细胞和HepG2肝癌细胞迁移。
     2、分别使用特异性化学阻断剂预处理细胞,或瞬时转染Arf6和Rac1的负显性突变Arf6-T27N和Rac1-T17N质粒,或siRNA干扰uPAR表达后,通过细胞划痕实验,证实GEP100、Arf6、ERK1/2、uPAR和Rac1参与EGF诱导的肿瘤细胞迁移。
     3、因为EGF能诱导ERK1/2和Rac1的活化以及uPAR的表达,瞬时转染GEP100的PH区域缺失突变体(GEP100-ΔPH)能有效抑制EGF引起的ERK1/2和Rac1活化及uPAR的表达,ERK1/2特异性抑制剂U0126和siRNA干扰uPAR均可以显著地降低Rac1活化水平,结果证明EGF诱导的MDA-MB-231乳腺癌细胞和HepG2肝癌细胞迁移中存在着GEP100→Arf6→ERK1/2→uPAR→Rac1信号调控途径。
     4、在裸鼠模型中,GEP100的PH区域缺失突变体(GEP100-ΔPH)能显著地降低MDA-MB-231乳腺癌细胞在裸鼠体内的转移能力。
     综上所述,我们第一次发现GEP100-Arf6调控的ERK1/2-uPAR-Rac1信号通路中介EGF诱导的MDA-MB-231乳腺癌细胞和HepG2肝癌细胞的迁移。
Epidermal growth factor (EGF)-induced cancer cell migration is key to tumor invasion and metastasis. Recent studies indicated that GEP100, a guanine nucleotide exchanging factor (GEF) that preferentially activates Arf6 in vitro and binds directly to Tyr1068/1086-phosphorylated EGFR to activate Arf6 through its pleckstrin homology domain. In addition, formation of E-cadherin-mediated cell-cell adhesion is one of the major properties that maintain the non-invasive phenotypes of various carcinomas . Formation of E-cadherin-mediated cell-cell adhesion in MCF7 cells was substantially impaired in the presence of EGF by co-overexpression of GEP100 and Arf6. Likewise, over the past few years, GEP100, via its well-established roles in the regulation of Arf6 activation, has been shown in some tumor cells to regulate cell adhesion and organization of actin cytoskeleton , both of which are correlated with tumor cell migration.
     Given these potential connections between GEP100 and different aspects of cancer progression, we sought to investigate whether GEP100 functioned in the EGF-signaling pathways operational in cancer cell migration and metastasis by using human breast cancer cell line MDA-MB-231 and human liver carcinoma cell line HepG2. We first found that GEP100 regulated EGF-induced cell migration of both MDA-MB-231 and HepG2 cells. We then found that not only GEP100 regulated tumor cell migration through the activation of Arf6 and extracellular signal-regulated kinase (ERK1/2), but that GEP100-dependent ERK1/2 activation was also required for Rac1 activation during EGF-induced tumor cell migration. We further showed that the urokinase-type plasminogen activator receptor (uPAR) signaling downstream of the GEP100-ERK1/2 pathway was critical for Rac1 activation. Using athymic nude mice as a model, we further found that the pleckstrin homology domain deletion mutant of GEP100 (GEP100-△P H) blocked tumor metastasis in vivo. The findings described here document for the first time an important role for GEP100 in regulating human breast and liver cancer cell migration in vitro, and delineate a signaling pathway downstream of EGF signaling that is essential to cell migration of different tumor types.
引文
[1] Nicola Normanno, Antonella De Luca, Caterina Bianco, Luigi Strizzi, Mario Mancino, Monica R. Maiello, Adele Carotenuto, Gianfranco De Feo, Francesco Caponigro, David S. Salomon. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1): 2-16
    [2] Elizabeth S. Henson, Spencer B. Gibson. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: Implications for cancer therapy. Cellular Signalling, 2006, 18(12): 2089-2097
    [3] Fortunato Ciardiello and Giampaolo Tortora. EGFR Antagonists in Cancer Treatment. The New England Journal of Medicine, 2008, 358(11): 1160-1174
    [4] Jacqueline M. Lafky a, Jason A. Wilken b, Andre T. Baron c,d, Nita J. Maihle. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochimica et Biophysica Acta. 2008, 1785(2): 232-265
    [5] Stephen Johnston, Maureen Trudeau, Bella Kaufman, Hamouda Boussen, Kimberley Blackwell, Patricia LoRusso, Donald P. Lombardi, Slim Ben Ahmed, Dennis L. Citrin, Michelle L. DeSilvio, Jennifer Harris, Ron E. Westlund, Vanessa Salazar, Tal Z. Zaks, Neil L. Spector. Phase II Study of Predictive Biomarker Profiles for Response Targeting Human Epidermal Growth Factor Receptor 2 (HER-2) in Advanced Inflammatory Breast Cancer With Lapatinib Monotherapy. Journal of Clinical Oncology, 2008, 26(7): 1066-1072
    [6] Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Dev Biol, 2004,265:23-32
    [7] Chari VM, Hoover H, Clancy J, Schweitzer J, Suckow MA, Schroeder V. ADP-Ribosylation Factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res, 2009, 69:2201-2209
    [8] Tague SE, Muralidharan V, D’Souza-Schorey C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signalingpathway. Proc Natl Acad Sci USA, 2004, 101:9671–6
    [9] Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H, Hirose M et al. GEP100 links epidermal growth factor receptor signaling to Arf6 activation to induce breast cancer invasion. Nat Cell Biol, 2008,10:85–92
    [10] Someya A., Sata M., Takeda K., Pacheco-Rodriguez G., Ferrans VJ, Moss J, Vaughan M. ARF-GEP(100), a guanine nucleotide exchange protein for ADP-ribosylation factor 6. Proc Natl Acad Sci USA, 2001, 98:2413–2418
    [11] Dunphy JL, Morave R, Ly K, Lasell TK, Melancon P, Casanova JE. The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis ofβ- integrins. Curr Biol, 2006,16: 315–320
    [12] Hiroi T, Someya A, Thompson W, Moss J, Vaughan M. GEP100/BRAG2: Activator of ADP-ribosylation factor 6 for regulation of cell adhesion and actin cytoskeleton via E-cadherin andа-catenin. Proc Natl Acad Sci USA, 2006, 103:10672-10677
    [13] Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y. Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells, 2010, 29(35):4947-4958
    [14] Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, et al. The distinct roles of Ras and Rac in PI3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci, 2007, 120:3138-3146
    [15] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci, 2004, 117:4619-4628
    [16] Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol, 2010, 11:23-36
    [17] Baek MK, Kim MH, Jang HJ, Park JS, Chung IJ, Shin BA. EGF stimulates uPAR expression and cell invasiveness through ERK, AP-1, and NF-κB signaling in human gastric carcinoma cells. Oncol Rep, 2008:1569-1575
    [18] Lengyel E, Wang H, Stepp E, Juarez J, Wang Y, Doe W, Pfarr CM, Boyd D. Requirement of an upstream AP-1 motif for the constitutive and phorbol ester-inducible expression of the urokinase-type plasminogen activator receptor gene. J Biol Chem, 1996, 271:23176-23184
    [19] Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453:807-811
    [20] Lee KH, Choi EY, Hyun MS, Kim JR. Involvement of MAPK pathway in hypoxia-induced up-regulation of urokinase plasminogen activator receptor in a human prostatic cancer cell line, PC3MLN4. Exp Mol Med, 2004, 36: 57-64
    [21] Viala E, Pouysségur J. Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci, 2004, 030:208-218
    [22] Palacios F, D’Souza-Schorey C. Modulation of Rac1 and ARF6 activation during epithelial cell scattering. J Biol Chem, 2003 278:17395–17400
    [23] Cotton M, Boulay PL, Houndolo T, Vitale N, Pitcher JA, Claing Al. Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration. Mol Biol Cell, 2007,18:501–511
    [24] Santy LC, Casanova JE. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol, 2001, 154:599–610
    [25] Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell, 2003, 4: 67–79
    [26] Hu B, Shi BH, Jarzynka MJ, Yiin JJ, D’Souza-Schorey C, Cheng SY. ADP-ribosylation Factor 6 Regulates Glioma Cell Invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated Pathway. Cancer Res,2009, 69: 794–801
    [27] Santy LC, Ravichandran KS, Casanova JE. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr Biol, 2005, 15:1749–1754
    [28] Koo TH, Eipper BA, Donaldson JG. Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC Cell Biology, 2007, 8:29
    [29] Li M, Ng SS, Wang J, Lai LH, Leung SY, Franco M. EFA6A enhances glioma cell invasion through ADP ribosylation factor 6/extracellular signal-regulated kinase signaling. Cancer Res, 2006, 66:1583–1590
    [30] Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M.Plasminogen activation and cancer. Thromb Haemost, 2005, 93:676–681
    [31] El-Kott AF ,Khalil AM, El-Kenawy Ael M. Immunohistochemical expressions of uPA and its receptor uPAR and their prognostic significant in urinary bladder carcinoma. Int Urol Nephrol, 2004, 36: 417–423
    [32] Memarzadeh S,Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST, Farias-Eisner R. Urokinase plasminogen activator receptor: prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA, 2002, 9: 10647–10652
    [33] Kj?ller L, Hall A. Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J Cell Biol, 2001, 152:1145-1157
    [34] Smith HW, Marra P, Marshall CJ. uPAR promotes formation of the p130Cas-Crk complex to activate Rac through DOCK180. J Cell Biol,2008, 182:777-790
    [1] Gorvel JP, Chavrier P, Zerial M, Gruenberg J. Rab5 controls early endosome fusion in vitro. Cell, 1991 64(5):915-925
    [2] Saitoh O, Oshima T, Agata K, Watanabe K, Nakata H. Molecular cloning of a novel ADP-ribosylation factor (ARF) expressed in planarians. Biochim Biophys Acta, 1996, 1309(3):205-210
    [3] Donaldson JG, Honda A. Localization and function of Arf family GTPases. Biochem Soc Trans, 2005, 33:639-42
    [4] Julie Ménétrey, Eric Macia, Sebastiano Pasqualato,Michel Franco, Jacqueline Cherfils. Structure of Arf6–GDP suggests a basis for guanine nucleotide exchange factors specificity. Nat. Struct. Biol, 2000, 7(6): 466-469
    [5] Pasqualato, S, Menetrey, J, Franco, M, and Cherfils, J. The structural GDP/GTP cycle of human Arf6. EMBO Rep,2001, 2:234–238
    [6] Al-Awar, O., Radhakrishna, H., Powell, N. N., and Donaldson, J. G. Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant.Mol. Cell. Biol, 2000 20: 5998–6007
    [7] Santy, LC. Characterization of a fast cycling ADP-ribosylation factor 6 mutant. J. Biol. Chem, 2002, 277: 40185–40188
    [8] Song, J., Khachikian, Z., Radhakrishna, H., and Donaldson, J. G. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J Cell Sci, 1998 111: 2257–2267
    [9] Jackson CL, Casanova JE. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol, 2000, 10: 60–67
    [10] Someya, A., Sata, M., Takeda, K., Pacheco-Rodriguez, G., Ferrans, V. J., Moss,J. and Vaughan, M. Proc. ARF-GEP(100), a guanine nucleotide-exchange protein for ADP-ribosylation factor 6. Natl. Acad. Sci, 2001, 98: 2413–2418
    [11] Jackson, T. R., Kearns, B. G., and Theibert, A. B. Cytohesins and centaurins:mediators of PI 3-kinase-regulated Arf signaling. Trends Biochem. Sci, 2000, 25: 489–495
    [12] Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H.,Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A. J., Frohman, M. A.,and Kanaho, Y. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell, 1999, 99: 521–532
    [13] Czech, M. P. Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol, 2003, 65: 791–815
    [14] Yin, H. L., and Janmey, P. A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol, 2003, 65: 761–789
    [15] Ge, M., Cohen, J. S., Brown, H. A., and Freed, J. H. ADP ribosylation factor 6 binding to phosphatidylinositol 4,5-bisphosphate-containing vesicles creates defects in the bilayer structure: an electron spin resonance study. Biophys. J, 2001, 81: 994–1005
    [16] Melendez, A. J., Harnett, M. M., and Allen, J. M. Crosstalk between ARF6 and protein kinase Calpha in Fc(gamma)RI-mediated activation of phospholipase D1. Curr. Biol,2001 11:869–874
    [17] Powner, D. J., Hodgkin, M. N., and Wakelam, M. J. Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKCalpha in RBL-2H3 cells. Mol. Biol. Cell,2002 13: 1252–1262
    [18] Caumont, A. S., Galas, M. C., Vitale, N., Aunis, D., and Bader, M. F. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J. Biol. Chem, 1998, 273: 1373–1379
    [19] O’Luanaigh, N., Pardo, R., Fensome, A., Allen-Baume, V., Jones, D., Holt, M. R., and Cockcroft, S. Continual production of phosphatidic acid by phospholipase D is essential for antigen-stimulated membrane ruffling in cultured mast cells. Mol. Biol. Cell,2002, 13: 3730–3746
    [20] Dana, R. R., Eigsti, C., Holmes, K. L., and Leto, T L. A regulatory role for ADP-ribosylation factor 6 (ARF6) in activation of the phagocyte NADPH oxidase. J. Biol. Chem, 2000 275:32566–32571
    [21] Santy L C,et al. Activation of ARF6 by ARNO stimulates epithelial cell migrationthrough downstream activation of both Rac1 and phospholipaseD. J Cell Biol, 2001, 154(3):599-610
    [22] Bo Hu,et al. ADP-ribosylation Factor 6 Regulates Glioma Cell Invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated Pathway. Cancer Res, 2009, 69(3): 794–801
    [23] Koo T H,et al. Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation. BMC Cell Biology, 2007, 8:29
    [24] Santy L C,et al. The DOCK180/Elmo Complex Couples ARNO-Mediated Arf6 Activation to the Downstream Activation of Rac1. Current Biology, 2005, 15:1749-1754
    [25] Cotton M,et al.. Endogenous ARF6 Interacts with Rac1 upon Angiotensin II Stimulation to Regulate Membrane Ruffling and Cell Migration. Mol Biol Cell, 2007, 18:501-511
    [26] Charest P G,et al. Big roles for small GTPases in the control of directed cell movement. Biochem J, 2007, 401:377-390
    [27] Radhakrishna, H., Klausner, R. D., and Donaldson, J G. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol, 1996, 134: 935–947
    [28] Radhakrishna, H., Al-Awar, O., Khachikian, Z., and Donaldson, J G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci, 1999, 112: 855–866
    [29] Boshans, R. L., Szanto, S., van Aelst, L., and D’Souza-Schorey, C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol.Cell. Biol, 2000, 20: 3685–3694
    [30] Palacios, F., Price, L., Schweitzer, J., Collard, J. G., and D’Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J, 2001, 20: 4973–4986
    [31] Santy, L. C., and Casanova, J. E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol, 2001, 154: 599–610
    [32] Weber, K. S., Weber, C., Ostermann, G., Dierks, H., Nagel, W., and Kolanus,W.Cytohesin-1 is a dynamic regulator of distinct LFA-1 functions in leukocyte arrest and transmigration triggered by chemokines. Curr. Biol,2001, 11: 1969–1974
    [33] Zhang, Q., Cox, D., Tseng, C. C., Donaldson, J. G., and Greenberg, S. A requirement for ARF6 in Fcgamma receptor-mediated phagocytosis in macrophages. J. Biol. Chem,1998, 273: 19977–19981
    [34] Niedergang, F., Colucci-Guyon, E., Dubois, T., Raposo, G., and Chavrier, P. ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J. Cell Biol, 2003, 161: 1143–1150
    [35] Franco, M., Peters, P. J., Boretto, J., van Donselaar, E., Neri, A., D’Souza-Schorey, C., and Chavrier, P. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J, 1999, 18:1480–1491
    [36] Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T., and Donaldson, J. G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol,2001, 154: 1007–1017
    [37] D’Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D., and Van Aelst, L. A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J,1997, 16: 5445–5454
    [38] Shin, O. H., Couvillon, A. D., and Exton, J. H. Arfophilin is a common target of both class II and class III ADP-ribosylation factors. Biochemistry, 2001, 40: 10846–10852
    [39] Hickson, G. R., Matheson, J., Riggs, B., Maier, V. H., Fielding, A. B., Prekeris, R., Sullivan, W., Barr, F. A., and Gould, G. W. Arfophilins are dual Arf/Rab 11 binding proteins that regulate recycling endosome distribution and are related to Drosophila nuclear fallout. Mol. Biol. Cell,2003, 14:2908–2920
    [40] Schafer, D. A., D’Souza-Schorey, C., and Cooper, J. A. Actin assembly at membranes controlled by ARF6. Traffic, 2000, 1: 892–903
    [41] Hernandez-Deviez, D. J., Casanova, J. E., and Wilson, J. M. Regulation of dendritic development by the ARF exchange factor ARNO. Nat. Neurosci, 2002, 5: 623–624
    [42] Albertinazzi, C., Za, L., Paris, S., and De Curtis, I. ADP-ribosylation factor 6 and afunctional PIX/p95-APP1 complex are required for Rac1B-mediated neurite outgrowth. Mol. Biol. Cell, 2003 14:1295–1307
    [43] Huang, C. F., Liu, Y. W., Tung, L., Lin, C. H., and Lee, F. J. Role for Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell, 2003, 14(9):3834-3847
    [44] Palacios, F., and D’Souza-Schorey, C. Modulation of Rac1 and ARF6 activation during epithelial cell scattering. Biol. Chem, 2003 278: 17395–17400
    [45] Palacios, F., Schweitzer, J. K., Boshans, R. L., and D’Souza-Schorey, C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat. Cell Biol, 2002, 4: 929–936
    [46] Peters, P. J., Hsu, V. W., Ooi, C. E., Finazzi, D., Teal, S. B., Oorschot, V.,Donaldson, J. G., and Klausner, R. D. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol, 1995, 128: 1003–1017
    [47] Maranda, B., Brown, D., Bourgoin, S., Casanova, J. E., Vinay, P., Ausiello,D. A., and Marshansky, V. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J. Biol. Chem, 2001 276: 18540–18550
    [48] D’Souza-Schorey, C., van Donselaar, E., Hsu, V. W., Yang, C., Stahl, P. D., and Peters, P. J. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol, 1998 140: 603–616
    [49] Radhakrishna, H., and Donaldson, J. G. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol, 1997 139: 49–61
    [50] Naslavsky, N., Weigert, R., and Donaldson, J. G. Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol. Biol. Cell, 2003 14: 417–431
    [51] Paterson, A. D., Parton, R. G., Ferguson, C., Stow, J. L., and Yap, A. S. Characterization of E-cadherin endocytosis in isolated MCF-7 and chinese hamster ovary cells: the initial fate of unbound E-cadherin. J. Biol. Chem, 2003 278: 21050–21057
    [52] Caplan, S., Naslavsky, N., Hartnell, L. M., Lodge, R., Polishchuk, R. S.,Donaldson,J. G., and Bonifacino, J. S. A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J, 2002, 21: 2557–2567
    [53] Delaney, K. A., Murph, M. M., Brown, L. M., and Radhakrishna, H. Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J. Biol. Chem, 2002, 277: 33439–33446
    [54] Blagoveshchenskaya, A. D., Thomas, L., Feliciangeli, S. F., Hung, C. H., and Thomas, G. HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell, 2002, 111: 853–866
    [55] Chies, R., Nobbio, L., Edomi, P., Schenone, A., Schneider, C., and Brancolini, C. Alterations in the Arf6-regulated plasma membrane endosomal recycling pathway in cells overexpressing the tetraspan protein Gas3/PMP22. J. Cell Sci, 2003, 116: 987–999
    [56] Galas, M. C., Helms, J. B., Vitale, N., Thierse, D., Aunis, D., and Bader, M. F. Regulated exocytosis in chromaffin cells. A potential role for a secretory granule-associated ARF6 protein. J. Biol. Chem, 1997, 272: 2788–2793
    [57] Vitale, N., Chasserot-Golaz, S., Bailly, Y., Morinaga, N., Frohman, M. A., and Bader, M. F. Calcium-regulated exocytosis of dense-core vesicles requires the activation of ADP-ribosylation factor (ARF)6 by ARF nucleotide binding site opener at the plasma membrane. J. Cell Biol, 2002 159: 79–89
    [58] Bose, A., Cherniack, A. D., Langille, S. E., Nicoloro, S. M., Buxton, J. M., Park, J. G., Chawla, A., and Czech, M. P. G(alpha)11 signaling through ARF6 regulates F-actin mobilization and GLUT4 glucose transporter translocation to the plasma membrane. Mol. Cell. Biol, 2001, 21: 5262–5275
    [59] Lawrence, J. T., and Birnbaum, M. J. ADP-ribosylation factor 6 delineates separate pathways used by endothelin 1 and insulin for stimulating glucose uptake in 3T3-L1 adipocytes. Mol. Cell. Biol, 2001, 21: 5276–5285
    [60] Krauss, M., Kinuta, M., Wenk, M. R., De Camilli, P., Takei, K., and Haucke, V. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J. Cell Biol, 2003, 162:113–124
    [61] Altschuler, Y., Liu, S., Katz, L., Tang, K., Hardy, S., Brodsky, F., Apodaca, G., and Mostov, K. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol, 1999 147: 7–12
    [62] Salvador, L. M., Mukherjee, S., Kahn, R. A., Lamm, M. L., Fazleabas, A. T., Maizels, E. T., Bader, M. F., Hamm, H., Rasenick, M. M., Casanova, J. E., and Hunzicker-Dunn, M. Activation of the luteinizing hormone/choriogonadotropin hormone receptor promotes ADP ribosylation factor 6 activation in porcine ovarian follicular membranes. J. Biol. Chem, 2001 276: 33773–33781
    [63] Claing, A., Chen, W., Miller, W. E., Vitale, N., Moss, J., Premont, R. T., and Lefkowitz, R. J. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J. Biol. Chem, 2001, 276: 42509–42513
    [64] Mukherjee, S., Gurevich, V. V., Preninger, A., Hamm, H. E., Bader, M. F., Fazleabas, A. T., Birnbaumer, L., and Hunzicker-Dunn, M. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. J. Biol.Chem, 2002, 277: 17916–17927
    [65] Arnaoutova, I., Jackson, C. L., Al-Awar, O., Donaldson, J. G., and Loh, Y. P. Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol. Biol. Cell, 2003, 14(11):4448-4457
    [66] Lebeda RA,et a1. Sequence,genomic organization,and expression of the human ADP-ribosylation factor 6(ARF6)gene:a class III ARF.DNA Cell Bio1, 2003, 22:737~741
    [67] Myers R M,et al. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends in Cell Biology, 2008, 18(4):184-192
    [68] D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol, 2006, 7:347–358
    [69] Hashimoto S,et a1.Requirement for Arf6 in breast can cer invasive activities. Proc Natl Acad Sci USA, 2004, 101:6647~6652
    [70] Tague SE, et al. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci USA, 2004,101:9671–9676
    [71] Ming Li,et al. EFA6A Enhances Glioma Cell Invasion through ADP Ribosylation Factor6 /Extracellular Signal–Regulated Kinase Signaling. Cancer Res, 2006, 66(3):1583-1590
    [72] Li M, Wang J, Ng SS, Chan CY, He ML, Yu F, Lai L, Shi C, Chen Y, Yew DT, Kung HF, Lin MC. Adenosine diphosphate-ribosylation factor 6 is required for epidermal growth factor-induced glioblastoma cell proliferation.Cancer, 2009 ,115(21):4959-4972
    [73] Ikeda S, Ushio-Fukai M, Zuo L, Tojo T, Dikalov S, Patrushev NA, Alexander RW. Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ Res, 2005, 96(4):467-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700