去细胞全喉软骨支架的免疫学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喉移植是全喉切除后恢复喉功能的理想方法,而免疫排斥反应和免疫抑制剂的使用是限制喉移植开展的主要原因。快速而严重的移植排斥反应是临床器官移植成功的主要障碍。如能构建低免疫原性生物人工喉则可望解决这一问题。近年来去细胞支架的研究为构建低免疫原性喉提供了希望。去细胞生物支架是用物理或化学等方法去除组织或器官内的细胞和可溶性蛋白,仅保留组织结构中的不溶性基质成分,其主要成份为胶原,有助于种子细胞的粘附,增值,生长,分化,可为新组织的生成提供网状结构支架[1]。但这种经去细胞技术处理的喉支架的免疫原性有待进一步证实。本研究用动脉灌注去细胞技术去除供体喉的肌肉和黏膜而保留其三维空间结构,构建同种异体生物人工喉软骨支架并评价其免疫原性,为全喉重建提供理论依据。
     目的
     1.通过灌注法构建去细胞全喉支架,探讨灌注法构建去细胞软骨支架的可行性,并对其进行形态学观察。
     2.通过动物体内实验法评价去细胞喉软骨支架的免疫原性,为组织工程方法构建全喉的应用提供理论依据。
     方法
     1.去细胞全喉支架的构建及其形态学研究通过颈总动脉灌注离子型去污剂,对离体全喉进行去细胞处理。在去除可溶性基质的同时保留喉细胞外基质的三维空间结构及完整的全喉软骨支架结构,制备后的去细胞喉支架行大体观察、扫描电镜观察及组织学观察。
     2.去细胞全喉支架的免疫学研究
     实验组:新西兰大白兔作为喉支架供体,通过双侧颈总动脉顺行灌注去离子剂,构建出去肌细胞全喉支架。青紫蓝兔为受体,将去细胞全喉支架植入青紫兰兔喉肌旁;对照组:新西兰大白兔新鲜离体喉作供体,青紫兰兔为受体,将离体喉直接植入青紫兰兔喉肌旁,各组分别于植入后2,4,12,24周取材进行大体观察、组织学观察及淋巴细胞浸润测定。
     结果
     1.去细胞全喉支架的构建及其形态学研究大体观察:离体喉经十二烷基硫酸钠(SDS)灌注十六小时后即透明,去细胞喉支架结构完整,颜色苍白。扫描电镜观察:灌注组喉肌群去细胞程度完全,孔隙多,胶原纤维未受损,且软骨细胞活力保存完好。去细胞喉冠状切面HE染色示:喉声带、室带、弹性圆锥等结构均存在,肌细胞完全被去除,纤维样结构仍存在,排列规整,较完整的保留了细胞外基质的方向性。
     2.去细胞全喉支架的免疫学研究
     各组动物术后均存活至取材时间,实验组伤口愈合较对照组好。组织学观察:对照组2周出现免疫排斥反应,4周后软骨结构被破坏,喉的基本结构消失;实验组2周时出现轻微的炎性反应,4周时形成纤维结缔组织包绕,炎性反应减轻,12周软骨结构存在,软骨周围大量结缔组织形成,24周后,软骨结构消失,被结缔组织取代。淋巴细胞浸润观察:各时间点实验组淋巴细胞浸润程度均低于对照组(P<0.01)。
     结论
     1.灌注法能够清除喉组织的上皮细胞及肌细胞,保留细胞外基质及软骨,达到去细胞要求,构建完整的去细胞全喉支架。
     2.去细胞软骨支架结构相对完整,免疫排斥轻微,具有良好的生物相容性,是一种可供选择的喉支架材料。
Laryngeal transplantation is an ideal way to restore laryngeal function aftertotal laryngectomy. The first real problem faced by laryngeal transplantation isthe immune rejection and the use of immunosuppressive agent. Rapid andsevere immune rejection is a major obstacle to successful transplantation. If wecan construct a low immunogenicity bio-artificial larynx ,this problem may besolved. Rencently ,with the rapid development of tissue engineering , acellularscaffold brings hope to construct a low immunity larynx . Acellular scaffold isobtained by chemical detergent, which removed cells and soluble protein of thetissues or organs, retaining only the organizational structure of the insolublematrix components. The extracellular matrixs (ECMs) mainly contain collagen.The collagen provide scaffolds for cell adherence, cell migration,proliferationand tissue growth, . However, there is no research about the immunogenicity ofthe decellularized laryngeal scaffold. In our study, we attempted to construct adecellularized laryngeal collagen scaffold which reserved three-dimensionalgeometry extracellular matrix by utilizing a perfusion-decellularized technique and evaluate the immunogenicity of the decellularized laryngeal scaffold .
     Objectives
     1. To prepare an extracellular matrix laryngeal scaffold by utilizing a perfused,decellularized technique and investigate its feasibility to be athree-dimensional geometry extracellular matrix whole laryngeal collagenscaffold. Morphological observation was conducted on the decellularizedwhole laryngeal scaffold.
     2. To appraise the decellularized whole laryngeal scaffold’s immunogenicity byimplanted the scaffold in para-laryngeal muscles in rabbits, which will set atheoretical foundation for the application in the tissue engineering.
     Methods
     1. Morphological observation on the decellularized whole laryngeal collagenscaffold
     Perfusion decelluarized whole laryngeal collagen scaffolds were obtainedby carotid arterious perfusion with detergents. They were evaluated bymacroscopic view, scanning electron microscope (SEM) and histologicalexamination.
     2. Immunological study on decellularized whole laryngeal scaffold
     Twelve perfusion decelluarized laryngeal scaffolds were obtained fromrabbits through perfusion detergents by common carotid arterious. The twelvedecellularized laryngeal scaffolds and the twelve fresh larynxes were separatelyimplanted in para-laryngeal muscles of rabbits and harvested after two weeks,four weeks, twelve weeks and twenty-four weeks, respectively. Then, performedmacroscopic view, histological examination and lymphocyte infiltration test onthese samples.
     Results
     1. Morphological observation on the decellularized whole laryngeal scaffold
     Macroscopic view showed that the decellularized whole laryngeal collagenscaffold became transparent after two hours perfusion by detergents SDS.Perfusion decellularized laryngeal collagen scaffold can preserve the laryngealextracellular matrix and produce an acellular whole laryngeal collagenarchitecture. Histology and SEM indicated that the perfused laryngeal scaffoldhad a better deculluarized effect. The ventages and collagen fibers were retainedperfectly. HE staining of the coronal section of decellularized larynx indicatedthat the structure of laryngeal vocal cord, ventricular band, elastic cone wasintact. Muscle cells was completely removed.The fiber-like structure and thedirection of the extracellular matrix were remained.
     2. Immunological study on decellularized whole laryngeal scaffold
     The decelluarized larynx did not show obvious immunological rejectionafter implanted in the para-laryngeal muscles of the reeipient rabbits. Thevolume of implanted larynx became smaller but retain cartilage scaffold.Larynxes in the control group presented the serious immunological rejection andthe majority tissues of the larynxes were disintegrated and substituted by thefibrous connective tissues after four weeks. The peripheral tissues weredamaged and necrotic at different degrees. The quantity of the lymphocyteinfiltration in the control group is higher than that in the experiment group andthe result had the statistical significance (P<0.01).
     Conclusions
     1. Perfused, decellularized technique can achieve deculluarized effect. Theepithelial cells and muscle cells were removed, while extracellular matrix and cartilage were retained. The perfused technique can preserve thelaryngeal extracellular matrix and cartilage framework and construct anacellular whole laryngeal collagen scaffold.
     2. Decellularized larynx scaffold shows a low immunity laryngeal which couldbe a satisfactory material for laryngeal repair.
引文
[1] Gilbert T W, Sellaro T L, Badylak S F. Decellularization of tissues andorgans.[J]. Biomaterials, 2006, 27(19): 3675-3683.
    [2] Duque E, Duque J, Nieves M, et al. Management of larynx and tracheadonors.[J]. Transplant Proc, 2007, 39(7): 2076-2078.
    [3]朱立新,秦永,汪吉宝.喉移植的伦理学[J].中国医学伦理学, 2002(01).
    [4] Birchall M A, Lorenz R R, Berke G S, et al. Laryngeal transplantation in2005: a review.[J]. Am J Transplant, 2006, 6(1): 20-26.
    [5]唐佩弦.干细胞基础研究进展[J].医学研究杂志, 2007(06).
    [6] Ott H C, Matthiesen T S, Goh S K, et al. Perfusion-decellularized matrix:using nature's platform to engineer a bioartificial heart.[J]. Nat Med, 2008,14(2): 213-221.
    [7]侯楠,崔鹏程,罗家胜,等.灌注法与浸泡法构建去细胞全喉支架的对比研究[J].中国修复重建外科杂志, 2009(05).
    [8] Hiller A S, Tschernig T, Kleemann W J, et al. Bronchus-associatedlymphoid tissue (BALT) and larynx-associated lymphoid tissue (LALT) arefound at different frequencies in children, adolescents and adults.[J]. ScandJ Immunol, 1998, 47(2): 159-162.
    [9] Kracke A, Hiller A S, Tschernig T, et al. Larynx-associated lymphoid tissue(LALT) in young children.[J]. Anat Rec, 1997, 248(3): 413-420.
    [10] Rees L E, Ayoub O, Haverson K, et al. Differential major histocompatibilitycomplex class II locus expression on human laryngeal epithelium.[J]. ClinExp Immunol, 2003, 134(3): 497-502.
    [11] Gorti G K, Birchall M A, Haverson K, et al. A preclinical model forlaryngeal transplantation: anatomy and mucosal immunology of the porcinelarynx.[J]. Transplantation, 1999, 68(11): 1638-1642.
    [12] Jecker P, Ptok M, Pabst R, et al. Distribution of immunocompetent cells invarious areas in the normal laryngeal mucosa of the rat.[J]. Eur ArchOtorhinolaryngol, 1996, 253(3): 142-146.
    [13] Jecker P, Mcwilliam A, Marsh A, et al. Acute laryngotracheitis in the ratinduced by Sendai virus: the influx of six different types ofimmunocompetent cells into the laryngeal mucosa differs strongly betweenthe subglottic and the glottic compartment.[J]. Laryngoscope, 2001, 111(9):1645-1651.
    [14] Jecker P, Mann W J, Mcwilliam A S, et al. Dendritic cell influx differsbetween the subglottic and glottic mucosae during acute laryngotracheitisinduced by a broad spectrum of stimuli.[J]. Ann Otol Rhinol Laryngol,2002, 111(7 Pt 1): 567-572.
    [15] Leon X, Pujol A, Lopez M, et al. [Larynx transplant: a therapeutic optionfor the 21st century? Literature review][J]. Acta Otorrinolaringol Esp, 2008,59(3): 127-138.
    [16] Rees L E, Ayoub O, Haverson K, et al. Differential major histocompatibilitycomplex class II locus expression on human laryngeal epithelium.[J]. ClinExp Immunol, 2003, 134(3): 497-502.
    [17] Wang E C, Damrose E J, Mendelsohn A H, et al. Distribution of class I andII human leukocyte antigens in the larynx.[J]. Otolaryngol Head Neck Surg,2006, 134(2): 280-287.
    [18] Barker E, Haverson K, Stokes C R, et al. The larynx as an immunologicalorgan: immunological architecture in the pig as a large animal model.[J].Clin Exp Immunol, 2006, 143(1): 6-14.
    [19] Friedman A D, Dan O, Drazba J A, et al. Quantitative analysis ofOX62-positive dendritic cell distribution in the rat laryngeal complex.[J].Ann Otol Rhinol Laryngol, 2007, 116(6): 449-456.
    [20] Waddell T K, Gorczynski R M, Decampos K N, et al. Majorhistocompatibility complex expression and lung ischemia-reperfusion inrats.[J]. Ann Thorac Surg, 1996, 62(3): 866-872.
    [21] Strome S, Sloman-Moll E, Samonte B R, et al. Rat model for a vascularizedlaryngeal allograft.[J]. Ann Otol Rhinol Laryngol, 1992, 101(11): 950-953.
    [22] Lorenz R R, Dan O, Fritz M A, et al. Rat laryngeal transplant model:technical advancements and a redefined rejection grading system.[J]. AnnOtol Rhinol Laryngol, 2002, 111(12 Pt 1): 1120-1127.
    [23] Nelson M, Dan O, Strome M. Evaluation of parathyroid hormone as afunctional biological marker of rat laryngeal transplant rejection.[J].Laryngoscope, 2003, 113(9): 1483-1486.
    [24] Lorenz R R, Dan O, Haug M R, et al. Effects of adding steroids, in vitroirradiation, or both to cyclosporine immunosuppression in the murinelaryngeal transplantation model.[J]. Ann Otol Rhinol Laryngol, 2002, 111(5Pt 1): 455-459.
    [25] Work W P, Boles R. Larynx: replantation in the dog.[J]. Arch Otolaryngol,1965, 82(4): 401-402.
    [26] Nelson M, Fritz M, Dan O, et al. Tacrolimus and mycophenolate mofetilprovide effective immunosuppression in rat laryngeal transplantation.[J].Laryngoscope, 2003, 113(8): 1308-1313.
    [27] Akst L M, Siemionow M, Dan O, et al. Induction of tolerance in a rat modelof laryngeal transplantation.[J]. Transplantation, 2003, 76(12): 1763-1770.
    [28] Khariwala S S, Knott P D, Dan O, et al. Pulsed immunosuppression witheverolimus and anti-alphabeta T-cell receptor: laryngeal allograftpreservation at six months.[J]. Ann Otol Rhinol Laryngol, 2006, 115(1):74-80.
    [29] Khariwala S S, Dan O, Lorenz R R, et al. Donor bone marrow in laryngealtransplantation: results of a rat study.[J]. Am J Otolaryngol, 2008, 29(4):242-249.
    [30] Leopold D A. Laryngeal trauma. A historical comparison of treatmentmethods.[J]. Arch Otolaryngol, 1983, 109(2): 106-112.
    [31] Barthel S W, Dan O, Myles J, et al. Effect of in vitro irradiation of donorlarynges on cyclosporine requirements and rejection rates in rat laryngealtransplantation.[J]. Ann Otol Rhinol Laryngol, 2001, 110(1): 20-24.
    [32] Lorenz R R, Dan O, Fritz M A, et al. Immunosuppressive effect ofirradiation in the murine laryngeal transplantation model: a controlledtrial.[J]. Ann Otol Rhinol Laryngol, 2003, 112(8): 712-715.
    [33] Yamashita M, Omori K, Kanemaru S, et al. Experimental regeneration ofcanine larynx: a trial with tissue engineering techniques.[J]. ActaOtolaryngol Suppl, 2007(557): 66-72.
    [34] Xu C C, Chan R W, Tirunagari N. A biodegradable, acellular xenogeneicscaffold for regeneration of the vocal fold lamina propria.[J]. Tissue Eng,2007, 13(3): 551-566.
    [35] Chernoff E A, Stocum D L, Nye H L, et al. Urodele spinal cordregeneration and related processes.[J]. Dev Dyn, 2003, 226(2): 295-307.
    [36] Langer R, Vacanti J P. Tissue engineering.[J]. Science, 1993, 260(5110):920-926.
    [37]钱鋆,沈尊理,张兆锋,等.运用组织工程原理结合纳米技术构建骨组织的实验研究[J].四肢运动承重部位的管状骨缺损一直是临床治疗的难题, 2006(05).
    [38] Puelacher W C, Mooney D, Langer R, et al. Design of nasoseptal cartilagereplacements synthesized from biodegradable polymers andchondrocytes.[J]. Biomaterials, 1994, 15(10): 774-778.
    [39] Britt J C, Park S S. Autogenous tissue-engineered cartilage: evaluation asan implant material.[J]. Arch Otolaryngol Head Neck Surg, 1998, 124(6):671-677.
    [40] Rotter N, Aigner J, Naumann A, et al. Cartilage reconstruction in head andneck surgery: comparison of resorbable polymer scaffolds for tissueengineering of human septal cartilage.[J]. J Biomed Mater Res, 1998, 42(3):347-356.
    [41] Aigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novelnonwoven structured biomaterial based on hyaluronic acid benzyl ester.[J].J Biomed Mater Res, 1998, 42(2): 172-181.
    [42] Bujia J, Sittinger M, Minuth W W, et al. Engineering of cartilage tissueusing bioresorbable polymer fleeces and perfusion culture.[J]. ActaOtolaryngol, 1995, 115(2): 307-310.
    [43] Falsafi S, Koch R J. Growth of tissue-engineered human nasoseptalcartilage in simulated microgravity.[J]. Arch Otolaryngol Head Neck Surg,2000, 126(6): 759-765.
    [44]张浚睿,陈富林,魏建华,等.细胞聚集体复合支撑体体外构建人鼻翼形态组织工程软骨的实验研究[J].实用口腔医学杂志, 2009, 25(3):311-314.
    [45] Cao Y, Vacanti J P, Paige K T, et al. Transplantation of chondrocytesutilizing a polymer-cell construct to produce tissue-engineered cartilage inthe shape of a human ear.[J]. Plast Reconstr Surg, 1997, 100(2): 297-302,303-304.
    [46] Rodriguez A, Cao Y L, Ibarra C, et al. Characteristics of cartilageengineered from human pediatric auricular cartilage.[J]. Plast ReconstrSurg, 1999, 103(4): 1111-1119.
    [47]刘彦春,王炜.软骨细胞—支架复合的修复兔耳廓软骨缺损[J].中华整形烧伤外科杂志, 1999, 15(3): 180-182.
    [48] Arevalo-Silva C A, Cao Y, Vacanti M, et al. Influence of growth factors ontissue-engineered pediatric elastic cartilage.[J]. Arch Otolaryngol HeadNeck Surg, 2000, 126(10): 1234-1238.
    [49] Neumeister M W, Wu T, Chambers C. Vascularized tissue-engineeredears.[J]. Plast Reconstr Surg, 2006, 117(1): 116-122.
    [50] Vacanti C A, Paige K T, Kim W S, et al. Experimental tracheal replacementusing tissue-engineered cartilage.[J]. J Pediatr Surg, 1994, 29(2): 201-204,204-205.
    [51] Sakata J, Vacanti C A, Schloo B, et al. Tracheal composites tissueengineered from chondrocytes, tracheal epithelial cells, and syntheticdegradable scaffolding.[J]. Transplant Proc, 1994, 26(6): 3309-3310.
    [52] Wambach B A, Cheung H, Josephson G D. Cartilage tissue engineeringusing thyroid chondrocytes on a type I collagen matrix.[J]. Laryngoscope,2000, 110(12): 2008-2011.
    [53]崔鹏程,陈文弦,等.鼻中隔软骨细胞细胞组织工程法构建预定形态软骨[J].中华耳鼻咽喉科杂志, 2001, 36(1): 22-24, T5页.
    [54]孙安科,裴国献,胡平,等.组织工程化喉软骨的构建[J].中华耳鼻咽喉科杂志, 2004, 39(10): 606-611.
    [55] Gubbels S P, Richardson M, Trune D, et al. Tracheal reconstruction withporcine small intestine submucosa in a rabbit model.[J]. Otolaryngol HeadNeck Surg, 2006, 134(6): 1028-1035.
    [56]吴明明,崔鹏程,赵大庆,等.体外构建气管黏膜上皮组织的研究[J].第四军医大学学报, 2008, 29(3): 208-210.
    [57] Hench L L, Polak J M. Third-generation biomedical materials.[J]. Science,2002, 295(5557): 1014-1017.
    [58] Bader A, Schilling T, Teebken O E, et al. Tissue engineering of heartvalves--human endothelial cell seeding of detergent acellularized porcinevalves.[J]. Eur J Cardiothorac Surg, 1998, 14(3): 279-284.
    [59] Booth C, Korossis S A, Wilcox H E, et al. Tissue engineering of cardiacvalve prostheses I: development and histological characterization of anacellular porcine scaffold.[J]. J Heart Valve Dis, 2002, 11(4): 457-462.
    [60] Korossis S A, Booth C, Wilcox H E, et al. Tissue engineering of cardiacvalve prostheses II: biomechanical characterization of decellularizedporcine aortic heart valves.[J]. J Heart Valve Dis, 2002, 11(4): 463-471.
    [61] Grauss R W, Hazekamp M G, Oppenhuizen F, et al. Histological evaluationof decellularised porcine aortic valves: matrix changes due to differentdecellularisation methods.[J]. Eur J Cardiothorac Surg, 2005, 27(4):566-571.
    [62] Conklin B S, Richter E R, Kreutziger K L, et al. Development andevaluation of a novel decellularized vascular xenograft.[J]. Med Eng Phys,2002, 24(3): 173-183.
    [63] Dahl S L, Koh J, Prabhakar V, et al. Decellularized native and engineeredarterial scaffolds for transplantation.[J]. Cell Transplant, 2003, 12(6):659-666.
    [64] Hudson T W, Evans G R, Schmidt C E. Engineering strategies forperipheral nerve repair.[J]. Orthop Clin North Am, 2000, 31(3): 485-498.
    [65] Chen R N, Ho H O, Tsai Y T, et al. Process development of an acellulardermal matrix (ADM) for biomedical applications.[J]. Biomaterials, 2004,25(13): 2679-2686.
    [66] Hudson T W, Liu S Y, Schmidt C E. Engineering an improved acellularnerve graft via optimized chemical processing.[J]. Tissue Eng, 2004,10(9-10): 1346-1358.
    [67] Kim B S, Yoo J J, Atala A. Peripheral nerve regeneration using acellularnerve grafts.[J]. J Biomed Mater Res A, 2004, 68(2): 201-209.
    [68] Borschel G H, Dennis R G, Kuzon W J. Contractile skeletal muscletissue-engineered on an acellular scaffold.[J]. Plast Reconstr Surg, 2004,113(2): 595-602, 603-604.
    [69] Woods T, Gratzer P F. Effectiveness of three extraction techniques in thedevelopment of a decellularized bone-anterior cruciate ligament-bonegraft.[J]. Biomaterials, 2005, 26(35): 7339-7349.
    [70] Cartmell J S, Dunn M G. Effect of chemical treatments on tendoncellularity and mechanical properties.[J]. J Biomed Mater Res, 2000, 49(1):134-140.
    [71] Badylak S F, Lantz G C, Coffey A, et al. Small intestinal submucosa as alarge diameter vascular graft in the dog.[J]. J Surg Res, 1989, 47(1): 74-80.
    [72] Badylak S F, Tullius R, Kokini K, et al. The use of xenogeneic smallintestinal submucosa as a biomaterial for Achilles tendon repair in a dogmodel.[J]. J Biomed Mater Res, 1995, 29(8): 977-985.
    [73] Chen F, Yoo J J, Atala A. Acellular collagen matrix as a possible "off theshelf" biomaterial for urethral repair.[J]. Urology, 1999, 54(3): 407-410.
    [74] Freytes D O, Badylak S F, Webster T J, et al. Biaxial strength ofmultilaminated extracellular matrix scaffolds.[J]. Biomaterials, 2004,25(12): 2353-2361.
    [75] Gilbert T W, Stolz D B, Biancaniello F, et al. Production andcharacterization of ECM powder: implications for tissue engineeringapplications.[J]. Biomaterials, 2005, 26(12): 1431-1435.
    [76] Gilbert T W, Stolz D B, Biancaniello F, et al. Production andcharacterization of ECM powder: implications for tissue engineeringapplications.[J]. Biomaterials, 2005, 26(12): 1431-1435.
    [77] Mcfeely W J, Bojrab D I, Kartush J M. Tympanic membrane perforationrepair using AlloDerm.[J]. Otolaryngol Head Neck Surg, 2000, 123(1 Pt 1):17-21.
    [78] Downey T J, Champeaux A L, Silva A B. AlloDerm tympanoplasty oftympanic membrane perforations.[J]. Am J Otolaryngol, 2003, 24(1): 6-13.
    [79] Benecke J J. Tympanic membrane grafting with alloderm.[J]. Laryngoscope,2001, 111(9): 1525-1527.
    [80] Kridel R W, Foda H, Lunde K C. Septal perforation repair with acellularhuman dermal allograft.[J]. Arch Otolaryngol Head Neck Surg, 1998,124(1): 73-78.
    [81] Gryskiewicz J M, Rohrich R J, Reagan B J, et al. The Use of AlloDerm forthe Correction of Nasal Contour Deformities.[J]. Plast Reconstr Surg, 2001,107(2): 571.
    [82] Ayshford C A, Shykhon M, Uppal H S, et al. Endoscopic repair of nasalseptal perforation with acellular human dermal allograft and an inferiorturbinate flap.[J]. Clin Otolaryngol Allied Sci, 2003, 28(1): 29-33.
    [83] Sinha U K, Chang K E, Shih C W. Reconstruction of pharyngeal defectsusing AlloDerm and sternocleidomastoid muscle flap.[J]. Laryngoscope,2001, 111(11 Pt 1): 1910-1916.
    [84] Huber J E, Spievack A, Simmons-Byrd A, et al. Extracellular matrix as ascaffold for laryngeal reconstruction.[J]. Ann Otol Rhinol Laryngol, 2003,112(5): 428-433.
    [85] Ringel R L, Kahane J C, Hillsamer P J, et al. The application of tissueengineering procedures to repair the larynx.[J]. J Speech Lang Hear Res,2006, 49(1): 194-208.
    [86] Walter R J, Matsuda T, Reyes H M, et al. Characterization of acellulardermal matrices (ADMs) prepared by two different methods.[J]. Burns,1998, 24(2): 104-113.
    [87] Nocini P F, Wangerin K, Albanese M, et al. Vertical distraction of a freevascularized fibula flap in a reconstructed hemimandible: case report.[J]. JCraniomaxillofac Surg, 2000, 28(1): 20-24.
    [88] Chiapasco M, Brusati R, Galioto S. Distraction osteogenesis of a fibularrevascularized flap for improvement of oral implant positioning in a tumorpatient: a case report.[J]. J Oral Maxillofac Surg, 2000, 58(12): 1434-1440.
    [89]张晨,王者生,高景恒.人耳软骨移植抗原性及脱细胞处理对其的影响[J].中国修复重建外科杂志, 2003(03).
    [90] Genden E M, Iskander A J, Bromberg J S, et al. Orthotopic trachealallografts undergo reepithelialization with recipient-derived epithelium.[J].Arch Otolaryngol Head Neck Surg, 2003, 129(1): 118-123.
    [91] Strome S, Brodsky G, Darrell J, et al. Histopathologic correlates of acutelaryngeal allograft rejection in a rat model.[J]. Ann Otol Rhinol Laryngol,1992, 101(2 Pt 1): 156-160.
    [92] Bujia J, Wilmes E, Hammer C, et al. Class II antigenicity of humancartilage: relevance to the use of homologous cartilage graft forreconstructive surgery.[J]. Ann Plast Surg, 1991, 26(6): 541-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700