RbAp48在HPV致宫颈癌中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宫颈癌是女性生殖系统最常见的恶性肿瘤,在世界范围内发病率仅次子乳腺癌居第二位,每年约有超过50万新发病例,且引起较高的死亡率(1)。其中80%在发展中国家(2),中国每年约有新发病例13.15万,占世界新发病例的约30%。近年来,年轻病例有逐年增加的趋势,发病年龄趋向年轻化,成为严重威胁中青年妇女健康的重大妇科肿瘤之一(3)。Southern转印杂交和PCR检测人乳头瘤病毒(human papillomavirus,HPV)检出阳性率达89-93%(4),大量的研究资料表明HPV感染是诱发宫颈癌的首要启动因素(5,6),因此,加强HPV致宫颈癌机制的研究是有效防治宫颈癌的前提。
     人乳头瘤病毒(Human papillomavirus,HPV)是双链DNA病毒,具有嗜上皮特性,能够感染皮肤与粘膜的上皮组织并形成增生性疾病(7)。高危型HPV(HPV16、18、33型等)与宫颈癌等恶性肿瘤的发生密切相关,低危型HPV(HPV 6、11型)可导致尖锐湿疣等良性病变(8)。HPV基因组为7.9kb的双链环状DNA,其早期区(E区)含有7个开放读码框(E1-E7 ORF),编码与病毒复制、转录调控和细胞转化有关的早期蛋白。晚期区(L区)编码两种结构蛋白L1和L2,组成病毒的衣壳。HPV的转化基因主要包括病毒的早期基因E6和E7,该基因编码的蛋白产物与抑癌蛋白p53和pRb的相互作用是HPV致癌的主要机制,使细胞分化、增殖和凋亡紊乱,诱发肿瘤的形成(9)。一般认为,HPVE6与P~(53)结合,通过泛素依赖的蛋白水解酶将P~(53)降解,使P~(53)失去对细胞周期密切相关的P~(21)(WAF1)、增殖细胞核抗原(PCNA)、细胞周期蛋白依赖激酶(CDK)的调节作用,E7蛋白干扰抑癌蛋白RB与转录因子E2F的结合,从而导致细胞增殖周期的紊乱,诱导细胞癌变(9-12)。随着研究的深入,不断发现一些矛盾的现象,在一些HPV阳性宫颈癌细胞中,P~(53)的DNA修复活性并未消失,提示HPV的E6蛋白不足以完全灭活P~(53)活性,突变的P~(53)也不能代替E6基因以维持HPV_(16)诱导的NIH3T3细胞的生长特性,因此HPVE_6致癌肯定存在非P~(53)依赖的途径。利用酵母双杂交表达系统发现一种细胞钙结合蛋白可以特异性与高危型HPVE6蛋白结合,即E6结合蛋白(E6 binding pmtem,E6BP)两者共同存在于内质网上,用FISH技术将E6BP基因定位于15q22.33-q24.1,即使P~(53)途径中E6结合并降解P~(53)也需E6相关蛋白,即E6BP参与,它是一种泛素激酶(9),E6的一种突变体不能与P~(53)、E6BP、E6AP和端粒酶结合,但可以致细胞转化,表明细胞存在其它多种与HPVE6转化相关蛋白(13),HPVE6还可以作用于Mcm7干扰细胞DNA复制(14),作用于端粒酶影响染色体的结构(15,16),作用于E6TP(17)影响信号转导,作用于C-Myc、Bax而抑制细胞凋亡(18-20),E7也可通过非Rb途径影响细胞信号转导(21)。
     近来研究发现提示HPV还有新的靶分子和致癌途径,HPVE6和E7基因在增殖分化、转录调节、端粒酶活化和凋亡调节中涉及细胞内多个潜在靶目标,因此解码HPV原癌基因对细胞信号转导干扰的分子标志,并对其结构功能和表达调控方式进行研究是揭示宫颈癌发生机制的重要途径,目前该领域的研究还非常零碎和不完整,必须运用高通量的生物学技术从整体化的角度对该类问题进行研究。随着人类基因组测序工作的完成,生命科学的研究进入了后基因组时代,即功能基因组学时代,蛋白质组学(proteomics)是这一前沿研究的主要组成部分,从整体水平研究细胞内蛋白质的组成及其活动规律。由于蛋白质是生物细胞赖以生存的各种代谢和调控途径的主要执行者(22),因此可更全面地认识蛋白质影响细胞生物学行为的方式和过程,为揭示HPV致癌机理提供了有效的技术体系。
     本研究运用基于固体pH梯度等电聚焦双向电泳(Two-dimensional gelelectrophoresis;2-DE)、肽质量指纹图谱鉴定技术(Peptide Massspectrometry analysis)和生物信息学(Bioinformatics)等蛋白质组学技术体系,鉴定了HPV16转化的人宫颈上皮永生化细胞系H8和人宫颈癌细胞系Caski的差异蛋白,RbAp48作为其中与肿瘤发生密切相关的差异表达蛋白质,引起了我们极大的兴趣并以此为研究目标展开了深入的功能研究。RbAP48,作为一种Rb(retinoblastoma-binding protein)结合蛋白(23),是从涉及不同染色质集合、装配以及核小体修饰复合物,包括组蛋白乙酰转移酶(histonedeacetylase;HDAC)分离出的复合物中第一个被鉴定的高丰度蛋白(24,25)。
     本研究在国内外第一次系统全面的揭示了RbAP48与宫颈癌发生的密切关系,体内细胞水平和体外动物实验研究表明RbAP48是调控宫颈癌发病过程HPV转化活性的至关重要的分子,为全面深刻的认识HPV致癌机理从而更好的预防防治奠定基础。
     一、RbAp48在宫颈癌中的低表达
     利用双向电泳技术对正常永生化细胞H8及宫颈癌细胞Caski总蛋白的分离,并通过蛋白质组学技术分析,我们成功鉴定出20个表达有差异的蛋白质。其中RbAp48作为一个在肿瘤细胞中低表达的蛋白引起我们极大的兴趣。首先我们运用real-time PCR及western blot技术分别从RNA和蛋白水平上验证了其表达在H8中明显高于在Caski中的表达,然后又利用其他宫颈癌细胞系如SiHa、HeLa以及宫颈角质细胞HCK上也证实了RbAp48的表达在宫颈癌细胞中的普遍性。同时我们搜集临床上其他肿瘤组织如乳腺癌、卵巢癌、胃癌等相关的肿瘤及正常组织,试图发现RbAp48的表达在这些肿瘤中是否也有差异。
     Western blot分析显示在这些肿瘤组织中,RbAp48的表达没有明显差别,这证实了RbAp48的低表达在宫颈癌中的特异性。
     二、RbAp48的表达变化可以影响细胞的增殖分化及体外肿瘤形成
     利用RNAi(RNA干扰技术)构建能有效降低细胞内源性RbAp48表达的质粒pSUPER-RbAp48,将其转入H8建立稳定转染的细胞系H8+siRbAp48,同时将pSUPER空载体转染H8细胞作为对照组建立稳定细胞系。通过比较分析两种稳定细胞系的增殖分化等的差异,可以明显观察到转染pSUPER-RbAp48的H8细胞能够增加增殖细胞线粒体能量代谢过程中乳酸脱氢酶的释放,从而促进细胞能量代谢;能够促进细胞分裂增殖,细胞数目增加;增加细胞软琼脂克隆生长的数量;同时明显降低反映细胞衰老死亡指标的β-细胞半乳糖苷酶的活性。这些实验都表明降低细胞内源性的RbAp48的表达可以明显促进体外细胞水平的增殖分化并抑制细胞的死亡衰老。
     将稳定转染pSUPER-RbAp48和pSUPER空载体的细胞分别皮下注射裸鼠,四周后裸鼠体内肿瘤形成的情况表明,由于RbAp48本身并不具备致瘤性,因此转染pSUPER空载体的细胞注射的裸鼠体内没有肿瘤形成:而稳定转染pSUPER-RbAp48细胞注射的6只裸鼠中有5只体内均长出肿瘤。
     为了进一步研究RbAp48在肿瘤形成过程中的功能,我们从另一方面增加RbAp48的表达,观察RbAp48的过表达对体内体外肿瘤发生的影响。我们分别转染了RbAp48的表达质粒及pcDNA 3.1到Caski细胞中建立稳定细胞系,进行细胞增殖实验分析。MTT分析、细胞生长曲线、以及软琼脂克隆形成试验均表明过表达RbAp48明显降低细胞的生长率,β-细胞半乳糖苷酶分析显示细胞衰老率增加。体外裸鼠肿瘤形成试验表明在宫颈癌细胞Caski中增加RbAp48的表达后,细胞的致瘤性明显降低,裸鼠体内形成的肿瘤明显缩小。
     这些都表明RbAp48作为一种新发现的调控人乳头瘤病毒HPV16阳性的宫颈癌转化活性的重要蛋白,能够抑制肿瘤细胞的生长,降低其致瘤性,结合最近研究报道RbAp48作为一种肿瘤放射敏感性蛋白,提示RbAp48可以作为一种HPV相关疾病的治疗靶位用于临床应用,为宫颈癌的预防和治疗提供一种新的方向和理论依据。
     三、RbAp48通过调节其他癌基因和抑癌基因的表达来影响肿瘤的发生
     为了进一步探讨RbAp48影响宫颈癌的机制,我们分别研究了其对肿瘤癌基因HPVE6、E7,c-myc,抑癌基因Rb,P53,以及Rb/E2F靶位基因的表达影响。通过将RbAp48利用siRNA干扰之后,我们发现HPVE6、E7以及c-myc基因的表达均上升,而抑癌基因Rb和p53的表达则明显下降。另外我们还检查了Rb/E2F靶位基因的表达情况包括Cyclin A,Cyclin E,Cyclin D1,proliferating cell nuclear antigen(PCNA)和p16INK4a,结果发现只有Cyclin D1的表达有所升高,也许是因为RbAp48通过影响Cyclin D1的表达来影响宫颈癌的分化。
     四、ECM1在软骨发育中抑制软骨发育的作用
     另外,我们通过酵母双杂交试验在研究COMP(Cartilage oligomericmatrix protein,软骨寡聚基质蛋白)蛋白这一基质蛋白在软骨发育中的作用时,用COMP蛋白的EGF片段做诱饵,筛选出来了ECM1(extracellular matrixprotein 1,细胞外基质蛋白1)这一细胞外基质蛋白。通过研究其与COMP的相互作用,我们明确了二者在体内外相互结合作用的模式,并发现ECM1具有抑制软骨发育的作用,更重要的是ECM1是PTHrP(Parathyriod hormone relatedpeptide,甲状旁腺激素相关蛋白)这一重要的软骨发育的抑制因子的重要下游分子,因为PTHrP能够明显诱导ECM1的表达,而且抑制了ECM1的表达之后,PTHrP也失去了抑制软骨发育的作用。
Cervical cancer is one of the most common neoplastic diseases among women, with a combined worldwide incidence of approximately one-half million new cases annually and rates of morbidity and fatality second only to breast cancer(1).In addition,in recent years the average cervical cancer patient has become progressively younger(3).Over 99%of cervical carcinomas are positive for human papillomavirus (HPV)DNA(4),indicating that HPV infection is the most important cause for cervical cancer(5,6).Thus it is of great importance to elucidate the mechanism by which HPV induces cervical cancer from both the pathophysiological and the therapeutic standpoint.
     HPV is a double-stranded DNA virus(26)that affects skin and mucosa epithelia and induces hyperplasia,such as in benign hyperplastic verruca and malignant tumors. Although HPV infection appears to be the prerequisite for causing the great majority of cases of cervical cancer,the molecular events following HPV infection of cervical mucosa epithelial cells remain largely unknown.The transforming genes of HPV include the early genes E6 and E7,whose coding proteins bind tumor suppressor proteins p53 and Rb.These bindings results in an imbalance between proliferation and apoptosis,thereby inducing cervical cancer(9).Growing evidence suggests that in addition to p53 and Rb,various HPV E6- and E7-associated molecules and pathways are involved in cell proliferation,differentiation,transcription regulation,telomerase activation and apoptosis(14,15,17,21).Identification of novel target molecules participating in HPV-induced tumourgenesis will provide the foundation for better understanding the mechanisms of cervical cancer.Proteomics has been shown to be a powerful approach to isolate the target molecules that are involved in various biological processes(22)and it also has been successfully used to identify proteins involving tumorigenesis(27-30).
     The transformation from human cervical mucosa epithelial cells to cervical cancer cells has been attributed to abnormal expression of oncogenes,tumor suppressor genes,growth factors,growth factor receptors,cell adhesion factors,and DNA repair genes as detected by northern blot,differential display PCR,and Cdna chips based on transcription level(31).Because mRNA expression level does not always correlate with protein level as a result of posttranslation regulation,and because proteins are the executor of genetic information,proteomics provides a powerful,straightforward tool for studying transformation of cells during carcinogenesis.
     In this study we utilized a combination of two-dimensional gel electrophoresis(2-DE),image analysis,mass spectrometry,and bioinformatics to quantify and characterize differentially expressed proteins between the HPV16 immortalized human cervical mucosa epithelial H8 cells and cervical cancer Caski cells and identified retinoblastoma-binding protein 4(RbAp48,also referred to as RbBP4)as one of the 18 differentially expressed proteins.
     RbAp48,initially identified as a retinoblastoma-binding protein(23),was characterized as a highly abundant component of various chromatin assembly, remodeling,and distinct nucleosome-modifying complexes,including the nuclear histone deacetylases(24,25).RbAp48 is best known as a component of large chromatin-associated complexes recruited by tumor suppressor Rb and most likely acts in concert with other proteins to modify histones and/or remodel nucleosomes(32, 33);furthermore,the Rb/RbAp48-associated histone deacetylase complex has been found to be involved in transcriptional repression of E2F responsive genes(34-36).It was reported that E2F-1 and RbAp48 are physically associated in the presence of Rb and histone deacetylase(37),suggesting that RbAp48 could be involved in the transcriptional repression of E2F-responsive genes,p55,the Drosophila ortholog of RbAp48,has been shown to be required for the repression of dE2F2/RBF-regulated genes(38).Fission yeast centromere protein Mis15,which bears a strong resemblance to human RbAp48,is part of the CENP-A recruitment pathway and forms an evolutionarily conserved complex that includes Mis6(39).RbAp48 was also isolated as one of three radiosensitive genes in a microarray analysis used for selecting radiosensitivity prediction molecules and RbAp48-overexpression-induced radiosensitization in HS-578T,MDA-MB-231,and MALME-3M cells,two breast cancer and a melanoma cell line,respectively,when compared with mock-transfected cell lines(40).Our studies provided first evidence linking RbAP48 to cervical cancer and both in vitro and in vivo studies demonstrated that RbAP48,previously unknown in cervical cancer,is a novel and critical mediator that control HPV16 transforming activity in cervical cancinogenesis
     1.Downregulation of RbAp48 and other components of RbAp48 complex in cervical cancer cells is specific for cervical cancer.
     Among all proteins identified,RbAp48 is of particular interest to us,since this protein is a highly abundant component of various chromatin assembly,remodeling, and distinct nucleosome-modifying complexes,in which it associates with tumor supressor retinoblastoma protein(Rb)and was recently isolated a radiosensitive marker genes in several cancer cell lines(40).To verify the altered expression between HPV16 immortalized cervical mucosa epithelial H8 cells and cervical cancer Caski cells,a Western blotting assay was performed with cell extracts prepared from these two cell lines.There was a robust reduction of RbAp48 protein in cervical cancer Caski cells compared to HPV16 immortalized cervical mucosa epithelial H8 cells. These findings were further verified in human native tissues,the similar expression pattern for RbAp48 was demonstrated in native tissues as that in cell lines.In addition, reduced expression of RbAp48 in cervical cancer was further confirmed with additional cervical cancer-derived cell lines,including Hela and SiHa cells when compared to the primary cervical keratinocytes(HCK)cells.
     To determine whether downregulation of RbAp48 is also true for other human cancers,we next examined the expression of RbAp48 in breast cancer,ovarian cancer and gastric cancer,and no significant differences of RbAp48 expression between cancers and corresponding control tissues were observed,indicating that reduced expression of RbAp48 might be specific for cervical cancer.
     2.Inhibition of RbAp48 expression via siRNA-mediated silencing results in significant stimulation of cell proliferation and colony formation and a reduction in cellular senescence in vitro as well as leading to tumor formation in nude mice, while RbAp48 overexpression inhibits cell proliferation in vitro and tumor growth in vivo
     To determine whether a specific level of RbAp48 is required for preventing the transformation of HPV-infected cervical epithelial cells to cervical cancer cells,we first suppressed RbAp48 gene expression in H8 cells using an siRNA approach.We generated stable lines beating either pSUPER-RbAp48 or pSUPER vector based on H8 cells with a high level of endogenous RbAp48,and then investigated the effects of reduced RbAp48 on cell proliferation,colony formation,and cellular senescence. Both an MTT assay and cell number counting revealed that reduction in RbAp48 resulted in enhanced cell proliferation;in addition,reduced RbAp48 significantly increased colony formation,as revealed by a soft agar assay.Senescence-associatedβ-galactosidase is widely used as a biochemical marker for cellular senescence(41),and our staining results showed that knockdown of RbAp48 expression in H8 cells resulted in an approximately 30%inhibition of the cell senescence-like phonotype.
     To investigate the biological consequence of RbAp48 inactivation in tumorigenesis,we utilized nude mouse xenografts.Stable H8 cells bearing siRbAp48 and control cells were injected into 6-week-old female nude mice.As expected,none of the mice injected with the control cells developed tumors within 4 weeks of injection,whereas mice injected with H8 cells stably transfected with pSUPER-RbAp48 developed tumors of considerable size within the same time frame, demonstrating that RbAp48 is a critical modulator of the transforming action of HPV16 in cervical carcinogenesis.
     To further define the function of RbAp48 in cervical carcinogenesis and to determine whether it has the potential for use as a therapeutic target in cervical cancer treatment,we next generated stable cell lines overexpressing RbAp48 in Caski and HeLa cervical cancer cells.We then examined whether overexpression of RbAp48 inhibits cell proliferation and colony formation.MTT assay,cell number counting, and soft agar assay indicated this to be the case.In addition,significant higherβ-galactosidase activity was observed in the RbAp48 stable lines than in corresponding control and parent Caski or HeLa cell lines.These findings suggest that RbAp48 overexpression suppresses the transformation phenotype and reduces the tumorigenicity of cervical cancer cells in vivo.To test that possibility,we injected nude mice subcutaneously with stable cells overexpressing RbAp48 in Caski cells as well as control cells.Tumor growth was substantially inhibited in the RbAp48 group as compared with the control group,indicating that the level of RbAp48 is crucial for carcinogenesis in cervical cancer.
     3.To elucidate the molecular events underlying RbAp48-controlled transforming activity of HPV16 in cervical cancer,we examined the effect of RbAp48 on tumor suppressors p53 and Rb,apoptosis-related enzymes caspase-3 and caspase-8, oncogene c-myc,HPV E6/E7,and some Rb/E2F targets genes,including PCNA, cyclin E,cyclin A,and p16INK4a,Cyclin D1.We found that the levels of p53 and two other apoptosis-related enzymes caspase-3 and caspase-8 were dramatically reduced in cervical mucosa epithelial cells when RbAp48 was inhibited via siRNA approach.Altered expression of RbAp48 significantly affect the mRNA levels of E6 and E7 in the transfected cells.Furthermore,cyclin D1 was selectively induced, whereas other well-documented Rb/E2F targets genes,including PCNA,cyclin E, cyclin A,and pl6INK4a were not particularly affected by reduced RbAp48.It is conceivable that regulation of tumor suppressor p53,caspase enzymes and Rb/E2F targets genes,especially CylinD1,by RbAp48 contribute,at least in part,to the RbAp48-mediated transforming activity of HPV16 in cervical carcinogenesis.
     In conclusion,RbAp48 was isolated in a global analysis of protein expression profiling based on 2-dimensional gel electrophoresis with mass spectrometry and identified as critical modulator of the transforming activity of HPV16 in cervical cancer in both vitro and in vivo experiments.Identification of RbAp48 as a novel critical mediator in cervical cancer as well as the elucidation of the molecular events involved provide insights into the processes regulating HPV16-induced carcinogenesis and may highlight a new research direction in understanding pathological mechanisms for cervical cancer.Considering its potent inhibition of tumor growth,RbAp48 also has great potential to be employed as a therapeutic target for treating HPV-related disorders,including cervical cancer.
     4.In a functional genetic screen for proteins associating with cartilage oligomeric matrix protein,we identified a novel extracellular matrix protein,ECM1(extracellular matrix protein 1),a molecule that had previously been linked to lipoid proteinosis and lichen sclerosus,a common chronic inflammatory condition.We verified this novel interaction using in vitro pulldown and in vivo coimmunoprecipitation assays and demonstrated that these two proteins colocalized on the cellular surface of primary human chondrocytes.Using RT-PCR and western blotting assays,we showed that both mRNA and protein levels of ECM1 were upregulated during differentiation of chondrocytes.ECM1 significantly inhibited mRNA levels of both early and later genes critical for chondrogenesis such as Sox9,collagen typeⅡ,and collagen X and repression of ECM1 via the siRNA silencing markedly enhanced the expression of Collagen X in the course of chondrogenesis.To determine the potential mechanisms by which ECM1 negatively regulates chondrogenesis,we studied the effects of ECM1 on PTHrP(an essential negative regulator for later chondrogenesis)and IHH(a positive regulator of chondrogenesis).ECM1 induced PTHrP 5- to 18-fold and inhibited IHH during chondrogenesis.We further showed that PTHrP induced mRNA levels of ECM1 in chondrocytes.Importantly,knocking down ECM1 mRNA levels via the siRNA silencing or blocking ECM1 protein activity via anti-ECM1 antibodies completely abolished the effects of PTHrP on chondrogenesis in vitro.Using an immunohistochemistry assay,we showed that ECM1 was expressed throughout the chondrocyte zone of growth plates and articular cartilage and that ECM was no longer detectable in PTHrP null growth plates at day E18.5 in vivo.Last,we demonstrated that both mRNA and protein levels of ECM1 were upregulated in arthritis using microarray,real-time PCR and western blotting assays.Our findings demonstrate for the first time that ECM1,a direct downstream molecule of PTHrP in cartilage,is a novel negative regulator of chondrocyte differentiation and suggest that ECM1 may also plays an important role in the pathology of arthritis.
引文
1.Franco,E.L.,Schlecht,N.F.,and Saslow,D.The epidemiology of cervical cancer.Cancer J,9:348-359,2003.
    2.Feeley,C.Advances in cervical cancer screening and human papillomavirus vaccines.J Br Menopause Soc,12.19-23,2006.
    3.You,W.,Dainty,L.A.,Rose,G S.,Krivak,T.,McHale,M.T.,Olsen,C.H.,and Elkas.J.C.Gynecologic malignancies in women aged less than 25 years.Obstet Gynecol,105:1405-1409,2005.
    4.Wright,J.D.and Herzog,T.J.Human papillomavirus:emerging trends in detection and management.Curr Womens Health Rep,2:259-265,2002.
    5.Franco,E.L.Epidemiology of anogenital warts and cancer.Obstet Gynecol Clin North Am,23:597-623,1996.
    6.Walboomers,J.M.,Jacobs,M.V,Manos,M.M.,Bosch,F.X.,Kummer,J.A.,Shah,K.V,Snijders,P.J.,Peto,J.,Meijer,C.J.,and Munoz,N.Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.J Pathol,189:12-19,1999.
    7.于修平乳多空病毒科.闻玉梅主编.现代医学微生物学,上海上海医科大学出版社:949,1999.
    8.zur Hausen.H.Papillomavirus infections-a major cause of human cancers.Biochim Biophys Acta,1288:F55-78,1996.
    9.Chen,J.J.,Reid,C.E.,Band,V.,and Androphy,E.J.Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein.Science,269.:529-531,1995.
    10.Munger K.,Phelps,W.C.,Bubb,V,Howley,P.M.,and Schlegel,R.The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes.J Virol.63:4417-4421.1989.
    11.Hawley-Nelson,P,Vousden,K.H.,Hubbert,N.L.,Lowy,D.R.,and Schiller,J.T.HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes.Embo J,8:3905-3910,1989.
    12.Dyson,N.,Howley,P.M.,Munger,K.,and Harlow,E.The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product.Science,243:934-937,1989.
    13.Chen,J.J.,Hong,Y,Rustamzadeh,E.,Baleja,J.D.,and Androphy,E.J.Identifieation of an alpha helical motif sufficient for association with papillomavirus E6.J Biol Chem,273:13537-13544,1998.
    14.Kuhne,C.and Banks,L.E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif,the L2G box.J Biol Chem,273:34302-34309,1998.
    15.Filatov,L.,Golubovskaya,V,Hurt,J.C.,Byrd,L.L.,Phillips,J.M.,and Kaufmann,W.K.Chromosomal instability is correlated with telomere erosion and inactivation of G2 checkpoint function in human fibroblasts expressing human papillomavirus type 16 E6 oncoprotein.Oncogene,16:1825-1838,1998.
    16.Klingelhutz,A.J.,Foster,S.A.,and McDougall,J.K.Telomerase activation by the E6 gene product of human papillomavirus type 16.Nature,380.:79-82, 1996.
    17. Gao, Q., Srinivasan, S., Boyer, S. N., Wazer, D. E., and Band, V. The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol, 19: 733-744, 1999.
    18. Gross-Mesilaty, S., Reinstein, E., Bercovich, B., Tobias, K. E., Schwartz, A. L., Kahana, C, and Ciechanover, A. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A, 95: 8058-8063,1998.
    19.' Thomas, M. and Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene, 17: 2943-2954,1998.
    20. Thomas, M. and Banks, L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol, 80 (Pt 6): 1513-1517,1999.
    21. Liu, Y., Hong, Y., Androphy, E. J., and Chen, J. J. Rb-independent induction of apoptosis by bovine papillomavirus type 1 E7 in response to tumor necrosis factor alpha. J Biol Chem, 275: 30894-30900, 2000.
    22. Abbott, A. And now for the proteome. Nature, 409: 747, 2001.
    23. Qian, Y. W., Wang, Y. C, Hollingsworth, R. E., Jr., Jones, D., Ling, N., and Lee, E. Y. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature, 364: 648-652,1993.
    24. Lai, A., Lee, J. M., Yang, W. M., DeCaprio, J. A., Kaelin, W. G, Jr., Seto, E., and Branton, P. E. RBP1 recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol, 19: 6632-6641,1999.
    25. Nicolas, E., Ait-Si-Ali, S., and Trouche, D. The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein. Nucleic Acids Res, 29: 3131-3136,2001.
    26. Schwarz, E., Freese, U. K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, 314: 111-114, 1985.
    27. Hudelist, G, Singer, C. F., Pischinger, K. I., Kaserer, K., Manavi, M., Kubista, E., and Czerwenka, K. F. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium. Proteomics, 6: 1989-2002, 2006.
    28. Bi, X., Lin, Q., Foo, T. W., Joshi, S., You, T., Shen, H. M., Ong, C. N., Cheah, P. Y, Eu, K. W., and Hew, C. L. Proteomics analysis of colorectal cancer reveals alterations in metabolic pathways - mechanism of tumorigenesis. Mol Cell Proteomics, 2006.
    29. Pardo, M., Garcia, A., Thomas, B., Pineiro, A., Akoulitchev, A., Dwek, R. A., and Zitzmann, N. Proteome analysis of a human uveal melanoma primary cell culture by 2-DE and MS. Proteomics, 5: 4980-4993, 2005.
    30. Bae, S. M., Lee, C. H., Cho, Y. L., Nam, K. H., Kim, Y. W., Kim, C. K., Han, B. D., Lee, Y. J., Chun, H. J., and Ahn, W. S. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol Oncol, 99: 26-35, 2005.
    31. Cheng, Q., Lau, W. M., Tay, S. K., Chew, S. H., Ho, T. H., and Hui, K. M. Identification and characterization of genes involved in the carcinogenesis of human squamous cell cervical carcinoma. Int J Cancer, 98: 419-426, 2002.
    32.Verreault,A.,Kaufman,P.D.,Kobayashi,R.,and Stillman,B.Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4.Cell.87:95-104,1996.
    33.Xue,Y.,Wong,J.,Moreno,G T.,Young,M.K.,Cote,J.,and Wang,W.NURD,a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities.Mol Cell,2:851-861,1998.
    34.Brehm,A.,Miska,E.A.,McCance,D.J.,Reid,J.L.,Bannister,A.J.,and Kouzarides,T.Retinoblastoma protein recruits histone deacetylase to repress transcription.Nature,391.597-601,1998.
    35.Luo,R.X.,Postigo,A.A.,and Dean,D.C.Rb interacts with histone deacetylase to repress transcription.Cell,92:463-473,1998.
    36.Magnaghi-Jaulin,L.,Groisman,R.,Naguibneva,I.,Robin,P.,Lorain,S.,Le Villain,J.P.,Troalen,F.,Trouche,D.,and Harel-Bellan,A.Retinoblastoma protein represses transcription by recruiting a histone deacetylase.Nature,391:601-605,1998.
    37.Nicolas,E.,Morales,V,Magnaghi-Jaulin,L.,Harel-Bellan,A.,Richard-Foy,H.,and Trouche,D.RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein.J Biol Chem,275:9797-9804,2000.
    38.Taylor-Harding,B.,Binne,U.K.,Korenjak,M.,Brehm,A.,and Dyson,N.J.p55,the Drosophila ortholog of RbAp46/RbAp48,is required for the repression of dE2F2/RBF-regulated genes.Mol Cell Biol,24:9124-9136,2004.
    39.Hayashi,T.,Fujita,Y,Iwasaki,O.,Adachi,Y,Takahashi,K.,and Yanagida,M.Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres.Cell,118:715-729,2004.
    40.Torres-Roca,J.F.,Eschrich,S.,Zhao,H.,Bloom,G,Sung,J.,McCarthy,S.,Cantor,A.B.,Scuto,A.,Li,C.,Zhang,S.,Jove,R.,and Yeatman,T.Prediction of radiation sensitivity using a gene expression classifier.Cancer Res,65:7169-7176,2005.
    41.Xin,H.,Curry,J.,Johnstone,R.W.,Nickoloff,B.J.,and Choubey,D.Role of IFI 16,a member of the interferon-inducible p200-protein family,in prostate epithelial cellular senescence.Oncogene,22:4831-4840,2003.
    42.Chang,Y.E.and Laimins,L.A.Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31.J Virol,74:4174-4182,2000.
    43.Fields,S.Proteomics.Proteomics in genomeland.Science,291:1221-1224,2001.
    44.Walch,A.,Specht,K.,Smida,J.,Aubele,M.,Zitzelsberger,H.,Hofler,H.,and Werner,M.Tissue microdissection techniques in quantitative genome and gene expression analyses.Histochem Cell Biol,115.:269-276,2001.
    45.Donnan,S.P.,Wong,F.W.,Ho,S.C.,Lau,E.M.,Takashi,K.,and Esteve,J.Reproductive and sexual risk factors and human papilloma virus infection in cervical cancer among Hong Kong Chinese.Int J Epidemiol,18:32-36,1989.
    46.刘朝奇人巨细胞病毒协同人乳头瘤病毒16型诱导宫颈上皮细胞癌变的研究.中华病理学杂志,28:24-27,1999.
    47.Gre enbaum,D.,Jansen,R.,and Gerstein,M.Analysis of mRNA expression and protein abundance data:an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts.Bioinformatics,18:585-596、2002.
    48.Gygi,S.P.,Rochon,Y.,Franza,B.R.,and Aebersold,R.Correlation between protein and mRNA abundance in yeast.Mol Cell Biol,19:1720-1730,1999.
    49.Futcher,B.,Latter,G.I.,Monardo,P,McLaughlin,C.S.,and Garrels,J.I.A sampling of the yeast proteome.Mol Cell Biol,19:7357-7368,1999.
    50.Lian,Z.,Kluger,Y.,Greenbaum,D.S.,Tuck,D.,Gerstein,M.,Berliner,N.,Wleissman,S.M.,and Newburger,P.E.Genomic and proteomic analysis of the myeloid differentiation program:global analysis of gene expression during induced differentiation in the MPRO cell line.Blood,100:3209-3220,2002.
    51.El-Rifai,W.,Frierson,H.F.,Jr.,Harper,J.C.,Powell,S.M.,and Knuutila,S.Expression profiling of gastric adenocarcinoma using cDNA array.Int J Cancer,92:832-838,2001.
    52.Mohri,K.,Takano-Ohmuro,H.,Nakashima,H.,Hayakawa,K.,Endo,T.,Hanaoka,K.,and Obinata,T,Expression of cofilin isoforms during development of mouse striated muscles.J Muscle Res Cell Motil,21.49-57,2000.
    53.Wang,N.,Planus,E.,Pouchelet,M.,Fredberg,J.J.,and Barlovatz-Meimon,G.Urokinase receptor mediates mechanical force transfer across the eell surface.Am J Physiol,268:C1062-1066,1995.
    54.Samali,A.,Robertson,J.D.,Peterson,E.,Manero,F.,van Zeijl,L.,Paul,C.,Cotgreave,I.A.,Arrigo,A.P.,and Orrenius,S.Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli.Cell Stress Chaperones,6:49-58,2001.
    55.Sunaga,K.,Takahashi,H.,Chuang,D.M.,and Ishitani,R.Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer's brain.Neurosci Lett,200:133-136,1995.
    56.Ishitani,R.and Chuang,D.M.Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons.Proc Natl Acad Sci U S A,93:9937-9941,1996.
    57.Oberley,L.W.and Buettner,G.R.Role of superoxide dismutase in cancer:a review.Cancer Res,39:1141-1149,1979.
    58.丁书茂超氧化物歧化酶模型化合物对离体肝癌细胞的影响.华中师范大学学报(自然科学版),J:,2005.
    59.Oremek,G.M.,Teigelkamp,S.,Kramer,W.,Eigenbrodt,E.,and Usadel,K.H.The pyruvate kinase isoenzyme tumor M2(Tu M2-PK、as a tumor marker for renal carcinoma.Anticancer Res,19:2599-2601,1999.
    60.Eigenbrodt,E.,Reinacher,M.,Scheefers-Borchel,U.,Scheefers,H.,and Friis,R.Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells.Crit Rev Oncog,3:91-115,1992.
    61.Chesney,J.,Mitchell,R.,Benign,F.,Bacher,M.,Spiegel,L.,Al-Abed,Y.,Hall,J.H.,Metz,C.,and Bucala,R.An inducible gene product for 6-phosphofructo-2-kinase with all AU-rich instability element:role in tumor cell glycolysis and the Warburg effect.Proc Natl Acad Sci U S A,96:3047-3052,1999.
    62.Brand,K.,Netzker,R.,Aulwurm,U.,Hermfisse,U.,Fabian,D.,Weigert,C.,Schaefer,D.,and Hamm-Kuenzelmann,B.Control of thymocyte proliferation via redox-regulated expression of glycolytic genes.Redox Rep,5:52-54,2000.
    63. Lozano, M. L., Rivera, J., Bermejo, E., Corral, J., Perez, E., and Vicente, V. In vitro analysis of platelet concentrates stored in the presence of modulators of 3',5' adenosine monophosphate, and organic anions. Transfus Sci, 22: 3-11, 2000.
    64. Myllyharju, J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol, 22: 15-24,2003.
    65. Bremermann, H. J. Reliability of proliferation controls. The Hayflick limit and its breakdown in cancer. J Theor Biol, 97: 641-662,1982.
    66. Cristofalo, V. J. and Pignolo, R. J. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev, 73: 617-638, 1993.
    67. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 63: 1129-1136,1990.
    68. Werness, B. A., Levine, A. J., and Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science, 248: 76-79, 1990.
    69. Nakagawa, S., Yoshikawa, H., Yasugi, T., Kimura, M., Kawana, K., Matsumoto, K., Yamada, M., Onda, T., and Taketani, Y. Ubiquitous presence of E6 and E7 transcripts in human papillomavirus-positive cervical-carcinomas regardless of its type. J Med Virol, 62: 251-258,2000.
    70. Cheng, S., Schmidt-Grimminger, D. C, Murant, T., Broker, T. R., and Chow, L. T. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 9: 2335-2349, 1995.
    71. Lapointe, J., Li, C, Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A. M., Tibshirani, R., Botstein, D., Brown, P. O., Brooks, J. D., and Pollack, J. R. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A, 101: 811 -816, 2004.
    72. Kufe, D. and Weichselbaum, R. Radiation therapy: activation for gene transcription and the development of genetic radiotherapy-therapeutic strategies in oncology. Cancer Biol Ther, 2: 326-329, 2003.
    73. Lu, X. and Horvitz, H. R. lin-35 and lin-53, two genes that antagonize a C. elegans Ras pathway, encode proteins similar to Rb and its binding protein RbAp48. Cell, 95: 981-991,1998.
    74. Liu, Y, Chen, J. J., Gao, Q., Dalai, S., Hong, Y, Mansur, C. P., Band, V, and Androphy, E. J. Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J Virol, 73: 7297-7307,1999.
    75. Ko, L. J. and Prives, C. p53: puzzle and paradigm. Genes Dev, 10: 1054-1072, 1996.
    76. Huibregtse, J. M., Scheffner, M., and Howley, P. M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. Embo J, 10: 4129-4135, 1991.
    77. Hubbert, N. L., Sedman, S. A., and Schiller, J. T. Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol, 66: 6237-6241, 1992.
    78. Huibregtse, J. M., Scheffner, M., and Howley, P. M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol, 13: 775-784, 1993.
    79. Lechner, M. S. and Laimins, L. A. Inhibition of p53 DNA binding by human papillomavirus E6 proteins. J Virol, 68: 4262-4273, 1994.
    80. Zimmermann, H., Degenkolbe, R., Bernard, H. U., and O'Connor, M. J. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol, 73: 6209-6219, 1999.
    81. Foster, S. A., Demers, G. W., Etscheid, B. G, and Galloway, D. A. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol, 65:5698-5705,1994.
    82. Kessis, T. D., Slebos, R. J., Nelson, W. G, Kastan, M. B., Plunkett, B. S., Han, S. M., Lorincz, A. T., Hedrick, L., and Cho, K. R. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc Natl Acad Sci U S A, 90: 3988-3992,1993.
    83. Thompson, D. A., Belinsky, G, Chang, T. H., Jones, D. L., Schlegel, R., and Munger, K. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene, 15: 3025-3035, 1997.
    84. Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A., and Klingelhutz, A. J. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature, 396: 84-88,1998.
    85. Riley, R. R., Duensing, S., Brake, T., Munger, K., Lambert, P. F., and Arbeit, J. M. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res, 63: 4862-4871,2003.
    86. Berezutskaya, E., Yu, B., Morozov, A., Raychaudhuri, P., and Bagchi, S. Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ, 8: 1277-1286,, 1997.
    87. Classon, M. and Dyson, N. p107 and p130: versatile proteins with interesting pockets. Exp Cell Res, 264: 135-147, 2001.
    88. Edmonds, C. and Vousden, K. H. A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol, 63: 2650-2656,1989.
    89. Wang, J., Xie, L. Y, Allan, S., Beach, D., and Hannon, G J. Myc activates telomerase. Genes Dev, 12: 1769-1774, 1998.
    90. Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S., and Dean, D. C. Mechanism of active transcriptional repression by the retinoblastoma protein. Nature, 375: 812-815,1995.
    91.- Wang, J., Sampath, A., Raychaudhuri, P., and Bagchi, S. Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV-containing cervical tumor cells. Oncogene, 20:4740-4749,2001.
    92. Jewers, R. J., Hildebrandt, P., Ludlow, J. W, Kell, B., and McCance, D. J. Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol, 66: 1329-1335, 1992.
    93. Chellappan, S., Kraus, V. B., Kroger, B., Munger, K., Howley, P. M., Phelps, W. C, and Nevins, J. R. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci U S A, 89: 4549-4553, 1992.
    94. Schmitt, A., Harry, J. B., Rapp, B., Wettstein, F. O., and Iftner, T. Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol, 68: 7051-7059, 1994.
    95. Ciccolini, F., Di Pasquale, G, Carlotti, F., Crawford, L., and Tommasino, M. Functional studies of E7 proteins from different HPV types. Oncogene, 9: 2633-2638,1994.
    96. Davies, R., Hicks, R., Crook, T., Morris, J., and Vousden, K. Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol, 67: 2521-2528, 1993.
    97. Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B., and Galloway, D. A. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev, 11: 2090-2100, 1997.
    98. Ruesch, M. N. and Laimins, L. A. Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology, 250: 19-29, 1998.
    99. Han, Z., Ni, J., Smits, P., Underbill, C. B., Xie, B., Chen, Y, Liu, N., Tylzanowski, P., Parmelee, D., Feng, P., Ding, I., Gao, F., Gentz, R., Huylebroeck, D., Merregaert, J., and Zhang, L. Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. Faseb J, 75:988-994,2001.
    100. Han, Z., Lin, G, Huang, J., Chi, F., and Zhang, L. [The relationship between ECM1 and the angiogenesis and metastasis of laryngeal carcinoma]. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 20: 116-118,121, 2006.
    101. Gagarina, V., Carlberg, A. L., Pereira-Mouries, L., and Hall, D. J. Cartilage Oligomeric matrix protein (COMP) protects cells against death by elevating members of the IAP family of survival proteins. J Biol Chem, 2007.
    102. Hamada, X, Wessagowit, V, South, A. P., Ashton, G H., Chan, I., Oyama, N., Siriwattana, A., Jewhasuchin, P., Charuwichitratana, S., Thappa, D. M., Jeevankumar, B., Lenane, P., Krafchik, B., Kulthanan, K., Shimizu, H., Kaya, T. I., Erdal, M. E., Paradisi, M., Paller, A. S., Seishima, M., Hashimoto, T., and McGrath, J. A. Extracellular matrix protein 1 gene (ECM1) mutations in lipoid proteinosis and genotype-phenotype correlation. J Invest Dermatol, 120: 345-350, 2003.
    103. Hamada, T., McLean, W. H., Ramsay, M., Ashton, G H., Nanda, A., Jenkins, T., Edelstein, I., South, A. P., Bleck, O., Wessagowit, V, Mallipeddi, R., Orchard, G. E., Wan, H., Dopping-Hepenstal, P. J., Mellerio, J. E., Whittock, N. V, Munro, C. S., van Steensel, M. A., Steijlen, P. M., Ni, J., Zhang, L., Hashimoto, T., Eady, R. A., and McGrath, J. A. Lipoid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). Hum Mol Genet, 11: 833-840, 2002.
    104. Ganu, V., Melton, R., Wang, W, and Roberts, D. Matrix metalloproteinase inhibitor CGS 27023A protects COMP and proteoglycan in the bovine articular cartilage but not the release of their fragments from cartilage after prolonged stimulation in vitro with IL-1 alpha. Ann N Y Acad Sci, 878: 607-611,1999.
    105. Tannenbaum, C. S., Major, J., Ohmori, Y, and Hamilton, T. A. A lipopolysaccharide-inducible macrophage gene (D3) is a new member of an interferon-inducible gene cluster and is selectively expressed in mononuclear phagocytes. J Leukoc Biol, 53: 563-568, 1993.
    106. Smits, P., Ni, J., Feng, P., Wauters, J., Van Hul, W, Boutaibi, M. E., Dillon, P. J., and Merregaert, J. The human extracellular matrix gene 1 (ECM1): genomic structure, cDNA cloning, expression pattern, and chromosomal localization. Genomics, 45: 487-495, 1997.
    107. Hecht, J. T., Hayes, E., Haynes, R., and Cole, W. G. COMP mutations, chondrocyte function and cartilage matrix. Matrix Biol, 23: 525-533, 2005.
    108. Lachman, R. S., Krakow, D., Cohn, D. H., and Rimoin, D. L. MED, COMP, multilayered and NEIN: an overview of multiple epiphyseal dysplasia. Pediatr Radiol, 35: 116-123,2005.
    109. Liu, C. Transcriptional mechanism of COMP gene expression and chondrogenesis. J Musculoskelet Neuronal Interact, 5: 340-341, 2005.
    110. Johnstone, R. W. and Trapani, J. A. Transcription and growth regulatory functions of the HIN-200 family of proteins. Mol Cell Biol, 19: 5833-5838, 1999.
    111. Lupo, I., Cefalu, A. B., Bongiorno, M. R., Daniele, O., Valenti, V., Noto, D., Camarda, R., Savettieri, G, Arico, M., and Averna, M. R. A novel mutation of the extracellular matrix protein 1 gene (ECM1) in a patient with lipoid proteinosis (Urbach-Wiethe disease) from Sicily. Br J Dermatol, 153: 1019-1022,2005.
    112. Marti, C, Neidhart, M., Gerber, T., Hauser, N., Michel, B. A., and Hauselmann, H. J. [Cartilage Oligomeric matrix protein (COMP): the role of a non-collagen cartilage matrix protein as a marker of disease activity and joint destruction in patients with rheumatoid arthritis and osteoarthritis]. Z Rheumatol, 58: 79-87, 1999.
    113. Nadal, A., Jares, P., Cazorla, M., Fernandez, P. L., Sanjuan, X., Hernandez, L., Pinyol, M., Aldea, M., Mallofre, C, Muntane, J., Traserra, J., Campo, E., and Cardesa, A. p21WAF1/Cip1 expression is associated with cell differentiation but not with p53 mutations in squamous cell carcinomas of the larynx. J Pathol, 183: 156-163,1997.
    114. Sander, C. S., Sercu, S., Ziemer, M., Hipler, U. C, Eisner, P., Thiele, J. J., and Merregaert, J. Expression of extracellular matrix protein 1 (ECM1) in human skin is decreased by age and increased upon ultraviolet exposure. Br J Dermatol, 154: 218-224,2006.
    115. Zheng, J., Wahlstrom, T., Paavonen, J., and Vaheri, A. Altered growth behavior of human cervical epithelial cells transfected by HPV type 16 and 18 DNA. Int J Cancer, 58: 713-720,1994.
    116. Liu, C. Q., Han, G Z., Li, K., Si, J. Y., Liu, S. D., and Song, G. X. Research on the oncogenesis of cervical epithelial cells coinduced by human papillomavirus and human cytomegalovirus. Zhong Hua Bing Li Xue Za Zhi, 28: 24-27, 1999.
    117. Naghashfar, Z., DiPaolo, J. A., Woodworm, C. D., and Passaniti, A. Immortalization of human adult prostatic adenocarcinoma cells by human papilloma virus HPV16 and -18 DNA. Cancer Lett, 100: 47-54, 1996.
    118. Zor, T. and Selinger, Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem, 236: 302-308, 1996.
    119. Gorg, A., Obermaier, C, Boguth, G, Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 21: 1037-1053, 2000.
    120. Sell, C, Dumenil, G, Deveaud, C, Miura, M., Coppola, D., DeAngelis, T., Rubin, R., Efstratiadis, A., and Baserga, R. Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol, 14: 3604-3612, 1994.
    121. Yim, E. K., Meoyng, J., Namakoong, S. E., Um, S. J., and Park, J. S. Genomic and proteomic expression patterns in HPV-16 E6 gene transfected stable human carcinoma cell lines. DNA Cell Biol, 23: 826-835,2004.
    122. Castagna, A., Antonioli, P., Astner, H., Hamdan, M., Righetti, S. C, Perego, P., Zunino, F., and Righetti, P. G. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics, 4: 3246-3267, 2004.
    123. Li, G. C, Guan, L. S., and Wang, Z. Y. Overexpression of RbAp46 facilitates stress-induced apoptosis and suppresses tumorigenicity of neoplastigenic breast epithelial cells. Int J Cancer, 105: 762-768, 2003.
    124. Zhang, T. F., Yu, S. Q., Loggie, B. W., and Wang, Z. Y. Inducible expression of RbAp46 activates c-Jun NH2-terminal kinase-dependent apoptosis and suppresses progressive growth of tumor xenografts in nude mice. Anticancer Res, 23: 4621-4627,2003.
    125. Zhang, T. F., Yu, S. Q., Deuel, T. R, and Wang, Z. Y. Constitutive expression of Rb associated protein 46 (RbAp46) reverts transformed phenotypes of breast cancer cells. Anticancer Res, 23: 3735-3740, 2003.
    126. Bosco, E. E., Wang, Y, Xu, H., Zilfou, J. T., Knudsen, K. E., Aronow, B. J., Lowe, S. W, and Knudsen, E. S. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest, 117: 218-228, 2007.
    127. Lee, E. ,Y, To, H., Shew, J. Y, Bookstein, R., Scully, P., and Lee, W. H. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science, 241: 218-221,1988.
    128. Bookstein, R., Shew, J. Y, Chen, P. L., Scully, P., and Lee, W. H. Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science, 247: 712-715,1990.
    129. Ferres-Marco, D., Gutierrez-Garcia, I., Vallejo, D. M., Bolivar, J., Gutierrez-Avino, F. J., and Dominguez, M. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature, 439:430-436,2006.
    130. Lee, J. O., Russo, A. A., and Pavletich, N. P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature, 391: 859-865,1998.
    131. Morgenbesser, S. D., Williams, B. O., Jacks, T., and DePinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature, 371:72-74, 1994.
    132. Black, A. R. and Azizkhan-Clifford, J. Regulation of E2F: a family of transcription factors involved in proliferation control. Gene, 237: 281-302, 1999.
    133. Muller, H. and Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta, 1470: M1-12, 2000.
    134. Ishimaru, N., Arakaki, R., Omotehara, R, Yamada, K., Mishima, K., Saito, I., and Hayashi, Y. Novel role for RbAp48 in tissue-specific, estrogen deficiency-dependent apoptosis in the exocrine glands. Mol Cell Biol, 26: 2924-2935, 2006.
    135. Jones, E. E. and Wells, S. I. Cervical cancer and human papillomaviruses: inactivation of retinoblastoma and other tumor suppressor pathways. Curr Mol Med, 6: 795-808, 2006.
    136. Govan, V. A. Strategies for human papillomavirus therapeutic vaccines and other therapies based on the E6 and E7 oncogenes. Ann N Y Acad Sci, 1056: 328-343, 2005.
    137. Au, W. W., Abdou-Salama, S., and Al-Hendy, A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol Oncol, 104: 276-280, 2007.
    138. Jia, X., Liu, B., Shi, X., Gao, A., You, B., Ye, M, Shen, F., and Du, H. Inhibition of benzo(a)pyrene-induced cell cycle progression by all-trans retinoic acid partly through cyclin D1/E2F-1 pathway in human embryo lung fibroblasts. Cell Biol Int, 30: 183-189, 2006.
    139. Foster, J. S., Henley, D. C, Bukovsky, A., Seth, P., and Wimalasena, J. Multifaceted regulation of cell cycle progression by estrogen: regulation of Cdk inhibitors and Cdc25A independent of cyclin Dl-Cdk4 function. Mol Cell Biol, 21: 794-810, 2001.
    140. Wang, A., Schneider-Broussard, R., Kumar, A. P., MacLeod, M. C, and Johnson, D. G. Regulation of BRCA1 expression by the Rb-E2F pathway. J Biol Chem, 275: 4532-4536,2000.
    141. Duman-Scheel, M., Weng, L., Xin, S., and Du, W. Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature, 417: 299-304,2002.
    142. Kennedy, J., Jackson, G, Ramsden, S., Taylor, J., Newman, W., Wright, M. J., Donnai, D., Elles, R., and Briggs, M. D. COMP mutation screening as an aid for the clinical diagnosis and counselling of patients with a suspected diagnosis of pseudoachondroplasia or multiple epiphyseal dysplasia. Eur J Hum Genet, 13: 547-555,2005.
    143. Oyama, N., Chan, I., Neill, S. M., South, A. P., Wojnarowska, F., Kawakami, Y, D'Cruz, D., Mepani, K., Hughes, G. J., Bhogal, B. S., Kaneko, F., Black, M. M., and McGrath, J. A. Development of antigen-specific ELISA for circulating autoantibodies to extracellular matrix protein 1 in lichen sclerosus. J Clin Invest, 113: 1550-1559, 2004.
    144. Oyama, N., Chan, I., Neill, S. M., Hamada, T., South, A. P., Wessagowit, V, Wojnarowska, F., D'Cruz, D., Hughes, G. J., Black, M. M., and McGrath, J. A. Autoantibodies to extracellular matrix protein 1 in lichen sclerosus. Lancet, 3(52/ 118-123,2003.
    145. Landolfo, S., Gariglio, M., Gribaudo, G, and Lembo, D. The Ifi 200 genes: an emerging family of IFN-inducible genes. Biochimie, 80: 721-728, 1998.
    146. Liu, C. J., Wang, H., and Lengyel, P. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. Embo J, 18: 2845-2854, 1999.
    147. Hecht, J. T., Nelson, L. D., Crowder, E., Wang, Y., Elder, F. F., Harrison, W. R., Francomano, C. A., Prange, C. K., Lennon, G. G, Deere, M., and et al. Mutations in exon 17B of cartilage Oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet, 10: 325-329,1995.
    148. Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell, 74: 205-214, 1993.
    149. Hollenberg, S. M., Sternglanz, R., Cheng, P. F., and Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol Cell Biol, 15: 3813-3822, 1995.
    150. Liu, C. J., Ding, B., Wang, H., and Lengyel, P. The MyoD-inducible p204 protein overcomes the inhibition of myoblast differentiation by Id proteins. Mol Cell Biol, 22: 2893-2905, 2002.
    151. Di Cesare, P. E., Fang, C, Leslie, M. P., Delia Valle, C. J., Gold, J. M., Tulli, H., Perris, R., and Carlson, C. S. Localization and expression of cartilage Oligomeric matrix protein by human rheumatoid and osteoarthritic synovium and cartilage. J Orthop Res, 17: 437-445, 1999.
    152. Liu, C. J., Kong, W., Ilalov, K., Yu, S., Xu, K., Prazak, L., Fajardo, M., Sehgal, B., and Di Cesare, P. E. ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage Oligomeric matrix protein. Faseb J, 20: 988-990,2006.
    153. Atkinson, B. L., Fantle, K. S., Benedict, J. J., Huffer, W. E., and Gutierrez-Hartmann, A. Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem, 65: 325-339, 1997.
    154. Gomez-Barrena, E., Lindroos, L., Ceponis, A., Lopez-Franco, M., Sanchez-Pernaute, O., Monkkonen, J., Salo, J., Herrero-Beaumont, G., and Konttinen, Y. Cartilage Oligomeric matrix protein (COMP) is modified by intra-articular liposomal clodronate in an experimental -model of arthritis. Clin Exp Rheumatol, 24: 622-628,2006.
    155. Liu, C, Dib-Hajj, S. D., and Waxman, S. G. Fibroblast growth factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel rNavl.9a (NaN). J Biol Chem, 276: 18925-18933, 2001.
    156. Liu, C. J., Dib-Hajj, S. D., Renganathan, M., Cummins, T. R., and Waxman, S. G. Modulation of the cardiac sodium channel Nav1.5 by fibroblast growth factor homologous factor 1B. J Biol Chem, 278: 1029-1036,2003.
    157. Kebebew, E., Peng, M., Reiff, E., Duh, Q. Y, Clark, O. H., and McMillan, A. ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg, 242: 353-361; discussion 361-353,2005.
    158. Gariglio, M., Azzimonti, B., Pagano, M., Palestro, G, De Andrea, M., Valente, G, Voglino, G, Navino, L., and Landolfo, S. Immunohistochemical expression analysis of the human interferon-inducible gene IFI16, a member of the HIN200 family, not restricted to hematopoietic cells. J Interferon Cytokine Res, 22:815-821,2002.
    159. Oldberg, A., Antonsson, P., Lindblom, K., and Heinegard, D. COMP (cartilage Oligomeric matrix protein) is structurally related to the thrombospondins. J Biol Chem, 267:22346-22350,1992.
    160. Liao, Q., Kleeff, J., Xiao, Y, Di Cesare, P. E., Korc, M., Zimmermann, A., Buchler, M. W., and Friess, H. COMP is selectively up-regulated in degenerating acinar cells in chronic pancreatitis and in chronic-pancreatitis-like lesions in pancreatic cancer. Scand J Gastroenterol, 38: 207-215, 2003.
    161. Chen, T. L., Posey, K. L., Hecht, J. T., and Vertel, B. M. COMP mutations: Domain-dependent relationship between abnormal chondrocyte trafficking and clinical PSACH and MED phenotypes. J Cell Biochem, 2007.
    162. Han, B., Zhang, X., Liu, Q., Chen, X., and Zhu, X. Homozygous missense mutation in the ECM1 gene in Chinese siblings with lipoid proteinosis. Acta Derm Venereol, 87: 387-389,2007.
    163. Wang, L, Yu, J., Ni, J., Xu, X. M., Wang, J., Ning, H., Pei, X. F., Chen, J., Yang, S., Underhill, C. B., Liu, L., Liekens, J., Merregaert, J., and Zhang, L. Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett, 200: 57-67, 2003.
    164. Chan, I., South, A. P., McGrath, J. A., Oyama, N., Bhogal, B. S., Black, M. M., and Hamada, T. Rapid diagnosis of lipoid proteinosis using an anti- extracellular matrix protein 1 (ECM1) antibody. J Dermatol Sci, 35: 151-153, 2004.
    
    165. Cho, C. H., Sung, H. K., Kim, K. T., Cheon, H. G, Oh, G. T., Hong, H. J., Yoo, O. J.,and Koh, G Y. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci U S A, 103: 4946-4951, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700