CTNNAL1表达的应答性调控及其在哮喘及气道上皮中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     关于哮喘发病机制,气道上皮缺陷理论已成为主流观点之一。哮喘的病理特征之一表现为支气管上皮损伤、脱落,提示哮喘患者的气道上皮对损伤应激的修复反应可能出现缺陷。已知上皮细胞通过表达不同类型的粘附分子实现“粘附”和“锚定”是发挥正常功能的先决条件。国内外及本实验室多项研究证实,粘附分子在气道炎症及损伤修复中发挥重要作用。为了确定与哮喘易感性相关的粘附分子表达特征,本实验室在先前的研究中应用基因芯片及生物信息学方法筛选了人外周血差异表达粘附分子,发现连环素(catenin)家族中的CTNNAL1(catenin alpha-like 1)基因在哮喘病人中表达下调。由于目前对于CTNNAL1功能意义的直接研究极少,其在支气管上皮及肺组织中的作用尚未见报道。本课题围绕CTNNAL1与哮喘发病的关系、CTNNAL1对支气管肺组织功能的影响及CTNNAL1基因表达调控进行了一系列研究。
     方法与结果:
     1) CTNNAL1与哮喘相关性分析
     本实验室在先前的研究中应用基因芯片及生物信息学方法筛选了人外周血哮喘差异表达粘附分子,结果显示多个基因表达水平改变。本研究选择在所有哮喘病人中均下调的CTNNAL1(catenin alpha-like1)基因,应用荧光定量RT-PCR进一步证实结果的可靠性;收集正常人及哮喘病人的支气管粘膜,并构建经典的OVA致敏的小鼠哮喘模型,探讨CTNNAL1在支气管肺组织的分布情况及其与哮喘的关系。
     荧光定量RT-PCR结果显示成年哮喘病人与正常成年人相比CTNNAL1表达水平明显降低。哮喘儿童病人CTNNAL1表达水平似比正常儿童低,但P>0.05,尚不能认为有统计学意义,需扩大样本量进一步证实。
     免疫组化和原位杂交显示,CTNNAL1广泛分布于支气管柱状纤毛细胞、细支气管分泌细胞、间质细胞、血管内皮细胞及肺泡上皮细胞。CTNNAL1在哮喘病人支气管粘膜及哮喘模型小鼠的支气管肺组织表达均下调,哮喘模型组小鼠气道阻力显著高于正常组,且CTNNAL1 mRNA水平与气道阻力呈负相关。以上结果证实CTNNAL1与哮喘发病相关。
     2) CTNNAL1在气道上皮中的生物学效应
     本实验利用吸入臭氧建立Balb/c小鼠支气管肺组织应激损伤模型。结果显示,臭氧应激导致明显的杯状细胞增生和上皮缺损。原位杂交实验和荧光定量RT-PCR显示臭氧应激可上调小鼠支气管肺组织CTNNAL1 mRNA表达,于应激的第二天达到高峰,但是随着臭氧应激时间的延长,CTNNAL1 mRNA表达缓慢下降。培养的人BEC细胞株爬片细胞原位杂交显示,未受臭氧应激组BEC阳性细胞数较少,胞浆呈浅黄色,臭氧攻击培养的人BEC 30 min后,阳性细胞数明显增多,染色明显加深,呈深黄色。荧光定量RT-PCR结果与原位杂交一致。提示CTNNAL1参与BEC应激反应,其表达水平受应激调控。
     为阐明CTNNAL1在急性应激下上调的功能意义,我们利用CTNNAL1表达质粒和CTNNAL1反义寡核苷酸(ASO)建立CTNNAL1高表达或阻抑手段,籍此观察CTNNAL1在气道上皮中的生物学作用。损伤修复测定采用机械损伤在融合的支气管上皮细胞单层上造成一小面积不规则缺损,用显微视频分析系统每隔4h测量缺损面积一次,绘制时间与修复面积的直线回归方程,直线的斜率为损伤修复指数,斜率越大,损伤修复速度越快。增殖采用MTT法。结果显示CTNNAL1可促进细胞的损伤修复和增殖。CTNNAL1 mRNA在损伤修复边缘的活跃细胞高表达,有利于上皮细胞的修复。
     我们还初步观察了CTNNAL1在细胞外基质纤维连接蛋白(Fibronectin,Fn)激活与细胞迁移运动有关的激酶中的作用。利用Western blot技术观察到CTNNAL1 ASO单独处理不影响FAK磷酸化,但CTNNAL1 ASO处理可降低Fn促FAK磷酸化效应,提示CTNNAL1在Fn促损伤修复与增殖效应的FAK磷酸化途径中发挥作用。
     以上结果提示CTNNAL1参与维持气道上皮的完整性,CTNNAL1表达下调可能导致上皮功能缺陷及完整性破坏,从而与哮喘发病相关。我们认为,急性应激条件下CTNNAL1表达上调是一种保护性应答,哮喘病人可能出现了这种应答机制的缺陷。
     3) CTNNAL1基因表达调控研究
     为了进一步认识CTNNAL1基因表达调控机制,本研究对CTNNAL1的转录因子调节谱进行筛选。利用启动子分析软件PromoterScan和Transfac对CTNNAL1基因5′非编码区进行分析,推测启动子所在范围在-552~-152 from ATG。TESS软件(Transcription ElementSearch System)分析该区域内可能的转录因子结合位点,据此设计8条探针,覆盖所有的转录因子结合位点,应用凝胶阻滞电泳(electrophoretic mobility shift assays,EMSA)筛选调控CTNNAL1表达的转录因子,结果显示探针1,2,3,5,8有与蛋白结合形成的滞后带,能被100倍未标记探针所竞争,为特异性结合。通过突变探针结合试验、抗体超迁移试验,证实与探针结合的转录因子分别为LEF-1、AP-2α和CREB。染色质免疫共沉淀实验显示,LEF-1和AP-2α可特异性与CTNNAL1启动子结合。
     紧接着,我们用基因定点突变技术观察LEF-1和AP-2α对CTNNAL1启动子活性的影响,结果显示LEF-1与AP-2α的结合位点突变后,CTNNAL1启动子活性下降。
     进一步,我们用EMSA观察到LEF-1与AP-2α在臭氧应激30min后的活化情况,结果显示臭氧应激后LEF-1活化增加,在应激后1h达到高峰,AP-2α的活化发生在0-1h之间,于应激后30 min达到高峰。CTNNAL1 mRNA的表达与两种转录因子的激活一致。提示在臭氧应激条件下,LEF-1与AP-2α特异性与CTNNAL1结合,共同调控CTNNAL1的表达。
     结论:
     LEF-1与AP-2α特异性与CTNNAL1结合,共同调控CTNNAL1的表达。急性应激条件下CTNNAL1表达上调,促进支气管上皮细胞损伤修复与增殖,参与维持气道上皮的完整性。CTNNAL1在哮喘病人及哮喘模型小鼠表达下调,可能导致上皮功能缺陷及完整性破坏,从而与哮喘发病相关。
Objectives:
     Destruction in airway epithelium structure and integrity,which is often induced by flaws of constitutive adhesion,is the essential link of asthma pathogenicity.During the course of AHR or airway inflammation, airway epithelial cells express adhesion molecules to arrest leucocytes and evoke an inflammation reaction in airway.Airway epithelial cells anchored to extracellular matrix through intergrins and sustained the ability of against injury,repair and integrity in structure or in function of human bronchial epithelial cells(BEC).Therefore it can be reasonably speculated that abnormal expression of adhesive molecules in airway epithelial cells, which might be possibly due to either correspond coding gene alteration or imbalance expression among various kind of adhesion molecules, contribute to aberrant susceptibility to asthma.Based on the result of asthma-associated adhesion molecules expression spectrum,CTNNAL1, whose expression was down regulated in asthma patients,was selected as a candidate in this present study for a further functional investigation.Up to now,there is very little known about the pulmonary biological effects, gene expression modulation of CTNNAL1.The present study was designed to identity the association of CTNNAL 1 with asthma,observe the pulmonary biological effects and gene expression modulation of CTNNAL1.
     Contents:
     1.Identity the association of CTNNAL 1 with asthma
     Our previous study used a cDNA microarray to screen the differential expression of adhesion molecules in human peripheral blood leucocytes, and found that an alpha-catenin-related protein,catenin alpha-like 1 (CTNNAL1) was downregulated in asthma patients.In this study,Real time PCR was used to further confirm the expression of CTNNAL1 in asthm.Immunohistochemistry was used to verified CTNNAL1 expression on tunica mucosa bronchiorum of normal person and asthma patients. Using a well-characterized OVA-sensitized Balb/c mice asthma model,we carried out a time course study of the expression of CTNNAL1 in lung following the AHR progression.
     Results:In situ hybridizition showed CTNNAL1 was predominantly localized in the ciliated columnar epithelium of bronchioles,secretory cells of terminal bronchioles,vascular endothelial cells and alveolar cells.The expression of CTNNAL1 mRNA was significantly down regulated in the peripheral blood leucocyte and tunica mucosa bronchiorum.Real-time PCR showed the mRNA level of CTNNAL1 was decreased in asthma animals.There was a negative correlation between the pulmonary resistance(R_L) in asthma mice and the levels of CTNNAL1 mRNA.This present study demonstrated that CTNNAL1 is highly correlated with asthma.
     2.Function study of CTNNAL1 on airway epithelium
     Balb/c mice were inhaled a mixture of 2.0ppm ozone and fresh air for one,two,four,and eight days respectively to establish a airway stressed animal model and the time and spatial expression of CTNNAL1 were examined by ISH and Real-time PCR.The results showed inflammationary infiltration,mucosal exudation,cavitary stricture and bronchial epithelial denudation were observed in the ozone-stressed group.The expression of CTNNAL1 mRNA was increased with the ozone stress,peaked on the second day,and then reduced.The results also showed that expression of CTNNAL1 mRNA was explicitly increased in ozone-stressed BEC.
     To investigate function of CTNNAL1 in asthma,we established a CTNNAL1 expression plasmid and designed CTNNAL1 antisense oligonucleotide(ASO) to promoter or hinder the expression of CTNNAL1. Then we use them to observe the effect of CTNNAL1 on the repair and proliferation of BEC.
     A small wound was made in the confluent monolayer by mechanical scraping and the remaining wound area was measured serially per 4 hours in 24h by video microscopy.A linear regression equation of the remaining wound area to time was obtained and the slope was used to judge the repair speed of BECs.The proliferation of BECs was assayed by MTT.The results showed that the wound repair and proliferation of BECs were accelerated by CTNNAL1.
     We also detect the effect of CTNNAL1,a member of vinculin family, on Fn mediated wound repair,cell proliferation and focal adhesion kinase phosphorylation.Western blot showed that Fn could promote FAK phosphorylation in a transient time-dependent manner.CTNNAL1 ASO alone did not cause FAK phosphorylation.However,it could inhibit FAK phosphorylation induced by Fn,indicating that CTNNAL1 might have a role in modulating migration and proliferation via FAK phosphorylation signal transduction from Fn.Our results showed a novel link between CTNNAL1 with Fn mediated cell-extracellular matrix adhesion.
     These results raise the possibility that the down regulation of CTNNAL1 might contribute to the asthma development because of the attenuated cell-cell and cell-matrix adhesion,which lead to the bronchial epithelium desquamated and asthma.
     3.Study gene expression modulation of CTNNAL1
     In the present study,we determined molecular mechanisms of CTNNAL1 regulation in human BEC.8 oligonucleotide probes corresponding to various regions of the CTNNAL1 promoter were used in EMSA(electrophoretic mobilityshift assays).5 were found to have an enhanced mobility shift with extracts from BECs.On the basis of the assay of mutated probes and antibody supershift,they were verified as LEF-1, AP-2αand CREB.Next,ChIP(chromatin immunoprecipitation) assay was used to observe the interaction between these transcription factors and CTNNAL1 promoter.Only AP-2αand LEF-1 show the binding on CTNNAL1 promoter.By site-directed mutagenesis of putative transcription-factor-binding sites within pGL3/CTNNAL1/luc,we observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2αand LEF-1 sites.Our data suggest that AP-2αand LEF-1 may be involved in regulation of CTNNAL1 expression.
     The time courses of AP-2αand LEF-1 activation,followed by CTNNAL1 expression were also examined.It was shown that ozone stress can activate the AP-2αand LEF-1 with one hour,ozone-inducible CTNNAL1 expression and AP-2αand LEF-1 binding activity correlated during a-16 hour time course.
     Conclusion:
     The present study demonstrates a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitment of LEF-1 and AP-2αto the human CTNNAL1 promoter thereby accelerated wound repair and proliferation of BEC,which ameliorating the effects of lung injury.The down-regulation of CTNNAL1 in asthma patients or asthma animal model may lead to the bronchial epithelium desquamated and AHR.
引文
[1]Renauld JC.New insights into the role of cytokines in asthma.J Clin Pathol,2001,54(8):577-89.
    [2]Takizawa H.Bronchial epithelial cells in allergic reactions.Curt Drug Targets Inflamm Allergy,2005,4(3):305-311.
    [3]Ren YH,Qin XQ,Guan CX,et al.Temporal and spatial distribution of VIP,CGRP and their receptors in the development of airway hyperresponsiveness in the lung.Acta Physiologica Sinica,2004,56:119-128.
    [4]Tan YR,Qi MM,Qin XQ,et al.Wound repair and proliferation of bronchial epithelial cells enhanced by bombesin receptor subtype 3 activation.Peptides,2006,27:1852-1858.
    [5]任雁宏,秦晓群,管茶香,等.气道高反应中血管活性肠肽及受体的时空分布.中华结核和呼吸杂志,2004,27(4):224-228.
    [6]Wu H,Guan CX,Qin XQ,et al.Upregulation of substance P receptor expression by calcitonin gene-related peptide,a possible cooperative action of two neuropeptides involved in airway hyperresponsiveness.Pulm Pharmacol Ther,2006,20:513-524.
    [7]Masoli M,Fabian D,Holt S,et al.The global burden of asthma:executive summary of the GINA Dissemination Committee Report.Allergy,2004,59(5):469-478.
    [8]向阳,张长青,管茶香,等.纤维连接蛋白上调兔支气管上皮细胞过氧化氢酶表达.生理学报,2004,56(3):365-368.
    [9]秦晓群,向阳,罗自强,等.整合素配体结合反应上调兔支气管上皮细胞抗氧化能力.生理学报,2001,53:445-450.
    [10]谭宇蓉,秦晓群,管茶香,等.肺内调节肽对支气管上皮细胞ICAM-1表达及NF-κB活性的调控.生理学报,2003,55(2):121-127.
    [11]Ricciardolo FL,Di Stefano A,van Krieken JH,et al.Proliferation and inflammation in bronchial epithelium after allergen in atopic asthmatics.Clin Exp Allergy,2003,33(7):905-911.
    [12]Rimm DL,Koslov ER,Kebriaei P,et al.Alpha 1(E)-catenin is an actin-binding and-bundling protein mediating the attachment of F-actin to the membrane adhesion complex.Proc Natl Acad Sci USA,1995,92:8813-8817.
    [13]李文俊,吴人亮,李娜萍,等.β连环素在吸烟小鼠气道上皮损伤修复中的作用.中华结核和呼吸杂志,2001,24(8):481-484.
    [14]潘频华,吴鄂生,陈清兰,等.连环素α、β在哮喘豚鼠模型中的表达变化.中华结核和呼吸杂志,2000,23(8):508.
    [15]Watabe M,Nagafuchi A,Tsukita S,et al.Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line.J Cell Biol,1994,127(1):247-256.
    [16]Knudsen KA,Soler AP,Johnson KR,et al.Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin.J Cell Biol,1995,130(1):67-77.
    [17]Hazan RB,Kang L,Roe S,et al.Vinculin is associated with the E-cadherin adhesion complex.J Biol Chem,1997,272(51):32448-53.
    [18]Zhang JS,Nelson M,Wang L,et al.Identification and chromosomal localization of CTNNAL1,a novel protein homologous to alpha-catenin.Genomics,1998,54(1):149-154.
    [19]Janssens B,Staes K,van Roy F.Human alpha-catulin,a novel alpha-catenin-like molecule with conserved genomic structure,but deviating alternative splicing.Biochim Biophys Acta,1999,1447(2-3):341-347.
    [20]Kobielak A,Fuchs E.α-catenin:At the junction of intercellular adhesion and actin dynamics.Nature Reviews Molecular Cell Biology,2004,5:614-625.
    [21]Park B,Nguyen NT,Dutt P,et al.Association ofLbc Rho guanine nucleotide exchange factor with α-catenin-related protein,α-catulin/CTNNAL1,supports serum response factor activation.J.Biol.Chem,2002,277(47):45361-45370.
    [22]Merdek KD,Nguyen NT,Toksoz D.Distinct activities of the alpha-catenin family,alpha-catulin and alpha-catenin,on beta-catenin-mediated signaling.Mol Cell Biol,2004,24(6):2410-2422.
    [23]Morkjaroenpong V,Rand CS,Butz AM,et al,Environmental tobacco smoke exposure and nocturnal symptoms among inner-city children with asthma.J Allergy Clin Immunol,2002.110(1):p.147-53.
    [24]Rizzo R,Mapp CE,Melchiorri L,et al.Defective production of soluble HLA-G molecules by peripheral blood monocytes in patients with asthma.J Allergy Clin Immunol,2005,115(3):508-13.
    [25]Hong S J,Lee SY,Kim HB,et al.IL-5 and thromboxane A2 receptor gene polymorphisms are associated with decreased pulmonary function in Korean children with atopic asthma.J Allergy Clin Immunol,2005,115(4):758-763.
    [26]Raby BA,Van Steen K,Lazarus R,et al.Eotaxin polymorphisms and serum total IgE levels in children with asthma.J Allergy Clin Immunol,2006,117(2):298-305.
    [27]Campbell AM,Vignola AM,Godard P.Epithelial cells and adhesion molecules.Respir Med,1994,88(5):329-31.
    [28]Grzelewska-Rzymowska I,Pietrzkowicz M.Role of intra cellular adhesion molecule-1(ICAM-1) and its soluble form(slCAM) in chronic airway inflammation Pol Merkuriusz Lek,2004,16(92):179-182.
    [29]Doornaert B,Leblond V,Planus E,et al.Time course of actin cytoskeleton stiffness and matrix adhesion molecules in human bronchial epithelial cell cultures.Exp Cell Res,2003,287(2):199-208.
    [30]Cordes N,Seidler J,Durzok R,et al.Betal-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury.Oncogene,2005,64(12):457-465.
    [31]Kim S,Schein AJ,Nadel JA.E-cadherin promotes EGFR-mediated cell differentiation and MUC5AC mucin expression in cultured human airway epithelial cells.Am J Physiol Lung Cell Mol Physiol,2005,289(6):L1049-1060.
    [32]Zhang JS,Tan YR,Xiang Y,et al.Regulatory peptides modulate adhesion of polymorphonuclear leukocytes to bronchial epithelial cells through regulation of interleukins,ICAM-1 and NF-κB/IκB..Acta Biochim Biophys Sin,2006,38(2):119-128.
    [33]Tan YR,Qin XQ,Guan CX,et al.Influence of regulatory peptideson the secretion of interleukins from bronchial epithelial cells of the rabbit(Chinese,Abstract in English).Acta Physiologica Sinica,2002,.54(2):107-10.
    [34]Janson C,Ludviksdottir D,Gunnbjornsdottir M,et al.BHR-study group.Circulating adhesion molecules in allergic and non-allergic asthma.Respir Med,2005,99(1):45-51..
    [35]Weinacker A,Ferrando R,Elliott M,et al.Distribution of integrins alpha v beta 6 and alpha 9 beta 1 and their known ligands,fibronectin and tenascin,in human airways.Am J Respir Cell Mol Biol,1995,12(5):547-556.
    [36]Moore C,Shen XD,Fondevila C,et al.Fibronectin-alpha4beta1 integrin interactions modulate p42/44 MAPK phosphorylation in steatotic liver cold ischemia-reperfusion injury.Transplant Proc,2005,37(1):432-434.
    [37]Goncalves I,Hughan SC,Schoenwaelder SM,et al.Integrin alpha IIb beta 3-dependent calcium signals regulate platelet-fibrinogen interactions under flow.Involvement of phospholipase C gamma 2.J Biol Chem,2003,278(37):34812-34822.
    [38]Quarcoo D,Weixler S,Groneberg D,et al.Inhibition of signal transducer and activator of transcription 1 attenuates allergen-induced airway inflammation and hyperreactivity.J Allergy Clin Immunol,2004,114(2):288-295.
    [39]Adams RJ,Weiss ST,Fuhlbrigge A.How and by whom care is delivered influences anti-inflammatory use in asthma:Results of a national population survey.J Allergy Clin Immunol,2003,112(2):445-450.
    [40]中华医学会呼吸病学分会哮喘学组.支气管哮喘防治指南(支气管哮喘的定义、诊断、治疗和管理方案).中华结核和呼吸杂志,2008,31:177.
    [41]Isenberg-Feig H,Justice JP,Keane-Myers A.Animal Models of Allergic Asthma Curr Allergy Asthma Rep,2003,3(1):70-78.
    [42]Nikolaidis NM,Zimmermann N,King NE,et al.Trefoil factor-2 is an allergen-induced gene regulated by Th2 cytokines and STAT6 in the lung.Am J Respir Cell Mol Biol,2003,29(4):458-464.
    [43]Ricciardolo FL,Di Stefano A,van Krieken JH,et al.Proliferation and inflammation in bronchial epithelium after allergen in atopic asthmatics.Clin Exp Allergy,2003,33(7):905-911.
    [44]Laitinen LA,Laitinen A,Haahtela T.Airway mucosal inflammation even in patients with newly diagnosed asthma.Am Rev Respire Dis,1993,147:697-704
    [45]Drubin DG,Nelson WJ.Origins of cell polarity.Cell,1996,84:335-344.
    [46]Perez-Moreno M,Jamora C,Fuchs E.Sticky business:orchestrating cellular signals at adherens junctions.Cell,2003,112:535-548.
    [47]Tepass U.Adherens junctions:new insight into assembly,modulation and function.Bioessays,2002,24:690-695.
    [48]Kato Y,Yoshida K,Yashima K,et al.Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium.Lung Cancer,2005,48(3):323-30.
    [49]Pirinen RT,Johansson RT,Hollmen S,et al.Reduced expression of alpha-catenin,beta-catenin,and gamma-catenin is associated with high cell proliferative activity and poor differentiation in non-small cell lung cancer.J Clin Pathol,2001,54(5):391-5.
    [50]Gumbiner BM,Cell adhesion:the molecular basis of tissue architecture and orphogenesis.Cell,1996,84:345-357.
    [51]Ozawa M,Baribalt H,Kemler R.The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species.EMBOJ,1989,8:1711-1717.
    [52]Chiang GJ,Canes D,Stoffel J,et al.The src-family kinase inhibitor PP2suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation ofAkt.BJU Int.T,2005,96(3):416-22.
    [53]Ozawa M,Kemler R.Altered cell adhesion activity by pervanadate due to the dissociation of alpha-catenin from the E-cadherin.catenin complex.J Biol Chem,1998,273:6166-6170.
    [54]Weiss EE,Kroemker M,Rudiger AH,et al.Vinculin is part of the cadherin-catenin junctional complex:complex formation between alpha-catenin and vinculin.J Cell Biol,1998,141(3):755-764.
    [55]张长青,秦晓群,管茶香,等.纤维连接蛋白对支气管上皮细胞的抗氧化损伤保护.中国应用生理学杂志,2001,17(4):383-387.
    [56]Ohke M,Tada S,Nabe M,et al.The role of fibronectin in bronchoalveolar lavage fluid of asthmatic patients.Acta Med Okayama,2001,55(2):83-89.
    [57]Jarvis RA,Bryers JD.Effects of controlled fibronectin surface orientation on subsequent Staphylococcus epidermidis adhesion.J Biomed Mater Res A,2005,75(1):41-55.
    [58]Wierzbicka-Patynowski I,Schwarzbauer JE.Regulatory role for SRC and phosphatidylinositol 3-kinase in initiation of fibronectin matrix assembly.J Biol Chem,2002,277(22):19703-19708.
    [59]Guan CX,Zhang M,Qin XQ,et al.Vasoactive intestinal peptide enhances wound healing and proliferation of human bronchial epithelial cells.Peptides,2006,27(12):3107-3114.
    [60]Chiang GJ,Billmeyer BR,Canes D,et al.The src-family kinase inhibitor PP2suppresses the in vitro invasive phenotype of bladder carcinoma cells via modulation of Akt.BJU Int.T,2005,96(3):416-422.
    [61]孙秀泓,罗自强.肺的肺呼吸功能基础与临床.人民卫生出版社,2003, 219-220.
    [62] Keenan KP, Combs JW, McDowell EM. Regeneration of hamster tracheal epithelium after injury.Ⅱ.Focal lesions: stathmokinetic and autoradiographic studies of cell proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol, 1982, 41(3): 215-229.
    [63] Keenan KP, Combs JW, McDowell EM. Regeneration of hamster tracheal epithelium after mechanical injury. Ⅲ. Large and small lesions: comparative stathmokinetic and single pulse and continuous thymidine labeling autoradiographic studies. Virchows Arch B Cell Pathol Incl Mol Pathol, 1982, 41(3): 231-252.
    [64]. Keenan KP, Combs JW, McDowell EM. Regeneration of hamster tracheal epithelium after mechanical injury. I. Focal lesions: quantitative morphologic study of cell proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol, 1982, 41(3):193-214.
    [65] Ayers MM, Jeffery PK. Proliferation and differentiation in mammalian airway epithelium. Eur Respir J, 1988, 1: 58-80.
    [66] Kim JS, Nawrocki A, White SR. Migration and proliferation of guinea pig and human airway epithelial cells in response to tachykinins. Am.J.Physiol, 1995, 269(1 Pt 1):L119-126.
    [67] Zahm JM, Chevillard M, Puchelle E. Wound repair of human surface respiratory epithelium. Am J Respir Cell Mol Biol, 1991, 5: 242-248.
    [68] Kim JS, Nawrocki A, White SR. Stimulation of migration and wound repair of guinea-pig airway epithelial cells in response to epidermal growth factor. Am J Respir Cell Mol Biol, 1998, 18(1): 66-74.
    [69] Barth AI, Nathke IS, Nelson WJ. Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol, 1997, 9(5): 683-690.
    [70] Vasioukhin V, Bauer C, Degenstein L, et al. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell, 2001, 104(4): 605-17.
    [71] Qin XQ, Xiang Y, Luo ZQ, et al. Fibronectin or RGD peptide promotes nitric oxide synthesis of rabbit bronchial epithelial cells. Acta Physiol Sin, 2000, 52(6): 519-21.
    [72] Harkonen E, Linnala A, Laitinen LL, et al. Modulation of fibronectin and tenascin production in human bronchial epithelial cells by inflammatory cytokines in vitro.Am J Respir Cell Mol Biol,1995,13(1):109-15.
    [73]Jarvis RA,Bryers JD.Effects of controlled fibronectin surface orientation on subsequent Staphylococcus epidermidis adhesion.J Biomed Mater Res A,2005,75(1):41-55.
    [74]Ohke M,Nabe M,Matsuo K,et al.The role of fibronectin in bronchoalveolar lavage fluid of asthmatic patients.Acta Med Okayama,2001,55(2):83-89.
    [75]Giuffrida A,Birarelli P,Modesti A.The interaction of tenascin-C with fibronectin modulates the migration and specific metalloprotease activity in human mesothelioma cell lines of different histotype.Int J Oncol,2004,25(3):745-50.
    [76]Yamazaki D,Suetsugu S,Takenawa T.A novel function of WAVE in lamellipodia:WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.Genes Cells,2005,10(5):381-92.
    [77]Matter ML,Ruoslahti E.A signaling pathway fron the alpha5betal and alphavbeta3 integrins that elevates bcl-2 trscription.J Biol Chem,2001,276(30):27757-27763.
    [78]Canti C,Foucault I,Heblich F,et al.The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of alpha2delta subunits is key to trafficking voltage-gated Ca~(2+) channels.Proc Natl Acad Sci U S A,2005,102(32):11230-11235.
    [79]Jones NP,Brader S,Eccles SA,et al.PLC-gammal is essential for early events in integrin signalling required for cell motility.J Cell Sci,2005,118(Pt 12):2695-2706.
    [80]Ruzzi L,Silvestfi L,Semeraro ML,et al.Association of PLA2 polymorphism of the ITGB3 gene with early fetal loss.Fertil Steril,2005,83(2):511-512.
    [81]Wierzbicka-Patynowski I.Regulatory role for SRC and phosphatidylinositol 3-kinase in initiation of fibronectin matrix assembly.J Biol Chem,2002,277(22):p.19703-8.
    [82]Holgate ST,Lackie PM,Wilson SJ,et al.Epithelial-mesenchymal interactions in the pathogenesis of asthma.J Allergy Clin Immunol.,2000,105(2 Pt 1):193-204.
    [83]Schug J.Using TESS to predict transcription factor binding sites in DNA sequence.Curr Protoc Bioinformatics,2008,Chapter 2:Unit 2.6.
    [84]Natesampillai S,Fernandez-Zapico ME,Urrutia R,et al.A novel functional interaction between the Spl-like protein KLF13 and SREBP-Sp1 activation complex underlies regulation of low density lipoprotein receptor promoter function.1:J Biol Chem,2006.281(6):3040-3047.
    [85]Brugmann SA,Tapadia MD,Helms JA.The molecular origins of species-specific facial pattern.Curr Top Dev Biol,2006,73:1-42.
    [86]Reya T,Duncan AW,Ailles L,et al.A role for Wnt signalling in self-renewal of haematopoietic stem cells.Nature,2003,423:409-414.
    [87]Clevers H.Wnt/beta-catenin signaling in development and disease.Cell,2006,127:469-480.
    [88]Reya T,Clevers H.Wnt signalling in stem cells and cancer.Nature,2005,434:843-850.
    [89]Chan SK,Struhl G.Evidence that Armadillo transduces wingless by mediating nuclear export or cytosolic activation.Cell,2002,111(2):265-280.
    [90]He TC,Sparks AB,Rago C,et al.Identifi cation of c-MYC as a target of the APC pathway.Science,1998,281:1509-1512.
    [91]Shtutman M,Zhurinsky J,Simcha I,et al.The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway.Proc.Natl.Acad.Sci.USA,1999,96:5522-5527.
    [92]Eckert D,Buhl S,Weber S,et al.The AP-2 family of transcription factors..Genome Biol;.2005,6(13):246.
    [93]Gutterson N,Reuber TL.Regulation of disease resistance pathways by AP2/ERF transcription factors.Curr Opin Plant Biol,2004,7(4):465-471.
    [94]Wang HV,Vaupel K,Buettner R,et al.Identification and embryonic expression of a new AP-2 transcription factor,AP-2 epsilon.Dev Dyn,2004,231:128-135.
    [95]Williams T,Tjian R.Characterization of a dimerization motif in AP-2 and its function in heterologous DNA binding proteins.Science,1991,251:1067-1071.
    [96]Imagawa M,Chiu R,Karin M.Transcription factor AP-2 mediates induction by two different signal-transduction pathways:protein kinase C and cAMP.Cell,1987,51(2):251-260.
    [97]Bishop JF,Rinaudo MS,Ritter JK,et al.A putative AP-2 binding site in the 5'flanking region of the mouse POMC gene.FEBS Lett,1990,264(1):125-129.
    [98] Chazaud C, Oulad-Abdelghani M, Bouillet P, et al. AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech Dev, 1996. 54(1): 83-94.
    [99] Mitchell PJ, Timmons PM, Hebert JM, et al. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev, 1991,5:105-119.
    [100] Bosher, JM, Totty NF, Hsuan JJ, et al. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene, 1996, 13: 1701-1707.
    [101] Li H, Watts GS, Oshiro MM, et al. AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene, 2006, 25(39): 5405-5415.
    [102] Wajapeyee N, Britto R, Ravishankar HM, et al. Apoptosis induction by activator protein 2alpha involves transcriptional repression of Bcl-2. J Biol Chem, 2006, 281(24). 16207-16219.
    [103] Chen S, Shi H, Liu X, et al. Multiple elements and protein factors coordinate the basal and cyclic adenosine 3', 5'-monophosphate-induced transcription of the lutropin receptor gene in rat granulosa cells. Endocrinology, 1999, 140(5): 2100-2109.
    [104] Woltje M, Kraus J, Hollt V. Regulation of mouse delta-opioid receptor gene transcription: involvement of the transcription factors AP-1 and AP-2. J Neurochem, 2000, 74(4): 1355-1362.
    [105] Quirin-Stricker C, Mauvais C, Schmitt M. Transcriptional activation of human choline acetyltransferase by AP2- and NGF-induced factors. Brain Res Mol Brain Res, 1997, 49(1-2): 165-174.
    [106] Kim HS, Hong SJ, LeDoux MS, et al. Regulation of the tyrosine hydroxylase and dopamine beta-hydroxylase genes by the transcription factor AP-2. J Neurochem, 2001, 76(1): 280-294.
    [107] Katsel PL, Greenstein RJ. Identification of overlapping AP-2/NF-kappa B-responsive elements on the rat cholecystokinin gene promoter. J Biol Chem, 2001, 276(1): 752-758.
    [108] Cheng YH, Handwerger S. AP-2alpha modulates human corticotropin-releasing hormone gene expression in the placenta by direct protein-protein interaction. Mol Cell Endocrinol, 2002, 191(2): 127-136.
    [109] Rennard SI. Inflammation and repair processes in chronic obstructive pulmonary disease. Am J Respire Crit Care Med, 1999, 160: 512-516.
    [110] Chanez P, Severe asthma is an epithelial disease. Eur Respir J, 2005, 25: 945-946.
    [111] QIN XQ. Protection from Oxidant Injury on Airway Environment Modulation.(Chinese, Abstract in English). Progress in Physiological Sciences, 1999, 30: 129-132.
    [112] Kameyama S, Takeyama K, Atsushi N. Air exposure causes oxidative stress in cultured bovine tracheal epithelial cells and produces a change in cellular glutathione systems. Experimental Lung Research, 2003, 29: 567 - 583.
    [113] Michiels C, Toussaint O, Remade J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med, 1994, 17(3): 235-248.
    [114] Matter ML, Ruoslahti E. A signaling pathway fron the alpha5betal and alphavbeta3 integrins that elevates bcl-2 trscription. J Biol Chem, 2001, 276(30): 27757-27763.
    [115] Caramori G, Papi A. Oxidants and asthma. Thorax, 2004, 59: 170-173.
    [116] Cho YS, Lee TH, Lee EY. Alpha-Lipoic acid inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. J Allergy Clin Immunol, 2004, 114(2): 429-435.
    [117] MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc, 2005, 2(1): 50-60.
    [118] Sandowska AM, Vints AM, Verbraecken J, et al. Systemic antioxidant defences during acute exacerbation of chronic obstructive pulmonary disease. Respirology, 2006, 11: 741-747.
    [119] Mata M, Buenestado A, Cortijo J, et al. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells Thorax, 2005, 60: 144-152.
    [120] Rose MC, Nickola TJ, Voynow JA. Airway Mucus Obstruction: Mucin Glycoproteins, MUC Gene Regulation and Goblet Cell Hyperplasia Am. J. Respir. Cell Mol. Biol, 2001, 25(5): 533-537.
    [121] Del Donno M, Bittesnich D, Chetta A, Olivieri D, Lopez-Vidriero MT. The Effect of Inflammation on Mucociliary Clearance in Asthma-An Overview Chest, 2000, 118: 1142-1149.
    [122] Mata M, Sarri(?) B, Buenestado A, et al. Phosphodiesterase 4 inhibition decreases MUC5 AC expression induced by epidermal growth factor in human air way epithelial cells Thorax, 2005, 60: 144-152.
    [123]. Azzeddine D, Arihiko K, Mika JM. Regulation of airway hyperresponsiveness by Calcitonin Gene-related Peptide in Allergen Sensitized and Challenged Mice. Am J Res Cri Car Med, 2002, 165: 1137-1144.
    [124] Sinn PL, Donovan MD, McCray Jr PB. Viscoelastic Gel Formulations Enhance Airway Epithelial Gene Transfer with Viral Vectors Am J Respir Cell MolBiol, 2005, 32: 404-410.
    [125] Renauld JC. New insights into the role of cytokines in asthma. J Clin Pathol., 2001, 54(8): 577-89.
    [126] Ricci M, Matucci A, Rossi O, New advances in the pathogenesis and therapy of bronchial asthma. Ann Ital Med Int, 1998. 13(2): p. 93-110.
    [127] Ito Y, Son M, Kondo M, et al. Inhibits Cl- Secretion by Inhibition of Basolateral K+ Conductance in Human Airway Epithelial Cells. J Pharmacol Exp Ther, 2002, 302(1):80-87
    [128] Ruddy MK, Pitkanen OM, Rafii B, et al. Modulation of aquaporin 4 and the amiloride-inhibitable sodium channel in perinatal rat lung epithelial cells Am J Physiol Lung Cell Mol Physiol, 1998, 274( 6): L1066-L1072.
    [129] Nakao I, Kanaji S, Ohta S, et al. Identification of pendrin as a common mediator for mucus production in bronchial asthma and chronic obstructive pulmonary disease. J Immunol, 2008, 180(9): 6262-9.
    [130] Huang P, Kultgen P, Barnes P, et al. Local Regulation of Cystic Fibrosis Transmembrane Regulator and Epithelial Sodium Channel in Airway Epithelium. The Proceedings of the American Thoracic Society, 2004, 1: 33-37
    [131] Fischer H, Widdicombe JH, Illek B. Acid secretion and proton conductance in human airway epithelium. Am J Physiol Cell Physiol, 2002, 282(4): C736-C743.
    [132] Borok Z, Verkman AS. Lung Edema Clearance: 20 Years of Progress Invited Review: Role of aquaporin water channels in fluid transport in lung and airways. J Appl Physiol, 2002, 93( 6): 2199-2206.
    [133] Trautmann A, Kruger K, Akdis M, et al. Apoptosis and Loss of Adhesion of Bronchial Epithelial Cells in Asthma. Int Arch Allergy Immunol, 2005, (138): 142-150.
    [134] Sheppard D. Functions of Pulmonary Epithelial Integrins: From Development to Disease. Physiol Rev, 2003, 83: 673-686.
    [135] Sheppard D. Airway Epithelial Integrins: Why So Many? Am J Respi Cell Mol Biol, 1998, 19:349-351.
    [136] Watt FM. Role of integrin in regulation epidermal adhesion, growth and differentiation. The EMBO Journal, 2002, 21(16): 3919-3926.
    [137] Grossmann J. Molecular mechanisms of "detachment-induced apoptosis-Anoikis". Apoptosis, 2002, 7: 247-260.
    [138] Roche WR, Backer J, Holgate ST. Cell adhesion molecule and the bronchial epithelim. Am Rev Respir Dis, 1993, 148: 79-82.
    [139] Ozawa M, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different pecies. EMBO J, 1989, 8: 1711-1717.
    [140] Goto Y, Nomura A, Sakamoto T, et al. Dislocation of E-Cadherin in the Airway Epithelium during an Antigen-Induced Asthmatic Response. Am J Respir Cell Mol Biol, 2000, 23: 712-818.
    [141] Vignola AM, Siena L, Melis M, et al. ICAM-1 and α3β1 expression by bronchial epithelial cells and their in vitro modulation by infl ammatory and anti-infl ammatory mediators. Allergy, 2000, 55: 931-939.
    [142] Shebani E. Ultrastructural studies of the airway epithelium in airway disease. 2006, Acta Universitatis Upsaliensis.
    [143] Shirasaki H, Watanabe K, Kanaizumi E, et al. The effectes of glucocorticosteroids on tumor necrrosis factor induced intercellular adhesion molecule-1 expression in cultured primary human nasal epithelial cells. Clin Exp Allergy, 2004, 34: 945-951.
    [144] kalb TH, Marom Z, Mayer 1. Evidence for accessory cell function by class Ⅱ MHC antigen-expressing airway epithelial cells. Am Respir Cell Mol Biol, 1991, 4(4): 320-329.
    [145] Rossi GA, Sacco O, Balbi B, et al. Human ciliated bronchial epithelial cells: expression of the HLA-DR antigens and of the HLA-DR alpha gene, modulation of the HLA-DR antigens by gamma-interferon and antigen-presenting function in the mixed leukocyte reaction. Am J Respir Cell Mol Biol, 1990, 3(5): 431-439.
    [146]Bertorelli G,Bocchino V,Zhou X,et.al.Heat shock protein 70 upregulation is related to HLA-DR expression in bronchial asthma.Clin Exp Allergy,1998,28(5):,551-560.
    [147]Bugeon L,Dallman MJ.Costimulation ofT.cells.Am J Crit Care,2000,162:S164-S168.
    [148]Papi A,Papadopoulos NG;Teran 1M,et al.Rhinovirus infection induces major histocompatibility complex class Ⅰ and costimulatory molecule upregulation on respiratory epithelial cells.J Infect Dis,2000,181(5):1780-1784.
    [149]Qin XQ,Xiang Y,Luo ZQ,et al.Fibronectin or RGD peptide promotes nitric oxide synthesis of rabbit bronchial epithelial cells.(Chinese,Abstract in English).Acta Physiologica Sinica,2000,52(6):519-521.
    [150]Ge N,Nakamura Y,Okano Y,et al.Synthesis and secretion of interleukin-15by freshly isolated human bronchial epithelial cells.Int Arch Allergy Immunol,2004,135(3):235-42.
    [151]Lilly CM,Oguma T,Israel E,et al.Effects of allergen challenge on airway epithelial cell gene expression.Am J Respir Crit Care Med,2005,171(6):579-586.
    [152]Hemelaers L,Louis R.Eotaxin:an important chemokine in asthma.Rev Med Liege,2006,61(4):223-226.
    [153]Montes-Vizuet R,Valencia-Maqueda E,Negrete-Garcia MC,et al.CC chemokine ligand 1 is released into the airways of atopic asthmatics.Eur Respir J,2006,28(1):59-67.
    [154]Booth BW,Bonner JC,Tournier F,et al.Interleukin-13 induces proliferation of human airway epithelial ceils in vitro via a mechanism mediated by transforming growth factor-alpha.Am J Respir Cell Mol Biol,2001,25(6):739-743.
    [155]Freund V,Frossard N.Nerve growth factor(NGF) in inflammation and asthma.Rev Mal Respir,2004,21(2):328-342.
    [156]Wu T,Han C,Shelhamer JH.Involvement of p38 and p42/44 MAP kinases and protein kinase C in the interferon-gamma and interleukin-lalpha-induced phosphorylation of 85-kDa cytosolic phospholipase A(2) in primary human bronchial epithelial cells.Cytokine,2004,25(1):11-20.
    [157]Krull M,Wuppermann FN,Klucken AC,et al.Mechanisms of Chlamydophila pneumoniae-mediated GM-CSF release in human bronchial epithelial cells. Am J Respir Cell Mol Biol, 2006, 34(3): 375-382.
    [158] Marrin M, Vittori E, Hollembor I, et al. Exression of the potent inflammator chemokines GM-CSFIL-6 and IL-8,in bronchial epithelialcells of patients with asthma Allert Clin Immunol, 1992, 89: 1001-1009.
    [159] Minshall E, Chakir J, Laviolette M, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol, 2000, 105(2 Pt 1): 232-238.
    [160] Flavia M, Donatella B, Marzia DC, et al. Secretory cells of the airway express molecules of the chemoreceptive cascade. Cell Tissue Res, 2007, 327: 231-247.
    [161] Luo FM, Wang ZL, Liu XJ. Expression of Clara cell secretory protein in airways of rat asthma remode. Chin J Intern Med, 2003, 42(7): 466-469.
    [162] Lensmar C, Nord M, Gudmundsson GH. Decreased pulmonary levels of the anti-inflammatory Clara cell 16 kDa protein after induction of airway inflammation in asthmatics. J Cell Mol Life Sci, 2000, 67(6): 976-981.
    [163] Shijubo N, Itoh Y, Yamaguchi T. Serum Levels of ClaraCell10-kDa Protein Are Decreased in Patients with Asthma. Lung, 1999, 177: 45-52.
    [164] Wang WZ, Wang ZL, Liu CT. The expression of induced sputum CCSPin asthma. Chin J Tuberc Respir Dis, 2003, 6: 376-377.
    [165] Gong Q, Liu A, Yang WK, Association between clara cell protein 10 and airway insufflation pressures in guinea pig asthma models. Chin J Practical Internal Med, 2006, 4: 262-263.
    [166] Springer J, Geppetti P, Fischer A. Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther, 2003, 16(3): 121-130.
    [167] Coraux C, Lesimple P, Puchelle E. In vivo models of human airway epithelium repair and regeneration. Eur Respir Rev, 2005, 14: 131-136.
    [168] White SR, Dorscheid DR, Rabe KF, et al. Role of very late adhesion integrins in mediating repair of human airway epithelial cell monolayers after mechanical injury. Am J Respir Cell Mol Biol, 1999, 20(4): 787-96.
    [169] Gizycki MJ, Rogers AV, O'Byrne PM, et al. Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol, 1997, 16(6): 664-673.
    [170] Zhang S, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation:an in vitro co-culture model of airway remodeling in asthma.Lab Invest,1999,79(4):395-405.
    [171]Holgate T.Epithelial damage and response.Clin Exp Allergy,2000,30(Suppl 1):37-41.
    [172]Han Z,Xu J,Zhon N.Exression of matrixmetalloroteinases MMP-9 within the airways in asthma.Res Pir Med,2003,97:563-567.
    [173]韩照升,徐军,李时悦,等.支气管哮喘患者气道黏膜活检组织MMP-9表达的临床研究.中国实用内科杂志,2002,22(6):331-333
    [174]Bertaux B,Homebeck W,Eisen AZ,et al.Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases.J Invest Dermatol,1991,97(4):679-85
    [175]Ahonen M,Baker AH,Kahari VM,et al.High level expression of tissue inhibitors of metalloproteinases-1,-2 and-3 in melanoma cells achieved by adenovirus mediated gene transfer.Adv Exp Med Biol,1998,451:69-72
    [176]Yao PM,Lemjabbar H,D'Ortho MP,et al.Balance between MMP-9 and TIMP-1 expressed by human bronchial epithelial ceils:relevance to asthma.Ann N YAcad Sci,1999,878:512-5144.
    [177]Hozumi A,Nishimura Y,Nishiuma T,et al.Induction of MMP-9 in normal human bronchial epithelial cells by TNF-alpha via NF-kappa B-mediated pathway.Am J Physiol Lung Cell Mol Physiol,2001,281(6):1444-1452.
    [178]Bank U,Kr(u|¨)ger S,Langner J,et al.Review:peptidases and peptidase inhibitors in the pathogenesis of diseases.Disturbances in the ubiquitin-mediated proteolytic system.Protease-antiprotease imbalance in inflammatory reactions.Role of cathepsins in tumour progression.Adv Exp Med Biol,2000,477:349-378.
    [179]Tanaka H,Miyazaki N,Oashi K,et al.Sputum matrix metalloproteinase-9:tissue inhibitor of metalloproteinase-1 ratio in acute asthma.J Allergy Clin Immunol,2000,105(5):900-905
    [180]Mautino G,Capony F,Bousquet J,et al.Balance in asthma between matrix metalloproteinases and their inhibitors.J Allergy Clin Immunol,1999,104:530-533
    [181]Lee YC,Lee HB,Rhee YK,et al.The involvement of matrix metalloproteinase-9 in airway inflammation of patients with acute asthma.Clin Exp Allergy,2001,31:1623-1630
    [182]Vignola AM,Riccobono L,Mirabella A,et al.Sputum Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 Ratio Correlates with Airflow Obstruction in Asthma and Chronic Bronchitis.Am J Respir Crit Care Med,1998,158:1945-1950
    [183]Lee KS,Jin SM,Lee H,et al.Imbalance between matrix metalloproteinase-9and tissue inhibitor of metalloproteinase-1 in toluene diisocyanate-induced asthma.Imbalance between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in toluene diisocyanate-induced asthma,Clin Exp Allergy,2004,34(2):276-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700