类固醇激素受体共活化因子3(SRC-3)在天然药物治疗恶性血液病中的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     藤黄酸抑制类固醇激素受体共活化因子3及Akt通路介导慢性粒细胞白血病急变K562细胞株G0/G1期阻滞和凋亡
     目的:研究藤黄酸抗白血病的影响及其分子机制,为其临床应用提供理论基础。
     方法:采用MTT比色法检测K562细胞的增殖活性,Annexin V-FITC/PI双标法检测细胞凋亡及透射电镜分析细胞凋亡形态学的改变,流式细胞术分析细胞周期改变,Realtime-PCR检测藤黄酸对K562细胞内SRC-3和Bcl-2基因表达的影响,Western blot法检测藤黄酸对K562细胞内SRC-3,Akt,pAkt,核糖体蛋白S6激酶1(S6K1),pS6K1,糖原合成激酶3β(GSK-3β),pGSK-3β和Bcl-2蛋白表达的影响。
     结果:(1)藤黄酸以剂量、时间依赖性方式抑制K562细胞的增殖,其24 h的IC50是1.9±0.1μmol/L。(2)藤黄酸以剂量依赖性方式诱导K562细胞凋亡,伴有典型的凋亡细胞形态学改变。(3)藤黄酸阻滞K562细胞周期于G0/G1期。(4)藤黄酸能以剂量依赖性方式抑制SRC-3,pAkt,pS6K1,pGSK-3β和Bcl-2表达水平,而Akt,S6K1和GSK-3β总蛋白水平不受影响。
     结论:藤黄酸发挥其抗白血病效应可能与下调类固醇激素受体共活化因子3(SRC-3)的表达有关。
     第二部分
     鱼藤素抑制类固醇激素受体共活化因子3及NF-κB通路介导急性淋巴细胞白血病Jurkat细胞凋亡
     目的:研究鱼藤素抗白血病的影响及其分子机制,为其临床应用提供理论基础。
     方法:采用MTT比色法检测Jurkat细胞的增殖活性,原位细胞凋亡检测技术(TUNEL)及透射电镜分析细胞凋亡形态学的改变,流式细胞术分析细胞周期改变,RT-PCR和Westem blot法检测鱼藤素对白血病细胞内SRC-3,NF-κB,Bcl-2,Bcl-xL基因和蛋白表达的影响。
     结果:(1)鱼藤素以剂量、时间依赖性方式抑制Jurkat细胞的增殖,其24 h的IC50是43.73±0.35 nmol/L,48h的IC50为28.96±0.29 nmol/L。(2)鱼藤素以剂量依赖性方式诱导Jurkat细胞凋亡。40 nmol/L的鱼藤素处理24 h后透射电镜观察到细胞染色质浓缩,核碎裂,典型凋亡小体形成。TUNEL法检测到TUNEL阳性细胞,40 nmol/L的鱼藤素处理24 h后TUNEL阳性细胞百分比为12.8±0.85%,与对照组(1.1±0.09%)相比有统计学意义(P<0.01);(3)鱼藤素阻滞Jurkat细胞周期于G0/G1期。(4)鱼藤素能同时在蛋白和基因水平,以剂量依赖性方式抑制SRC-3及其相关基因NF-κB和其下游的抗凋亡蛋白Bcl-2,Bcl-xL的表达。
     结论:鱼藤素能明显抑制Jurkat白血病细胞的增殖,并诱导其凋亡,其抗白血病效应可能与下调类固醇激素受体共活化因子3(SRC-3)的表达有关。
     第三部分
     鱼藤素对多发性骨髓瘤细胞类固醇激素受体共活化因子3的调节作用
     目的:研究鱼藤素对人多发性骨髓瘤细胞株RPMI-8226细胞抗增殖影响及其分子机制。
     方法:采用MTT比色法检测鱼藤素对RPMI-8226细胞增殖活性的影响,Annexin-VFITC/PI双标法及Hoechst33258分析细胞凋亡形态学的改变,肿瘤细胞侵袭实验检测鱼藤素对RPMI-8226细胞侵袭作用的影响,RT-PCR法检测鱼藤素对SRC-3和NF-κB基因表达的影响,免疫组化法检测鱼藤素对SRC-3和NF-κB蛋白的影响和分布情况,明胶酶法用来检测RPMI-8226细胞分泌MMP-2和MMP-9酶的活性。
     结果:(1)鱼藤素能明显抑制RPMI 8226细胞的增殖,其24 h的IC_(50)是54.55±0.40nmol/L。(2)鱼藤素以剂量依赖性方式诱导RPMI-8226细胞凋亡,伴有典型的凋亡细胞形态学改变。(3)鱼藤素能以剂量依赖性方式抑制RPMI-8226细胞侵袭。(4)鱼藤素能同时在蛋白和基因水平抑制SRC-3及其相关基因NF-κB,从而下调MMP-2和MMP-9酶的活性。
     结论:鱼藤素发挥其抗多发性骨髓瘤效应可能与下调SRC-3的表达有关。
PartⅠ
     Gambogic acid induces G0/G1 arrest and apoptosisinvolving inhibition of SRC-3 and inactivation of Aktpathway in K562 leukemia cells
     Objective:To investigate the anticancer effects and the molecular mechanisms ofGambogic acid(GA) on K562 cells and to provide more theories for clinical application.
     Methods:The effects of Gambogic acid on the growth ofK562 cells were studied by MTTassay.Annexin V/PI double-labeled cytometry and transmission electron microscopy wereused to detect cell apoptosis.A propidium iodide method was used to study cell cycledistribution.Quantitative real-time PCR was employed to assess the expression levels ofsteroid receptor coactivator-3 (SRC-3) and apoptosis related gene Bcl-2.Western blottingwas employed to assess the expression levels of SRC-3,Akt,pAkt,S6K1,pS6K1,GSK-3β,pGSK-3βand Bcl-2.
     Results:(1) GA was able to inhibit cell proliferation in K562 cells in a time- and dose-dependent manner,with 24h IC_(50) value of 1.9±0.1μmol/L.(2) Gambogic acid inducedapoptosis of K562 cells in a dose-dependent manner,which was accompanied by typicalapoptotic morphological changes.(3) GA induced cell-cycle arrest in G0/G1 phase in K562cells.(4) GA treatment downregulated the expression of SRC-3 and inhibited the activity ofAkt kinase and its downstream targets p70 S6 kinase 1 (S6K1) and glycogen synthasekinase 3β(GSK-3β) without changes in total protein levels of these three proteins in K562cells,accompanied by decreased expression of the apoptosis related gene Bcl-2.
     Conclusion:GA might exhibit its strong antitumor effects via the interruption of SRC-3.
     PartⅡ
     Deguelin induces apoptosis involving inhibition of SRC-3 andNF-κB pathway in Jurkat cells
     Objective:To investigate the anticancer effects and the molecular mechanisms of deguelin onJurkat cells and to provide more theories for clinical application.
     Methods:The effects of deguelin on the growth of Jurkat cells were studied by MTT assay.Terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay andtransmission electron microscopy were used to detect cell apoptosis.A propidium iodidemethod was used to study cell cycle distribution.RT-PCR and western blotting were employedto assess the expression levels of steroid receptor coactivator-3 (SRC-3),nuclear factor-κB(NF-κB) and some apoptosis related genes,including Bcl-2 and Bcl-xL.
     Results:(1) Deguelin was able to inhibit cell proliferation in Jurkat cells in a time- anddose-dependent manner,with 24h IC_(50) value of 43.73±0.35 nmol/L and 48h IC_(50) value of28.96±0.29 nmol/L.(2) Deguelin induced apoptosis in Jurkat cells in a dose-dependentmanner in vitro.After treatment with 40nmol/l deguelin for 24h,apoptotic bodies containingnuclear fragments and the chromatin condensed were found by Transmission electronmicroscopy.Jurkat cells treated with 40nmol/l deguelin for 24h also showed positive TUNELstaining.The percentage of TUNEL positive cells was 12.8±0.85%,compared with only 1.1±0.09% TUNEL positive cells in the untreated samples (P<0.01).(3) Deguelin induced cell-cycle arrest in G0/G1 phase in Jurkat cells.(4) Deguelin could downregulate theexpression of SRC-3 and its downstream transcription factor NF-κB,which thus influencedthe expression of apoptosis related genes Bcl-2 and Bcl-xL.
     Conclusion:Deguelin presents potent effects on growth-arrest and apoptosis-induction inJurkat cells in vitro via the interruption of SRC-3.
     PartⅢ
     Effects of deguelin on the regulation of SRC-3 in MM cells in vitro
     Objective:To investigate the anticancer effects and the molecular mechanisms of deguelin onRPMI-8226 cells.
     Methods:The effects of deguelin on the growth of RPMI-8226 cells were studied by MTTassay.Hoechst 33258 staining and Annexin-V FITC/PI double-labeled cytometry wereused to detect cell apoptosis.Transwell invasion assay was used to assess the role ofdeguelin on RPMI-8226 cell invasion.RT-PCR was employed to assess the mRNAexpression levels of SRC-3 and NF-κB,whereas,SRC-3 and NF-κB protein expression andlocalization were determined by using immunohistochemistry method.GelatinZymography was used to detect the gelatinolytic activity of secreted MMP-2 and -9.
     Results:(1) Deguelin presented striking proliferation inhibition potency on RPMI-8226cells in vitro,with 24h IC50 value of 54.55±0.40nmol/L.(2) Deguelin induced apoptosis inRPMI-8226 cells in a dose-dependent manner in vitro,which was accompanied by typicalapoptotic morphological changes.(3) Deguelin could inhibit RPMI-8226 cell invasion.(4)Deguelin could downregulate the expression of SRC-3 and its downstream transcriptionfactor NF-κB,which thus influenced the gelatinolytic activity of secreted MMP-2 and -9.
     Conclusion:Deguelin exhibit its strong antitumor effects via the interruption of SRC-3.
引文
1.Udeani GO,Gerhauser C,Thomas CF,et al.Cancer chemopreventive activity mediated by deguelin,a naturally occurring rotenoid.Cancer Research,1997,57: 3424-3428.
    2.Autherhoff H,Frauendorf H,Liesenklas W,et al.Chemistry of gamboge.I.The chief constituent of gamboge resin .Archiv der Pharmazie,1962,295: 833-846.
    3.Ollis WD,Ramsay MVJ,Sutherland IO,et al.Constitution of gambogic acid.Tetrahedron 1965,21:1453-1470.
    4.Peng XH,Karna P,O'Regan RM,et al.Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells.Mol Pharmacol,2007,71:101-111.
    5.Weber AL,Rahemtullah A,Ferry JA.Hodgkin and non-Hodgkin lymphoma of the head and neck: clinical,pathologic,and imaging evaluation.Neuroimaging Clin N Am,2003,13:371-392.
    6.Nair AS,Shishodia S,Ahn KS,et al.Deguelin,an Akt inhibitor,suppresses IkappaBalpha kinase activation leading to suppression of NF-kappaB-regulated gene expression,potentiation of apoptosis,and inhibition of cellular invasion.J Immunol,2006,177: 5612-5622.
    7.Murillo G,Salti GI,Kosmeder JW,et al.Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest.Eur J Cancer,2002,38:2446-2454.
    8.Wu ZQ,Guo QL,You QD,et al.Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells.Biol Pharm Bull,2004,27: 1769-1774.
    9.Pandey MK,Sung B,Ahn KS,et al.Gambogic acid,a novel ligand for transferrin receptor,potentiates TNF-induced apoptosis through modulation of the nuclear factor-kB signaling pathway.Blood,2007,110: 3517-3525.
    10.Zhao Q,Yang Y,Yu J,et al.Posttranscriptional regulation of the telomerase hTERT by gambogic acid in human gastric carcinoma 823 cells.Cancer Letters,2008,262:223-231.
    11.郭青龙,赵丽,吴照球等.藤黄酸对实验性动物造血功能及免疫功能的影响.中国天然药物,2003,1:229-232.
    12.Liu HL,Chen Y,Cui GH,et al.Experimental study on regulating expressions of cyclin D1,pRb and anticancer effects of deguelin on human Burkitt's lymphoma Daudi cells in vitro.Acta pharmacol sinica,2005,26: 873-880.
    13.Liu HL,Chen Y,Cui GH,et al.Deguelin regulates nuclear pore complex proteins Nup98 and Nup88 in U937 cells in vitro.Acta pharmacol sinica,2005,26: 1265-1273.
    14.Chen WH,Chen Y,Cui GH,et al.Deguelin inhibits expression of I-κBα protein in Raji and U937 cells.Acta pharmacol sinica,2006,27: 485-490.
    15.Shu WX,Chen Y,Wu Q,et al.Deguelin represses both the expression of nucleophosmin and some nucleoporins: Nup88 and 214 in Jurkat cells.Biol pharm.Bull,2008,31:27-32.
    16.Wang Y,Chen Y,Chen Z,et al.Gambogic Acid induces death inducer-obliterator 1-mediated apoptosis in Jurkat T cells.Acta pharmacol sinica,2008,29: 349-354.
    17.Shu WX,Chen Y,Li R,et al.Involvement of regulations of nucleophosmin and nucleoporins in gambogic acid-induced apoptosis in Jurkat cells.Basic Clin Pharmacol Toxicol,2008,103:530-537.
    18.舒文秀,陈燕、何静.藤黄酸调节急性白血病细胞HL-60核孔蛋白Nup88的意义. 中华肿瘤杂志,2008,30: 484-489.
    19.舒文秀,陈燕、何静等.藤黄酸对急性白血病细胞U937增殖和凋亡的影响及对核孔蛋白Nup88的调控作用.中草药,2008,1: 74-77.
    20.Yan J,Tsai SY,Tsai MJ.SRC-3/AIB1:transcriptional coactivator in oncogenesis.Acta pharmacol sinica,2006,27: 387-394.
    21.Anzick SL,Kononen J,Walker RL,et al.AIB1,a novel estrogen receptor co-activator amplified in breast and ovarian cancer.Science,1997,277: 965-968.
    22.Fereshteh MP,Tilli MT,Kim SE,et al.The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation,signaling,and mammary tumorigenesis in mice.Cancer Res,2008,15: 3697-3706.
    23.Ayala G,Yan J,Li R,et al.Bortezomib-mediated inhibition of steroid receptor coactivator-3 degradation leads to activated Akt.Clin Cancer Res,2008,14:7511-7518.
    24.Wu RC,Qin J,Hashimoto Y,et al.Regulation ofSRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1)coactivator activity by I kappa B kinase.Mol Cell Biol,2002,22: 3549-3561.
    25.Liao L,Kuang SQ,Yuan Y,et al.Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1.J Steroid Biochem Mol Biol,2002,83:3-14.
    26.Karmakar S,Foster EA,Smith CL.Unique roles of p160 coactivators for regulation of breast cancer cell proliferation and estrogen receptor-alpha transcriptional activity.Endocrinology,2009,150: 1588-1596.
    27.Carroll RS,Brown M,Zhang J,et al.Expression of a subset of steroid receptor cofactors is associated with progesterone receptor expression in meningiomas.Clin Cancer Res,2000,6: 3570-3575.
    28.Henke RT,Haddad BR,Kim SE,et al.Overexpression of the Nuclear Receptor Coactivator AIB1 (SRC-3) during Progression of Pancreatic Adenocarcinoma.Clin Cancer Res, 2004, 10: 6134-6142.
    29. Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer, 2000,89: 217-223.
    30. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer, 2002, 95: 2346-2352.
    31. Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem, 1998, 273:5948-5954.
    32. Colo GP, Rosato RR, Grant S, et al. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Letters, 2007, 581:5075-5081.
    33. Esteyries S, Perot C, Adelaide J, et al. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia, 2008, 22: 663-665.
    34. Torres-Arzayus MI, De Mora JF, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell,2004, 6: 263-274.
    1.Autherhoff H,Frauendorf H,Liesenklas W,et al.Chemistry of gamboge.I.The chief constituent of gamboge resin.Archiv der Pharmazie,1962,295: 833-846.
    2.Ollis WD,Ramsay MVJ,Sutherland IO,et al.Constitution of gambogic acid.Tetrahedron,1965,21:1453-1470.
    3.Zhou HJ,Yan J,Luo W,et al.SRC-3 Is Required for Prostate Cancer Cell Proliferation and Survival.Cancer Res,2005,65: 7976-7983.
    4.Guo QL,Lin SS,You QD,et al.Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells.Life Sciences,2006,78: 1238-1245.
    5.Li Z,Guo QL,You QD,et al.Gambogic acid induces apoptosis and regulates expressions of Bax and Bel-2 protein in human gastric carcinoma MGC-803 cells.Biol Pharm Bull,2004,27: 998-1003.
    6.Wu ZQ,Guo QL,You QD,et al.Gambogic acid inhibits proliferation of human lung carcinoma SPC-Al cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells.Biol Pharm Bull,2004, 27,1769-1774.
    7.Wang Y,Chen Y,Chen Z,et al.Gambogic acid induces death inducer-obliterator 1-mediated apoptosis in Jurkat T cells.Acta Pharm Sin,2008,29: 349-354.
    8.郭青龙,赵丽,吴照球等.藤黄酸对实验性动物造血.功能及免疫功能的影响.中国天然药物,2003,1: 229-232.
    9.Zhao S,Konopleva M,Cabreira-Hansen M,et al.Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias.Leukemia,2004,18: 267-275.
    10.Pandey MK,Sung B,Ahn KS,et al.Gambogic acid,a novel ligand for transferrin receptor,potentiates TNF-induced apoptosis through modulation of the nuclear factor-kB signaling pathway.Blood,2007,110: 3517-3525.
    11.Zhao Q,Yang Y,Yu J,et al.Posttranscriptional regulation of the telomerase hTERT by gambogic acid in human gastric carcinoma 823 cells.Cancer Lett,2008,262:223-231.
    12.Colo GP,Rubio MF,Nojek IM,et al.The p160 nuclear receptor co-activator RAC3 exerts an anti-apoptotic role through a cytoplasmatic action.Oncogene,2008,27:2430-2444.
    13.Planas-Silva MD,Shang Y,Donaher JL,et al.AIB1 enhances estrogen-dependent induction of cyclin D1 expression.Cancer Res,2001,61:3858-3862.
    14.Louie MC,Zou JX,Rabinovich A,Chen HW.ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance.Mol Cell Biol,2004,24: 5157-5171.
    15.Yan J,Erdem H,Li R,et al.Steroid receptor coactivator-3/AIB1 promotes cell migrationandinvasivenessthroughfocaladhesionturnoverandmatrix metalloproteinase expression.Cancer Res,2008,68: 5460-5468.
    16.Ghadimi BM,Schrock E,Walker RL,et al.Specific chromosomal aberrations and amplification of the AIB 1 nuclear receptor coactivator gene in pancreatic carcinomas. Am J Pathol, 1999, 154: 525-536.
    17. Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer, 2000,89:217-223.
    18. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer, 2002, 95: 2346-2352.
    19. Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem, 1998, 273:5948-5954.
    20. Colo GP, Rosato RR, Grant S, et al. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Letters, 2007, 581:5075-5081.
    21. Esteyries S, Perot C, Adelaide J, et al. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia, 2008, 22: 663-665.
    22. Yan J, Tsai SY, Tsai MJ. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacologica Sinica, 2006, 27: 387-394.
    23. Cheng JQ, Lindsley CW, Cheng GZ, et al. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 2005, 24: 7482-7492.
    24. Grandage VL, Gale RE, Linch DC, et al. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NFkappaB Mapkinase and p53 pathways. Leukemia, 2005, 19: 586-594
    25. Xu Q, Simpson SE, Scialla TJ, et al. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood, 2003, 102: 972-980.
    26. Wang Z, Smith KS, Murphy M, et al. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature, 2008, 455: 1205-1209.
    27. Parmar S, Smith J, Sassano A, et al. Differential regulation of the p70 S6 kinase pathway by interferon alpha (IFNalpha) and imatinib mesylate (STI571) in chronic myelogenous leukemia cells. Blood, 2005, 106: 2436-2443.
    28. von Manteuffel SR, Dennis PB, Pullen N, et al. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol, 1997, 17:5426-5436.
    29. Franke TF, Hornik CP, Segev L, et al. PI3-K/Akt and apoptosis: sizematter. Oncogene, 2003, 22: 8983-8998.
    30. Torres-Arzayus MI, Font de Mora J, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell,2004, 6: 263-274.
    31. Yan J, Yu CT, Ozen M, et al. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res, 2006, 66: 11039-11046
    32. Zhou G, Hashimoto Y, Kwak I, et al. Role of the Steroid Receptor Coactivator SRC-3 in Cell Growth. Mol Cell Biol, 2003, 23: 7742-7755.
    1.Udeani GO,Gerhauser C,Thomas CF,et al.Cancer chemopreventive activity mediated by deguelin,a naturally occurring rotenoid.Cancer Research,1997,57: 3424-3428.
    2.Lee HY,Oh SH,Woo JK,et al.Chemopreventive effects of deguelin,a novel Akt inhibitor,on tobacco-induced lung tumorigenesis.J Natl Cancer Inst,2005,97:1695-1699.
    3.Bortul R,Tazzari PL,Billi AM,et al.Deguelin,A PI3K/AKT inhibitor,enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway.Br J Haematol,2005,129: 677-686.
    4.Geeraerts B,Vanhoecke B,Vanden Berghe W,et al.Deguelin inhibits expression of IkappaB alpha protein and induces apoptosis of B-CLL cells in vitro.Leukemia,2007,21:1610-1618.
    5.Chen WH,Chen Y,Cui GH.Deguelin inhibits expression of IkappaBalpha protein in Raji and U937 cells.Acta Pharmacol Sin,2006,27: 485-490.
    6.Anzick SL,Kononen J,Walker RL,et al.AIB1,a steroid receptor coactivator amplified in breast and ovarian cancer.Science,1997,277: 965-968.
    7. Liao L, Kuang SQ, Yuan Y, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. J Steroid Biochem Mol Biol, 2002, 83:3-14.
    8. Suen CS, Berrodin TJ, Mastroeni R, et al. A transcriptional coactivator, steroid receptor coactivator-3, selectively augments steroid receptor transcriptional activity. J Biol Chem, 1998, 16:27645-27653.
    9. Han SJ, Demayo FJ, Xu J, et al. Steroid receptor coactivators SRC-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor.Mol Endocrinol, 2006, 20: 45-55.
    10. Ying H, Furuya F, Willingham MC, et al. Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone. Mol Cell Biol,2005, 25: 7687-7695.
    11. Werbajh S, Nojek I, Lanz R, et al. RAC-3 is a NF-kappa B coactivator. FEBS Lett, 2000,485: 195-199.
    12. Yan J, Yu CT, Ozen M, et al. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res, 2006, 66: 11039-11046.
    13. Louie MC, Zou JX, Rabinovich A, et al. ACTR./AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol,2004,24:5157-5171.
    14. Weber AL, Rahemtullah A, Ferry JA. Hodgkin and non-Hodgkin lymphoma of the head and neck: clinical, pathologic, and imaging evaluation. Neuroimaging Clin N Am,2003, 13:371-392.
    15. Gills JJ, Kosmeder J 2nd, Moon RC, et al. Effect of deguelin on UVB-induced skin carcinogenesis. J Chemother, 2005, 17: 297-301.
    16. Jin Q, Feng L, Behrens C, et al. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res, 2007, 67: 11630-11639.
    17. Liu HL, Chen Y, Cui GH, et al. Regulating expressions of cyclin D1, pRb, and anti-cancer effects of deguelin on human Burkitt's lymphoma Daudi cells in vitro. Acta Pharmacol sin, 2005, 26: 873-880.
    18. Oh A, List HJ, Reiter R, et al. The nuclear receptor coactivator AIBl mediates insulin-like growth factor I-induced phenotypic changes in human breast cancer cells.Cancer Res, 2004, 64: 8299-8308.
    19. Wu RC, Qin J, Hashimoto Y, et al, O'Malley BW. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappa B kinase. MolCell Biol, 2002, 22: 3549-3561.
    20. Yan J, Erdem H, Li R, et al. Steroid Receptor Coactivator-3/AIB1 Promotes Cell Migration and Invasiveness through Focal Adhesion Turnover and Matrix Metalloproteinase Expression. Cancer Res, 2008, 68: 5460-5468.
    21. Ghadimi BM, Schrock E, Walker RL, et al. Specific chromosomal aberrations and amplification of the AIBl nuclear receptor coactivator gene in pancreatic carcinomas.Am J Pathol, 1999, 154: 525-536.
    22. Henke RT, Haddad BR, Kim SE, et al. Overexpression of the Nuclear Receptor Coactivator AIBl (SRC-3) during Progression of Pancreatic Adenocarcinoma. Clin Cancer Res, 2004, 10: 6134-6142.
    23. Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIBl nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer, 2000,89:217-223.
    24. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIBl amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer, 2002, 95: 2346-2352.
    25. Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem, 1998, 273: 5948-5954.
    26. Colo GP, Rosato RR, Grant S, et al. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Letters, 2007, 581:5075-5081.
    27. Esteyries S, Perot C, Adelaide J, et al. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia, 2008, 22: 663-665.
    28. Torres-Arzayus MI, De Mora JF, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIBl as an oncogene. Cancer Cell,2004, 6: 263-274.
    29. Kuang SQ, Liao L, Zhang H, et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res, 2004, 64: 1875-1885.
    30. Aggarwal BB, Nuclear factor-kappaB: the enemy within. Cancer Cell, 2004, 6: 203-208.
    31. Gzeten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and rumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004, 118: 285-296.
    32. Pikarsky E, Porat RM, Stein I, et al, NF-kappaB functions as a tumour promoter in inflammationassociated cancer. Nature, 2004, 431: 461-466.
    33. Suh J, Rabson AB. NF-kB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem, 2004, 91:100-117.
    34. Ghosh S, Karin M. Missing pieces in the NF-kB puzzle. Cell, 2002, 109: S81-96.
    35. Ismail HA, Lessard L, Mes-Masson AM. Expression of NF-kB in prostate cancer lymph node metastases. Prostate, 2004, 58: 308-313.
    1.Zhou G,Hashimoto Y,Kwak I,et al.Role of the steroid receptor coactivator SRC-3 in cell growth.Mol Cell Biol,2003,23:7742-7755.
    2.Udeani GO,Gerhauser C,Thomas CF,et al.Cancer chemopreventive activity mediated by deguelin,a naturally occurring rotenoid.Cancer Research,1997,57: 3424-3428.
    3. Woo JK, Choi DS, Tran HT, et al. Liposomal encapsulation of deguelin: evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis. Cancer Prev Res (Phila Pa), 2009, 2: 361-369.
    4. Lee JH, Lee DH, Lee HS, et al. Deguelin inhibits human hepatocellular carcinoma by antiangiogenesis and apoptosis. Oncol Rep, 2008, 20: 129-134.
    5. Murillo G, Salti GI, Kosmeder JW, et al. Deguelin inhibits the growth of colon cancer cells through the induction of apoptosis and cell cycle arrest. Eur J Cancer, 2002, 38:2446-2454.
    6. Liu HL, Chen Y, Cui GH, et al. Experimental Study on Regulating Expressions of Cyclin Dl, pRb and Anticancer Effects of Deguelin on Human Burkitt's Lymphoma Daudi cells in vitro. Acta Pharmacol Sin, 26: 873-880.
    7. Shu W, Chen Y, Wu Q, et al. Deguelin represses both the expression of nucleophosmin and some nucleoporins: Nup88 and Nup214 in Jurkat cells. Biol Pharm Bull, 2008, 31:27-32.
    8. Lee HY. Molecular mechanisms of deguelin-induced apoptosis in transformed human bronchial epithelial cells. Biochem Pharmacol, 2004, 68: 1119-1124.
    9. Gills JJ, Kosmeder J, Moon RC, et al. Effect of deguelin on UVB-induced skin carcinogenesis. J Chemother, 2005, 17: 297-301.
    10. Jin Q, Feng L, Behrens C, et al. Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. CancerRes, 2007, 67: 11630-11639.
    11. Lee HY, Oh SH, Woo JK, et al. Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst, 2005, 97: 1695-1669.
    12. Chen WH, Chen Y, Cui GH. Deguelin inhibits expression of IkappaBalpha protein in Raji and U937 cells. Acta Pharmacol Sin, 2006, 27: 485-490.
    13. Oh A, List HJ, Reiter R, et al. The nuclear receptor coactivator AIBl mediates insulin-like growth factor Ⅰ-induced phenotypic changes in human breast cancer cells.Cancer Res, 2004, 64: 8299-8308.
    14. Wu RC, Qin J, Hashimoto Y, et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappa B kinase. Mol Cell Biol, 2002, 22:3549-3561.
    15. Yan J, Tsai SY, Tsai MJ. SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacologica Sinica, 2006, 27: 387-394.
    16. Henke RT, Haddad BR, Kim SE, et al. Overexpression of the Nuclear Receptor Coactivator AIBl (SRC-3) during Progression of Pancreatic Adenocarcinoma. Clin Cancer Res, 2004, 10: 6134-6142.
    17. Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer, 2000,89:217-223.
    18. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIBl amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer, 2002, 95: 2346-2352.
    19. Colo GP, Rosato RR, Grant S, et al. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Letters, 2007, 581:5075-5081.
    20. Torres-Arzayus MI, De Mora JF, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIBl as an oncogene. Cancer Cell,2004, 6: 263-274.
    21. Kuang SQ, Liao L, Zhang H, et al. AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res, 2004, 64: 1875-1885.
    22. Martin R, Schmid JA, Hofer-Warbinek R. The NF-kB /Rel family of transcription factors in oncogenic transformation and apoptosis. Mutat Res, 1999, 437: 231-243.
    23. Sun CY, Hu Y, Liu XY, et al. Resveratrol downregulates the constitutional activation of nuclear factor-kB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis. Cancer Genetics and Cytogenetics, 2006, 165: 9-19.
    24. Aggarwal BB. Nuclear factor-κB: the enemy within. Cancer Cell, 2004, 6: 203-208.
    25. Werbajh S, Nojek I, Lanz R, et al. RAC-3 is a NF-kappa B coactivator. FEBS Lett,2000,485: 195-199.
    1. Anzick SL, Kononen J, Walker RL, et al. AIB1, a novel estrogen receptor co-activator amplified in breast and ovarian cancer. Science, 1997,277: 965-968.
    2. Xu J, Qingtian L. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol, 2003, 17: 1681-1692.
    3. McKenna NJ, O'Malley BW. Minireview: nuclear receptor coactivators-an update. Endocrinology, 2002, 143: 2461-2465.
    4. Liao L, Kuang SQ, Yuan Y, et al. Molecular structure and biological function of the cancer-amplified nuclear receptor coactivator SRC-3/AIB1. J Steroid Biochem Mol Bio1, 2002, 83:3-14.
    5. Zhou HJ, Yan J, Luo W, et al. SRC-3/AIB1 is required for prostate cancer cell proliferation and survival. Cancer Res, 2005, 65: 7976-7983.
    6. Yan J, Yu CT, Ozen M, et al. Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res, 2006, 66: 11039-11046.
    7. Wu RC, Qin J, Hashimoto Y, et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappa B kinase. Mol Cell Biol, 2002, 22: 3549-3561.
    8. Werbajh S, Nojek I, Lanz R, et al. RAC-3 is a NF-kappa B coactivator. FEBS Lett, 2000,485: 195-199.
    9. Arimura A, van Peer M, Schroder AJ, et al. The transcriptional co-activator p/CIP (NCoA-3) is up-regulated by STAT6 and serves as a positive regulator of transcriptional activation by STAT6. J Biol Chem, 2004, 279: 31105-31112.
    10. Louie MC, Zou JX, Rabinovich A, Chen HW. ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol, 2004, 24: 5157-5171.
    11. McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell, 2002, 108: 465-474.
    12. Xu J, Qiu Y, DeMayo FJ, et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science, 1998, 279: 1922-1925.
    13. Gehin, M., M. Mark, C. Dennefeld, A. Dierich, H. Gronemeyer, and P. Chambon. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol, 2002, 22: 5923-5937.
    14. Spencer TE, Jenster G, Burcin MM, et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature, 1997, 389: 194-198.
    15. Koh SS, Chen D, Lee YH, et al. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem, 2001, 276: 1089-1098.
    16. Fereshteh MP, Tilli MT, Kim SE, et al. The nuclear receptor coactivator amplified in breast cancer-1 is required for Neu (ErbB2/HER2) activation, signaling, and mammary tumorigenesis in mice. Cancer Res, 2008, 68: 3697-3706.
    17. Gnanapragasam VJ, Leung HY, Pulimood AS, et al. Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. Br J Cancer, 2001, 85: 1928-1936.
    18. Henke RT, Haddad BR, Kim SE, et al. Overexpression of the nuclear receptor coactivator AIB1 (SRC-3) during progression of pancreatic adenocarcinoma. Clin Cancer Res, 2004, 10: 6134-6142.
    19. Sakakura C, Hagiwara A, Yasuoka R, et al. Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int J Cancer, 2000,89:217-223.
    20. Xie D, Sham JS, Zeng WF, et al. Correlation of AIB1 overexpression with advanced clinical stage of human colorectal carcinoma. Hum Pathol, 2005, 36: 777-783.
    21. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer, 2002, 95: 2346-2352.
    22. Li H, Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem, 1998, 273:5948-5954.
    23. Colo GP, Rosato RR, Grant S, et al. RAC3 down-regulation sensitizes human chronic myeloid leukemia cells to TRAIL-induced apoptosis. FEBS Letters, 2007, 581:5075-5081.
    24. Esteyries S, Perot C, Adelaide J, et al. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia, 2008, 22: 663-665.
    25. Torres-Arzayus MI, De Mora JF, Yuan J, et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIBl as an oncogene. Cancer Cell,2004, 6: 263-274.
    26. Xu J, Liao L, Ning G, et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIBl/ACTR/TRAM-l) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA,2000, 97: 6379-6384.
    27. Wang Z, Rose DW, Hermanson O, et al. Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci USA, 2000, 97: 13549-13554.
    28. List HJ, Lauritsen KJ, Reiter R, et al. Ribozyme targeting demonstrates that the nuclear receptor coactivator AIBl is a rate-limiting factor for estrogen-dependent growth of human MCF-7 breast cancer cells. J Biol Chem, 2001, 276: 23763-23768.
    29. Shao W, Keeton EK, McDonnell DP, et al. Coactivator AIBl links estrogen receptor transcriptional activity and stability. Proc Natl Acad Sci US A, 2004, 101: 11599-11604.
    30. Louie MC, Revenko AS, Zou JX, et al. Direct control of cell cycle gene expression by proto-oncogene product ACTR, and its autoregulation underlies its transforming activity. Mol Cell Biol, 2006, 26: 3810-3823.
    31. Reiter R, Oh AS, Wellstein A, et al. Impact of the nuclear receptor coactivator AIBl isoform AIB1-Delta3 on estrogenic ligands with different intrinsic activity. Oncogene, 2004,23:403-409.
    32. Harbour, JW, Dean DC. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev, 2000, 14: 2393-2409.
    33. Hunt KK, Keyomarsi K. Cyclin E as a prognostic and predictive marker in breast cancer. Semin Cancer Biol, 2005, 15: 319-326.
    34. Han S, Park K, Bae BN, et al. E2F1 expression is related with the poor survival of lymph node-positive breast cancer patients treated with fluorouracil, doxorubicin and cyclophosphamide. Breast Cancer Res Treat, 2003, 82: 11-16.
    35. Grandage VL, Gale RE, Linch DC, et al. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NFkappaB Mapkinase and p53 pathways. Leukemia, 2005, 19: 586-594.
    36. Cheng JQ, Lindsley CW, Chen, GZ, et al. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 2005, 24: 7482-7492.
    37. Zhao S, Konoplev, M, Cabreira-Hansen M, et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias.Leukemia, 2004, 18: 267-275.
    38. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med, 2005, 9: 59-71.
    39. Crackower MA, Oudit GY, Kozieradzki Ⅰ, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell, 2002, 110: 737-749.
    40. Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol,2001,3: 1014-1019.
    41. Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol. Cell. Biol, 2002, 22: 2799-2809.
    42. Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBPl/eIF4E. Genes Dev, 2002, 16: 1472-1487.
    43. Kwon CH, Zhu X, Zhang J, et al. Pten regulates neuronal somasize: a mouse model of Lhermitte-Duclos disease. Nat. Genet, 2001, 29: 404-411.
    44. Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol, 2002, 4: 648-657.
    45. Zhou G, Hashimoto Y, Kwak Ⅰ, et al. Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol, 2003, 23: 7742-7755.
    46. Aggarwal BB, Nuclear factor-kappaB: the enemy within. Cancer Cell, 2004, 6:203-208.
    47. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004, 118: 285-296.
    48. Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammationassociated cancer. Nature, 2004, 431: 461-466
    49. Gao Z, Chiao P, Zhang X, et al. Coactivators and corepressors of NF-kappaB in IkappaB alpha gene promoter. J Biol Chem, 2005, 280: 21091-21098.
    50. Kagan BL, Henke RT, Cabal-Manzano R, et al. Complex regulation of the fibroblast growth factor-binding protein in MDA-MB-468 breast cancer cells by CCAAT/enhancer-binding protein beta. Cancer Res, 2003, 63: 1696-1705.
    51. Tilli MT, Reiter R, Oh AS, et al. Overexpression of an N-terminally truncated isoform of the nuclear receptor coactivator amplified in breast cancer 1 leads to altered proliferation of mammary epithelial cells in transgenic mice. Mol Endocrinol, 2005, 19:644-656.
    52. Font de Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol, 2000, 20: 5041-5047.
    53. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance:increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst, 2004, 96: 926-935.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700