吲哚类方酸菁染料、半菁染料的合成与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菁染料具有摩尔消光系数大、易于合成和纯化、适当的荧光量子产率等优点,已经被广泛应用于许多领域,如:太阳能电池、pH探针、离子探针等。由于菁染料能与很多生物分子,如蛋白、核酸相互作用,并引起光谱的移动、强度的变化,因而这类染料在生物领域应用极为广泛。本文主要针对吲哚类菁染料进行合成与相关性能的研究。
     基于方酸菁染料光稳定性不好、水溶性差等缺点,设计并合成了三个含有酰胺基团的方酸菁染料。相关实验结果表明,酰胺基团的引入,可以明显改善染料的光稳定性、降低染料在水中的聚集,提高染料在水中的摩尔消光系数和荧光量子产率。并且与牛血清白蛋白(BSA)的作用发现,含有两个酰胺基团的对称方酸菁染料Ⅱb(2,4-二(1-(N,N-二乙氨基羰甲基))-3,3-二甲基吲哚-2-甲烯基)-3-氧-1-环丁烯-1-醇)的荧光强度和BSA浓度之间有很好的线性关系,可在0.2-3μmol-1范围内对BSA进行定量检测。
     选择光稳定性好的苯乙烯类菁染料作为研究对象,合成了六个由不同连接基团连接的两种波长范围的双半菁染料。使染料在水中的自身荧光降低,提高染料与生物分子作用的灵敏度。测试结果发现,染料Ⅲc(1,1’-(1,6-己二基)-双(2-(4-二甲胺基苯乙烯基)-3,3-二甲基吲哚))对脱氧核糖核酸(DNA)响应很好,作用后荧光最大增强可达90倍,比相应的单染料增强倍数大15倍,而且可对0.02-30μmol-1的DNA进行定量检测。而染料Ⅲh(1,1’-(对二苄基)-双(2-(4-二甲胺基苯丁烯基)-3,3-二甲基吲哚))则对BSA响应较好,最大增强可达19倍,是相应单染料增强倍数的13倍,可对0.02-8.5μmol-1的BSA定量检测。而且有四个双染料可以进入活细胞,为这类染料在细胞器可视化方面的应用研究建立基础。
     设计合成了一系列具有固态荧光的苯乙烯类菁染料,通过单晶衍射发现,这类染料在固态分子间不存在π-π堆积作用,是这类染料具有固态荧光的主要原因。而且染料的阴离子由于可与染料主体的不同位置的H原子具有氢键作用,在晶体形成方面起重要作用。
     合成了六个pH敏感的苯乙烯类菁染料,溶液中的pH滴定结果显示,它们的光谱随pH的改变变化明显,并伴有波长的移动。其中四个染料的pKa适于活细胞酸性细胞器成像,细胞通透性实验显示这些染料都具有很好的细胞膜通透性。其中,染料Vd(1,3,3-三甲基-2-(4-羟基苯乙烯基)-5-硝基吲哚)具有双发射性质,可以双色细胞成像
Cyanine dyes possess many good characteristics such as high extinction coefficient, simple routs of syntheses and steps of purification, proper fluorescence quantum yield, etc. These make them be used as organic solar cells, pH probes and ion sensors, and so on. Cyanine dyes can also be applied in biological yields since they can associate with many bio-molecules such as protein or nucleic acid with changes of spectra in wavelength and intensity. In this thesis, cyanine dyes based on 2,3,3,-trimethyl-3H-indolium are synthesized and their corresponding properties are studied.
     Three squarylium dyes have been designed and synthesized for improving their limited photo-stability and low water-solubility. The results show the introduction of carbamoylmethyl group can improve photostability of the dyes, decrease the aggregates and increase molar extinction coefficient and fluorescence quantum yield in water. The results of the dyes association with BSA present a better linear relationship between the fluorescence intensity of the dyeⅡb and BSA concentration can be obtained, which indicate the dye can detect BSA quantitatively in the range of 0.02-3μmol/L.
     Six bis-hemicyanine dyes with different linking groups based on styrene cyanine dyes have been synthesized in order to decrease the self-fluorescence of the dye in water and increase the sensitivity in association with biomolecules. The results show the fluorescence intensity of dye IIIc enhance 90 times after association with DNA, and the number is 15 times of that of corresponding mono-cyanine dyeⅢa. On the other hand, after interaction with BSA, the fluorescence intensity of the dyeⅢh increase about 19 times, which is 13 times of corresponding mono-cyanine dyeⅢe. Moreover, four bis(hemicyanine) dyes are membrane-permeable in live cells, which indicate they have potential to visualize the organelle in live cells.
     A series of styrene cyanine dyes with solid-state emission have been developed. The X-ray diffraction data show there are no obvious n-πstacking interaction between adjacent dye molecules, which lead to their intensive emission in solid-state. The anion of the dye plays an important role in the formation of the crystals because it can form H-bond with atom H in different position of the dye.
     Five pH probes based on styrene cyanine dyes have been synthesized. Their properties as pH probe are tested in water-ethanol mixed solvents. The results show their spectra change obviously with the shift of the wavelength when the pH of the solution is changed. The data indicate the pKa of four probes is fit to sense the acid organelle in live cells. The four probes are membrane-permeable in live cells and can be used to fluorescence image in live cells. Moreover, probe Vd behave dual-emission and can dual-color fluorescence image in live cells.
引文
[1]宋峰玲,近红外硫、氮取代七甲川菁类荧光染料的合成及光谱性能研究:博士学位文[D].大连:大连理工大学,2005年
    [2]Sergio T, Saif A H, Brian O, et.al. Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells [J]. Journal of Materials Chemistry 2007,17:3037-3044
    [3]Wu W J, Hu J L, Tian H. Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells [J]. Photochemical & Photobiological Sciences 2008,7:63-68
    [4]Lee H, Berezin M Y, Guo K, et.al. Near-infrared fluorescent pH-sensitive probes via unexpected barbituric acid mediated synthesis [J]. Organic Letter 2009,11 (1):19-32
    [5]Tang B, Yu F, Li P, et.al. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes:imaging in living HepG2 and HL-7702 cells [J]. Journal of the American Chemical Society 2009,131:3016-3023.
    [6]Hilderbrand S A and Weissleder R. Optimized pH-responsive cyanine fluorochromes for detection of acidic Environments [J]. Chemical Communications 2007,2747-2749
    [7]Easwaran A, Parayali C, Ayyappanpillai A. A controlled supramolecular approach toward cation-specific chemosensors:alkaline earth metal ion-driven exciton signaling in squaraine tethered podands [J]. Journal of the American Chemical Society 2004,126:6590-6598
    [8]Cooper M. Cy3B:improving the performance of cyanine dyes. Journal of Fluorescence 2004,14 (2):145-50.
    [9]Kovalska VB. An investigation of tricarbocyanines'Stains-all'and'isostains-all'as fluorescent nucleic acid probes [J]. Journal of Fluorescence 2002,12(2):209-12.
    [10]Patonay G, Salon J, Strekowski L. Noncovalent labeling of biomolecules with red and near-infrared dyes [J]. Molecules 2004,9:40-49.
    [11]Nair V. and Cooper CS, Chemistry of 1,5-diazapentadienium (vinamidinium) salts:alkylation reactions to multifunctional dienamines and dienaminones [J]. Journal of Organic Chemistry 1981,46: 4759-4765.
    [12]Mishra A., Behera R. K., Behera P. K., et.al. Cyanines during the 1990s:A Review [J]. Chemical Reviews 2000,100:1973-2011.
    [13]Tatikolov AS, Costa SM, Photophysics and photochemistry of hydrophilic cyanine dyes in normal and reverse micelles [J]. Photochemical & Photobiological Sciences 2002,1(3):211-218.
    [14]Tatikolov AS, Costa SM. Complexation of polymethine dyes with human serum albumin:a spectroscopic study [J]. Biophysical Chemistry 2004,107(1):33-49.
    [15]曾万学,陈萍,郑德水.多甲川链菁染料光氧化机理研究[J].感光科学与光化学1995,13(2):136-143
    [16]杨松杰,田禾.菁染料光稳定性研究进展[J].感光科学与光化学1999,17(3):275-283
    [17]李军,陈萍,赵江,郑德水.近红外吸收菁染料分子链结构对其光氧化稳定性能的影响[J].感光科学与光化学1997,15(5):343-349
    [18]Kim SH, Hwang SH, Kim NK, et.al. Aggregation and photofading behaviour of unsymmetrical squarylium dyes containing a quinolylidene moiety [J]. Journal of Society of Dyers and Colourists 2000,116:126-131.
    [19]Song B, Zhang Q, Ma WH, et.al. The synthesis and photostability of novel squarylium indocyanine dyes [J]. Dyes and Pigments 2009,82:396-400.
    [20]Toutchkine A, Nguyen D V, Hahn K M. Merocyanine dyes with improved photostability [J]. Organic Letter 2007,9(15):2775-2777
    [21]陈秀英,新型功能性2,3,3-三甲基-3H吲哚菁染料的合成、光稳定性能与应用研究:博士学位论文[D].大连:大连理工大学,2005年
    [22]Yao H, Domoto K, Isohashi T, et.al. In situ detection of birefringent mesoscopic H and J aggregates of thiacarbocyanine dye in solution [J]. Langmuir 2005,21(3):1067-1073.
    [23]Kim JS, Kodagahally R, Strekowski L, et.al. A study of intramolecular H-complexes of novel bis(heptamethine cyanine) dyes [J]. Talanta 2005,67(5):947-954.
    [24]Patonay G, Kim J S, Kodagahally R, et.al. Spectroscopic study of a novel bis(heptamethine cyanine) dye and its interaction with human serum albumin [J]. Applied Spectroscopy 2005,59 (5):682-90.
    [25]Kashida H, Asanuma H, Komiyama M. Alternating hetero H aggregation of different dyes by interstrand stacking from two DNA-dye conjugates [J]. Angewandte Chemie International Edition, English 2004,43 (47):6522-5.
    [26]Foster M P, McElroy C A, Amero C D. Solution NMR of large molecules and assemblies [J]. Biochemistry 2007,46 (2):331-40.
    [27]Rosano C, Zuccotti S, Bolognesi M. The three-dimensional structure of beta2 microglobulin:results from X-ray crystallography [J]. Biochimica et Biophysica Acta 2005,1753(1):85-91.
    [28]Carlomagno T. Ligand-target interactions:what can we learn from NMR? [J] Annual Review of Biophysics Biomolecule Structure 2005,34:245-66.
    [29]Sowell J, Mason J C, Strekowski L, et.al. Binding constant determination of drugs toward subdomain IIIA of human serum albumin by near-infrared dye-displacement capillary electrophoresis [J]. Electrophoresis 2001,22 (12):2512-2517.
    [30]Welder F, Paul B, Nakazumi H, et.al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis [J]. Journal of Chromatography B Analyst Technology Biomedical Life Science 2003,793 (1):93-105.
    [31]Fukushima T, Usui N, Santa T, et.al. Recent progress in derivatization methods for LC and CE analysis [J]. Journal of Pharmaceutical Biomedical Analysis 2003,30(6):1655-87.
    [32]Garman A. Non-radioactive labelling:a practical introduction. Academic Press:San Diego,1997.
    [33]Tatikolov AS, Costa SM. Complexation of polymethine dyes with human serum albumin:a spectroscopic study [J]. Biophysical Chemistry 2004,107 (1):33-49.
    [34]Colyer CL. Noncovalent labeling of proteins in capillary electrophoresis with laser-induced fluorescence detection [J]. Cell Biochemistry and Biophysics 2000,33:323-337.
    [35]Welder F, Paul B, Nakazumi H, et.al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis [J]. Journal of Chromatography B Analyst Technology Biomedical Life Science 2003,793 (1):93-105.
    [36]Narayanan, N. Cyanine dye compounds and labeling methods [P]. US6593148,2003.
    [37]Watson AD. Binding studies of near infrared cyanine dyes with human serum albumin and ploy-L-lysine using optical spectroscopy methods:doctoral dissertation, USA:Georgia State University,2007.
    [38]Meadows F, Narayanan N, Patonay G. Determination of protein-dye association by near infrared fluorescence-detected circular dichroism [J]. Talanta 2000,50:1149-1155.
    [39]Nakazumi H, Colyer C L, Kaihara K, et.al. Red luminescent squarylium dyes for noncovalent HSA labeling [J]. Chemistry Letter 2003,32:804-805.
    [40]Suzuki Y, Yokoyama K. A protein-responsive chromophore based on squaraine and its application to visual protein detection on a Gel for SDS-PAGE [J]. Angewandte Chemie International Edition 2007, 46:4097-4099
    [41]Jisha VS, Arun KT, Hariharan M, et.al. Site-selective binding and dual mode recognition of serum albumin by a squaraine dye [J]. Journal of the American Chemical Society 2006,128:6024-6025
    [42]Tatikolov AS, Panova IG. A spectroscopic study on the interaction of polymethine dyes with collagens [J]. High Energy Chemistry 2005,39 (4):232-236.
    [43]Panova I G, Sharova N P, Dmitrieva S B, et.al. Use of a cyanine dye as a probe for albumin and collagen in the extracellular matrix [J]. Analytical Biochemistry 2007,361 (2):183-189.
    [44]McCorquodale E M, Colyer CL. Indocyanine green as a noncovalent, pseudofluorogenic label for protein determination by capillary electrophoresis [J]. Electrophoresis 2001,22:2403-2408.
    [45]Sowell J, Kimberly A, Agnew-Heard, J. et.al. Use of non-covalent labeling in illustrating ligand binding to human serum albumin via affinity capillary electrophoresis with near-infrared laser induced fluorescence detection [J]. Journal of Chromatography B 2001,755:91-99
    [46]Bebvin A L. DNA templates supramolecular assemblies of cyanine dyes. Carnegie Mellon University, 2008
    [47]Hannah KC, Armitage BA. DNA-templated assembly of helical cyanine dye aggregates:a supramolecular chain polymerization [J]. Accounts of Chemical Research 2004,37:845-853
    [48]Marin VL. In Chemistry, Carnegie Mellon University:Pittsburgh,2005,323.
    [49]Lerman, LS. The structure of DNA-acridine complex [J]. Poceedings of the National Acagemy of Sciences 1963,49:94-102
    [50]Armitage BA. Cyanine dye-DNA interaction:Inercalation,Groove binding and Aggregation; Springer: The Netherlands,2005,253.
    [51]Hilal H, Taylor JA. Cyanine dyes for the detection of double stranded DNA [J]. Journal of Biochemical and Biophysical Methods 2008,70:1104-1108
    [52]Benson SC, Mathie RA, Glazer AN, et al. Heterodimeric DNA-binding dyes designed for energy transfer:stability and applications of the DNA complexes [J]. Nucleic Acids Research 1993,21: 5720-5726.
    [53]Wang M, Silva GL, Armitage BA. DNA-templated formation of a helical cyanine dye J-aggregate [J]. Journal of the American Chemical Society [J].2000,122:9977-9986
    [54]Frstenberg A, Deligeorgiev TG, Gadjev NI, et.al. Structure-fluorescence contrast Relationship in cyanine DNA intercalators:toward rational dye design [J]. Chemistry A European Journal 2007,13: 8600-8609
    [55]Zhu CQ, Zhuo SJ, Zheng H, et.al. Fluorescence enhancement method for the determination of nucleic acids using cationic cyanine as a fluorescence probe [J]. Analyst 2004,129:254-258
    [56]Eriksson M, Hrdelin M, Larsson A. et.al. Binding of intercalating and groove-binding cyanine dyes to bacteriophage T5 [J]. The Journal of Physical Chemistry. B 2007,111:1139-1148
    [57]于法标,用于细胞内具有重要生物学意义的活性小分子物种的高选择性识别的新型荧光探针的合成研究及其在生物体系中的应用.硕士学位论文[D].山东:山东师范大学,2009.
    [58]Galindo F, Burguete MI, Vigara L, et.al. Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells [J]. Angewandte Chemie International Edition.2005,44:6504-6508
    [59]Yao S, Katherine J, Belfield KD. A new water-soluble near-neutral ratiometric fluorescent pH indicator [J]. Organic Letter 2007,9 (26):5645-5648
    [60]www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html
    [61]Hilderbrand SA, Kelly KA, Niedre M, et.al.. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging [J].Bioconjugate Chemistry 2008,19:1635-1639
    [62]Adie EJ, Kalinka S, Smith L, et.al. A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells [J]. Biotechnology Techniques 2002,33: 1152-1156.
    [63]Cooper ME, Gregory S, Adie E, et.al. pH-sensitive cyanine dyes for biological applications [J]. Journal of Fluorescence 2002,12:425.
    [64]Briggs M.S, Burns DD, Cooper ME, et.al. A pH sensitive fluorescent cyanine dye for biological applications [J]. Chemical Communications 2000,23:2323.
    [65]Zhang Z, Achilefu S. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range [J]. Chemical Communications 2005,5887
    [66]Diwu Z, Chen CS, Zhang C, et.al. A novel acidotropic pH indicator and its potential application in labeling acidic organelles of live cells [J]. Chemical Biology 1999,6 (7):411-418
    [67]Galindo F, Burguete MI, Vigara L, et.al. Synthetic macrocyclic peptidomimetics as iunable pH probes for the fluorescence imaging of acidic organelles in live cells [J]. Angewandte Chemie International Edition 2005,44:6504-6508
    [68]Yogo T, Urano Y, Mizushima A, et.al. Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer [J]. Poceedings of the National Acagemy of Sciences 2008,105:28.
    [69]Kim HM, An MJ, Hong JH. Two-Photon Fluorescent Probes for Acidic Vesicles in Live Cells and Tissue [J]. Angewandte Chemie International Edition 2008,47:2231-2234
    [70]Puyol M, Encinas C, Rivera L, et.al. Characterisation of new norcyanine dyes and their application as pH chromoionophores in optical sensors [J]. Dyes and Pigments 2007,73:383-389
    [71]Puyol M, Encinas C, Rivera L, et.al. Nortricarbocyanine dyes as suitable long wavelength pH indicators for chemical sensing [J]. Sensors and Actuators B 2007,122:53-59
    [72]Tang B, Liu X, Xu KH, et.al. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells [J]. Chemical Communications 2007,3726-3728
    [73]Tang B, Liu X, Liu Y, et.al. A highly sensitive acidic pH fluorescent probe and its application to HepG2 cells [J]. Analyst,2009,134:367-371
    [74]Strekowski L, Lipowska M, Gorecki T, et.al. Functionalization of Near-Infrared Cyanine Dyes [J]. Journal of Heterocyclic Chemistry 1996,33:1685-1688.
    [75]Guether R., Reddington M.V. Photostable cyanine dye P-cyclodextrin conjugates [J]. Tetrahedron Letters 1997,38 (35):6167-6170
    [76]Renikuntla BR, Rose HC, Eldo J, et.al. Armitage improved photostability and fluorescence properties through polyfluorination of a cyanine Dye [J]. Organic Letter 2004,6 (6):909-912
    [77]Reddington MV. New glycoconjugated cyanine dyes as fluorescent labeling reagents [J]. Journal of Chemistry Society, Perkin Translation 1 1998,143-147.
    [78]Zhang Z., Achilefu S. Synthesis and evaluation of polyhydroxylated near-infrared carbocyanine molecular probes [J]. Organic Letter.2004,6(12):2067-2070.
    [79]Deligeorgiev T, Vasilev A, Drexhage KH. Synthesis of novel cyanine dyes containing carbamoyl componente-Noncovalent labels for nucleic acids detection [J]. Dyes and Pigments 2007,74: 320-328.
    [80]Hyodo Y, Nakazumi H, Yagi. S. Synthesis and light absorption/emission properties of novel squarylium dimers bearing a ferrocene spacer [J]. Dyes and Pigments 2002,54:163-171.
    [81]Kim SH, Kim JH, Cui JZ, et al. Absorption spectra, aggregation and photofading behaviour of near-infrared absorbing squarylium dyes containing perimidine moiety [J]. Dyes and Pigments 2002, 55:1-7.
    [82]Nizomov N, Ismailov ZF, Nizamova SN, et.al. Spectral-luminescent study of interaction of squaraine dyes with biological substances [J]. Journal of Molecular Structure 2006,788:36-42.
    [83]Frangioni JV. In vivo near-infrared fluorescence imaging [J]. Current Opinion in Chemical Biology 2003,7:626-634.
    [84]Ock K, Jang G, Roh Y, et.al. Optical detection of Cu2+ ion using a SQ-dye containing polymeric thin-film on Au surface [J]. Microchemical Journal 2001,70:301-305.
    [85]Karstens T, Kobs K. Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements [J]. The Journal of Physical Chemistry 1980,84:1871-1872.
    [86]Velapoldil RA, Tonnesenl HH. Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region [J]. Journal of Fluorescence 2004,14(4): 465-472.
    [87]Laird T, Williams H. Phstolysis and rearrangement reactions of a-bromophenacyl oniurn salts [J]. Journal of the Chemical Society C:Organic 1971,3467-3471.
    [88]Roberts RM, Edwards MB. Acetoacetic ester-type cleavage by aniline [J]. Journal of the American Chemical Society 1950,72:5537-9.
    [89]Tatikolov AS, Costa SMB. Photophysical and aggregation properties of a long-chain squarylium indocyanine dye [J]. Journal of Photochemistry and Photobiology A:Chemistry 2001,140:147-156
    [90]Chibisov AK, Zakharova GV, Gorner H. Photoprocesses of thiamono-methinecyanine monomers and dimmers [J]. Physical Chemistry Chemical Physics.2001,3:44-49.
    [91]Sabate R, Gallardo M, Maza A, Estelrich J. A spectroscopy study of the interaction of pinacyanol with n-dodecyltrimethylammonium bromide micelles [J]. Langmuir 2001,17:6433-6437.
    [92]Sabate R, Estelrich J. Determination of micellar microenvironment of pinacyanol by visible spectroscopy [J]. Journal of Physical Chemistry B 2003,107:4137-4142.
    [93]Sabate R, Estelrich J. Determination of the dimerization constant of pinacyanol:role of the thermochromic effect [J]. Spectrochimica Acta Part A 2008,70:471-476.
    [94]Kanony C, Akerman B, Tuite E. Photobleaching of asymmetric cyanines used for fluorescence imaging of single DNA molecules [J]. Journal of the American Chemical Society 2001,123: 7985-7995.
    [95]Chen P, Li J, Qian ZG. et.al. Study on the photooxidation of a near-infrared-absorbing benzothiazolone cyanine dye [J]. Dyes and Pigments 1998,37 (3):213-222.
    [96]Kanofsky, JR, Sima, PD. Structural and environmental requirements for quenching of singlet oxygen by cyanine dyes [J]. Photochemistry and Photobiology 2000,71:361-368.
    [97]Suzuki Y, Yokoyama K. Design and synthesis of intramolecular charge transfer-based fluorescent reagents for the highly-sensitive detection of proteins [J]. Journal of the American Chemical Society 2005,127:17799-17802.
    [98]Colston 1 J, Horobin RW, Rashid-Doubell F, et.al. Why fluorescent probes for endoplasmic reticulum are selective:an experimental and QSAR-modelling study [J]. Biotechnic & Histochemistry 2003, 78(6):323-332
    [99]LuschtinetzF, Dosche C, Kumke MU. Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes [J]. Bioconjugate Chemistry 2009,20:576-582.
    [100]詹文海,菁染料有机功能材料的合成与性能研究:博士论文[D].上海:华东理工大学,2006.
    [101]Ooyama Y, Kagawa Y, Harima Y. Synthesis and solid-state fluorescence properties of structural isomers of novel benzofuro[2,3-c]oxazolocarbazole-type fluorescent dyes [J]. European Journal of Organic Chemistry 2007,3613-3621
    [102]Ozdemir T, Atilgan S, Kutuk I, et.al. Solid-state emissive BODIPY dyes with bulky substituents as spacers [J]. Organic Letter 2009,11(10):2105-2107
    [103]Ooyama Y, Mamura T, Yoshida K. Synthesis, X-ray crystal structures and solid-state fluorescence properties of 3-dibutylamino-6-alkoxy-6-phenylnaphtho [2,3-b] benzofuran-11(6H)-one derivatives [J]. European Journal of Organic Chemistry 2007,5010-5019
    [104]Zhou Ying, Xiao Yi, Chi Shaoming, et. al. Isomeric boron-fluorine complexes with donor-acceptor architecture:strong solid/liquid fluorescence and large stokes shift [J]. Organic Letter 2008,10(4):633-636
    [105]Zhao Zujin, Wang Zhiming, Lu Ping, et.al. Structural modulation of solid-state emission of 2,5-Bis(trialkylsilylethynyl)-3,4-diphenylsiloles [J]. Angewandte Chemie International Edition.2009, 48 (41):7608-7611
    [106]Shimizu M, Takeda Y, Higashi M, et.al. 1,4-Bis(alkenyl)-2,5-dipiperidinoben-zenes:minimal fluorophores exhibiting highly efficient emission in the solid state [J]. Angewandte Chemie International Edition 2009,48 (20):3653-3656
    [107]Mancois F, Rodriguez V, Pozzo J-L, et.al. Theoretical design of molecular photo-and acido-triggered non-linear optical switches [J]. Chemical Physics Letters 2006,427:153-158
    [108]Zhang XH, Wang LY, Zhai GH, et.al. X-ray and DFT studies of the structure and spectral property of 2-[2-(4-dimethylaminophenyl)ethenyl]-1-methyl-pyridinium iodide [J]. Journal of Molecular Structure 2008,881:117-122
    [109]Murphy S, Yang X, Schuster GB. Cyanine borate salts that form penetrated ion pairs in benzene solution:synthesis, properties and structure [J]. Journal of Organic Chemistry 1995,60:2411-2422
    [110]Zhu GY, Yang FL, Balachandran R, et.al. Synthesis and biological evaluation of purealin and analogues as cytoplasmic dynein heavy chain inhibitors [J]. Journal of Medicinal Chemistry 2006,49: 2063-2076
    [111]Reda M. Shishtawy E, Almeida P. A new Vilsmeier-type reaction for one-pot synthesis of pH sensitive fluorescent cyanine dyes [J]. Tetrahedron 2006,62:7793-7798
    [112]Sun KM, McLaughlin CK, Lantero DR et.al. Biomarkers for phenol carcinogen exposure act as pH-sensing fluorescent probes [J]. Journal of the American Chemistry Society.2007; 129:1894-1895
    [113]Briggs MS, Burns DD, Cooper ME et.al. A pH sensitive fluorescent cyanine dye for biological applications [J]. Chemical Communication 2000,2323-2324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700