神经保护肽重组慢病毒对实验性痴呆大鼠治疗作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究验证经鼻—脑通路给予神经保护肽(NAP)对实验性痴呆大鼠的神经保护作用,为老年性痴呆治疗提供新的途径;进而应用蛋白质组学技术研究NAP对实验性痴呆大鼠海马蛋白质表达的影响,筛选出NAP对实验性痴呆大鼠具有神经保护作用的差异蛋白,为阐明NAP对实验性痴呆大鼠治疗作用的机制提供理论依据。本研究主要经鼻-脑通路给予神经保护肽(NAP)验证对实验性痴呆大鼠的神经保护作用。将凝聚态的Aβ1-40联合应用转移生长因子β1(TGFβ1)注入实验大鼠左侧海马区制备实验性痴呆动物模型:通过Morris水迷宫定位航行实验检测大鼠记忆能力;通过HE染色观察各组大鼠海马区的形态学改变;通过原位杂交的方法检测实验各组大鼠海马区NF-κBmRNA,caspase3mRNA表达的变化。应用蛋白组学方法筛选出NAP对实验性痴呆大鼠具有神经保护作用的差异蛋白。本研究得到如下结果:痴呆组大鼠的记忆能力明显下降,rLent/NT4-NAP组大鼠较痴呆组大鼠记忆能力明显改善;HE染色发现痴呆组大鼠左侧海马区神经细胞明显变性、坏死,而rLent/NT4-NAP组细胞损伤情况较痴呆组大鼠明显减轻;检测痴呆组大鼠左侧海马区神经细胞胞浆内NF-kBmRNA, caspase3mRNA强阳性表达,而rLent/NT4-NAP组左侧海马区神经细胞胞浆内NF-kBmRNA, caspase3mRNA表达较痴呆组显著减少。通过质谱鉴定和数据库检索,鉴定出有5种蛋白质表达水平发生变化。分别为膜联蛋白A5、谷氨酸、蛋白激酶C、白细胞粘附分子、基底细胞粘附分子。本研究证明了NAP对实验性痴呆大鼠具有神经保护作用。首次应用蛋白质组学的方法研究了NAP对实验性痴呆大鼠脑内蛋白质表达的影响,发现膜联蛋白A5、谷氨酸、蛋白激酶C三种蛋白均参与了神经退行性疾病神经元细胞的凋亡,为研究NAP治疗老年性痴呆的作用机制提供了理论依据。
Alzheimer disease (AD) is a retrogression nervous system disease. Up to now,its pathogenesy and etiology is undetermined.there is not effective treat method. Gene therapy was made use of retrogression nervous system disease.It is a technology method that purpose gene import demic cell.It bring into full play biological effect. Nearly year,we construction lentivirus viral vector of fusion gene and NT4-NAP.To reseach about neuron protective effect and mechanism of Lentivirus neuroprotective peptid to experiment dementia rat and to reseach difference protein of senile dementia disease model rat hippocamp after curing of Lentivirus neuroprotective peptid and to screen relative proteinum by proteomics technology.
     Probation neuroprotective effect of Lentivirus neuroprotective peptid to experiment dementia rat by nose- sermion iter.In this expriment we make some rats as the senile dementia animal model whose left hippocamp being injeced aggregated Aβ1-40 and transfer growth factorβ1 (TGFβ1). The result shows that by contrast of normal group, the memory of rats in dementia group decrease obviously, degenerations and necrosis existing in a lot of neurons, the strong masculine of NF-kBmRNA, casepse3mRNA.. In this experiment the rats in NAP group show better memory and learning in water maze, decreased necrosis in neurons, weak masculine of NF-kBmRNA, casepse3mRNA. These results tell us that NAP has neuroprotective function.Beta-amyloid protein injection into hippocampus in brain lissue were applied to make experimental rat model of Alzheimer disease. Lentivirus neuroprotective peptid was given by the way of dropping nose. the change of ethology and express NF-kBmRNA, casepse3mRNA. of hippocampal neurons in Alzheimer disease rats after therapeutic lentivirus neuroprotective peptid by the water maze and hybridization in situ tecknique.
     To reseach difference protein of Alzheimer disease model rat hippocamp after curing of Lentivirus neuroprotective peptid and to screen relative proteinum of neuron protective effect by proteomics technology between control group, senile dementia group and Lentivirus neuroprotective peptid group.result:Lentivirus neuroprotective peptid group on the ability of learning and memory in Alzheimer disease rats and the expressing NF-kBmRNA, casepasemRNA of hippocampal neurons were significant higher than those group. There were 5 proteinum in Alzheimer disease model rat hippocamp: glutamate carboxy peptidase, mast cell protease, activated leukocyte cell adhesion molecule, basal cell adhesion molecule and annexin A5.
     Conclusion In this experiment, Proving the neuron protective effect of Lentivirus neuroprotective peptid to experiment dementia rat and reseached 5 proteins between the rLent/NT4-NAP group rat hippocamp after curing of Lentivirus neuroprotective peptid and control group, Alzheimer disease group rat. It is the foundation of the mechanism action on curing the senile dementia disease.
引文
[1] Ballard, C. G. Advances in the treatment of Alzheimer’s disease :Benefits of dual cholinesterase inhibition. Eur Neurol 2002,47:64-70.
    [2]时新艳,孙小林,李富慧.西比灵治疗老年期痴呆疗效观察[J].河南实用神经疾病杂志, 2000,3(5):63-64.
    [3]白玉海,濮志堂.老年性痴呆临床综合治疗疗效观察[J].中华现代临床医学杂志, 2004,2(6):424-425.
    [4]刘佳,董文心.阿尔茨海默病创药物的研究[J].中国医药工业杂志, 2007,38(7):528-532.
    [5]李娜,王利民.人参皂苷Rg.对阿尔茨海默病模型大鼠学习记忆的影响[J].滨州医学院学报, 2007,30(5):325-329.
    [6] Vardy ERLC, Catto AJ, Hoope NM. Proteolytic mechanisms in AmyLoid-βmetabolism: therapeutic implications for Alzheimer’s disease[J]. TrendsMolMed, 2005,11:464-472.
    [7]岩井晃彦. Alzheimer病治疗药的开发方向[J].日本医学介绍, 2007,28(11): 510-513.
    [8] Ro B ner S. New players in old amyloid precursor protein processingpathways[J]. Int J Dev Neurosci, 2004,22:467-474.
    [9] Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor pro-tein metabolism is regulated toward alphasecretase pathway by Ginkgo biloba extracts[J]. Neurobiol Dis, 2004,16(2):454-460.
    [10] Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloidβ-peptide in the brain and cognitive decline [J]. JAMA, 2000,28(3): 1571-1577.
    [11] Tsai JY, Wolfe MS, Xia W. The search for gamma-secretase and development of inhibitors[J]. CurrMed Chem, 2002,9:1087-1106.
    [12] Figueiredo-Pereira ME, Efthimiopoulos S, Tezapsidis N. Distinct secretases, a cysteine psotease and a serine protease ,generate the C termini of amyloid beta-proteins Abeta1-40 and Abeta1-42, respectively[J]. J Neurochem, 1999,72(4):1417-1422.
    [13] Grimwood S, Hogg J, Jay MT, et al. Determination of guinea-pig cor-ticalγ-secretase activity ex vivo following the systemic administration of aγ-secretase inhibitor[J].Neuropharmacology, 2005,48:1002-1011.
    [14] McLaurin J, Cecal R, Kierstead ME, et al. Therapeutically effective antibodies against amyloid-βpeptide target amyloid-βresidues 4-10 and inhibit cytotoxicity and fibrillogenesis[J]. NatMed, 2002,8:1263-1269.
    [15] Xie ZC, Tanzi RE1Alzheimer’s disease and post-operative cognitive dysfunction[J]. Exp Gerontol, 2006,41:346-359.
    [16] Higuchi M, Iwata N, Saido TC. Understanding molecular mechanisms of p roteolysis in Alzheimer’s disease: progress toward thera-peutic interventions[J]. Biochim Biophys Acta, 2005,1751:60-67.
    [17] McGeer PL, Kawamata T, Walker DG. Disteibution of clusterin in Alzheimer’s brain tissue[J]. Brain Res, 1992:579-337.
    [18] Launer L. Nonsteroidal anti-inflammatory drug use and the risk for Alzheimeris[J]. Neuron, 2001,30(3):665-676.
    [19] Cherny RA, Legg J T, McLean CA, Fairlie DP, Huang X, AtwoodCS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion[J]. J Biol Chem. 1999 Aug 13;274(33): 232-238.
    [20] Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zine chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzher’s disease transgenic mice[J]. Neuron, 2001,30(3):665-676.
    [21]赵琳,魏敏杰,金万宝,等.维生素E在阿尔茨海默病防治中的研究进展[J].国外医学·老年医学分期, 2005,26(9):202-205.
    [22]沈玉先,魏伟,张瑰红,等.褪黑素对痴呆大鼠胆碱能功能的修复[J].中国药理学通报, 2002,18:281.
    [23]谢桂琴,孙秀兰,田苏平,等.褪黑素抑制实验性老化大鼠海马注射Aβ1240毒性作用[J].中国神经科学杂志, 2003,19:167.
    [24] Oguchi Y.Past, p resent, and future in Leber’s hereditary optic neuropathy[J]. Nippon Ganka Gakkai Zasshi, 2001,105:809-827.
    [25] Geromel V, Darin N, Chrétien D, et al. Coenzyme Q10 and idebenone in the therapy of respiratory chain diseases: rationale and comparative benefits[J]. Molecular Geneticsand Metabolism, 2002,77:212-301.
    [26]韩红伟,李渡华,张德英.中医药治疗老年性痴呆的研究进展[J].浙江中医杂志, 2004,39(11):498-499.
    [27]芮菁.中药治疗老年痴呆的概况[J].天津药学, 2003,16(1):57-58.
    [28] Ribourtout E, Desfaits AC, Salazkin I. Exvivo gene therapy with adenovirus- mediated transforming growth factor beta1 expression for endovascular treatment of aneurysm: results in a canine bilateral aneurysm model [J]. J Vasc Surg. 2003 Sep; 38(3):576-83.
    [29]刘德培,主编.医学分子生物学.人民卫生出版社, 2004年:219-20.
    [30] Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors [J]. Nat Protoc. 2006; 1(3):1412-28.
    [31] AnDS, Xie Y, Mao SH. Efficient lentiviral vectors for short hairpin RNA delivery into human cells [J]. Hum Gene Ther. 2003,14(12):1207-1212.
    [1] Katzman R. Ep idemiology of Alzheimer′s disease[J]. Neurobiol Aging, 2000,21(Supp l):S1.
    [2] Wasinger VC, Smith H I, Williams KL, et al. Progress with gene p roduct mapping of the molicutes: mycop lasma genitalium [J]. Electrophoresis, 1995,16:1090-4.
    [3] Pandey A, MannM. Proteomics to study genes and genomes[J]. Nature, 2000, 405:837-46.
    [4] Slonczewski JL. Proteomics is getting easier in some ways[J]. Nature, 2000,403:478.
    [5] Bhasin VK. Proteomics could be key in battle against malaria [J]. Na-ture, 2000,403: 698.
    [6] Service RF. Proteomics up start tries to outrun the competition [J]. Sci-ence, 2001,294:2079-80.
    [7] Choi J, Malakowsky CA, Talent JM, et al. Identification of oxidized p lasmap roteins in Alzheimer′s disease[J]. Biochem Biophys Res Commun, 2002,293(5):1566-70.
    [8] Wiederkehr F. Analysis of cerebrosp ina. fluid p roteins by electrophoresis[J]. Chromatogram, 1991,569(122):281-296.
    [9] Hoogland C, Sanchez JC, Tonella L, et al. The 1999 SW ISS-2DPAGE da-tabase update[J]. Nucleic Acids Res, 2000,28(1):286.
    [10] Andreasen N, Minthon L, Clarberg A, et al. Sensitivity, specificity, andstability of CSF-tau in AD in a community-based patient samp le [J]. Neurology, 1999,22:1488-1494.
    [11] Davidsson P, Westman-Brinkmalm A, Nilsson CL, et al. Proteome analy-sis of cerebrosp inal fluid p roteins in Alzheimer patients[J]. Neurore-port, 2002,13(5):611-615.
    [12] Galasko D, Chang R, Clark CM, et al. High cerebrosp inal fluid tau and low amyloid beta-42 levels in the clinical diagnosis ofAlzheimer disease and relation to apolipop rotein E genotype[J]. Arch Neurol, 1998,55(7):937-45.
    [13] Davidsson P, PuchadesM, Blennow K, et al. Identification of synap ticvesicle, p re2and2past synap tic p roteins in human cerebrosp inal fluid u-sing liquid-phaseisoelectric focusing[J]. Electrophoresis, 1999,20(3):431-7.
    [14] Choe LH, Dutt MJ, Relkin N, et al. Studies of potential cerebrosp inal fluid molecular markers for Alzheimer′s disease[J]. Electrophoresis, 2002,23(14):2247.
    [15] PuchadesM, Hansson SF,Nilsson CL, et al. Proteomic studies of poten-tial cerebrosp inal fluid p rotein markers for Alzheimer′s disease [J]. Brain ResMol Brain Res, 2003,118(122):140.
    [16] Abbott A. Brain p rotein p roject enlists mice in′dry run[J]. Nature, 2003,425:110.
    [17] Langen H, Berndt P, Roder D, et al. Two-dimensional map of human brain p roteins[J]. Electrophoresis, 1999,20(425):907-16.
    [18] Edgar PF, Schouberge SJ, Dean B, et al. A comparative p roteome analy-sis of hippocampal tissue from schizophrenic and Alzheimer′s disease in-dividuals[J]. Mol Psychiatry, 1999,4(2):173-8.
    [19] Pasinetti GM, Ho L. From cDNA microarrays to high-throughput p ro-Teomics. Imp lications in the search for p reventive initiatives to slow the-clinical p rogression of Alzheimer′s disease dementia [J]. Restor Neurol Neurosci, 2001,18(2-3):137.
    [20] Schonberger SJ, Edgar PF, Kydd R, et al. Proteomics analysis of the brain in Alzheimer′s disease: molecular phenotype and genetic variation[J]. Proteomics, 2001,1: 1519-28.
    [21] Tsugita A, Kawakami T, Uchida T, et al. Proteome analysis of mouse brain: two-dimensional electrophoresis p rofiles of tissue p roteins during the course of aging [J]. Electrophoresis, 2000,21:1853-71.
    [22] Tilleman K, Vanden Haute C, Geerts H, et al. Proteomics analysis of theneurod- egeneration in the brain of tau transgenic mice[J]. Proteomics, 2002,2:656-65.
    [23] Tilleman K, Stevens I, Sp ittaels K, et al. Differential exp ression of brain p roteins in glycogen synthase kinase-3 transgenic mice: a p roteomics point of view [J]. Proteomics, 2002,2:94-104.
    [24] Vercauteren FG, Clemens S, Roy L, et al. Early dysregulation of hipp-ocampal p roteins in transgenic ratswith Alzheimer′s disease-linked mu-tations in amyloid p recursor pisoelectric focusing[J]. Electrophoresis, 1999,20(3):431-7.
    [14] Choe LH, Dutt MJ, Relkin N, et al. Studies of potential cerebrosp inal fluid molecular markers for Alzheimer′s disease[J]. Electrophoresis, 2002,23(14):2247.
    [15] PuchadesM, Hansson SF,Nilsson CL, et al. Proteomic studies of poten-tial cerebrosp inal fluid p rotein markers for Alzheimer′s disease [J]. Brain ResMol Brain Res, 2003,118(122):140.
    [16] Abbott A. Brain p rotein p roject enlists mice in′dry run[J]. Nature, 2003,425:110.
    [17] Langen H, Berndt P, Roder D, et al. Two-dimensional map of human brain p roteins[J]. Electrophoresis, 1999,20(425):907-16.
    [18] Edgar PF, Schouberge SJ, Dean B, et al. A comparative p roteome analy-sis of hippocampal tissue from schizophrenic and Alzheimer′s disease in-dividuals[J]. Mol Psychiatry, 1999,4(2):173-8.
    [19] Pasinetti GM, Ho L. From cDNA microarrays to high-throughput p ro-Teomics. Imp lications in the search for p reventive initiatives to slow the-clinical p rogression of Alzheimer′s disease dementia [J]. Restor Neurol Neurosci, 2001,18(2-3):137.
    [20] Schonberger SJ, Edgar PF, Kydd R, et al. Proteomics analysis of the brain in Alzheimer′s disease: molecular phenotype and genetic variation[J]. Proteomics, 2001,1: 1519-28.
    [21] Tsugita A, Kawakami T, Uchida T, et al. Proteome analysis of mouse brain: two-dimensional electrophoresis p rofiles of tissue p roteins during the course of aging [J]. Electrophoresis, 2000,21:1853-71.
    [22] Tilleman K, Vanden Haute C, Geerts H, et al. Proteomics analysis of theneurod- egeneration in the brain of tau transgenic mice[J]. Proteomics, 2002,2:656-65.
    [23] Tilleman K, Stevens I, Sp ittaels K, et al. Differential exp ression of brain p roteins in glycogen synthase kinase-3 transgenic mice: a p roteomics point of view [J]. Proteomics, 2002,2:94-104.
    [24] Vercauteren FG, Clemens S, Roy L, et al. Early dysregulation of hipp-ocampal p roteins in transgenic ratswith Alzheimer′s disease-linked mu-tations in amyloid p recursor pLett, 1998,252(1):33-6.
    [36] Kanninen K, Goldsteins G, Auriola S, et al. Glycosylation changes in Alzheimer′s disease as revealed by a p roteomic app roach [J]. Neurosci Lett, 2004,367(2):235-40.
    [37] Hensley K, Floyd RA, Zheng NY, et al. p38 kinase is activated in theAlzheimer′s disease brain [J]. Neurochemistry, 1999,72(5):2053-8.
    [38] Jung E, Heller M, Sanchez JC, et al. Proteomics meets cell biology: the establishment of subcellular p roteomes [J]. Electrophoresis, 2000,21:3369-77.
    [39] Kim SH, Vlkolinsky R, Cairns N, et al. Decreased levels of comp lexⅢcore protein 1 and comp lexⅤbeta chain in brains from patients with Alzheimer′s diseases and Down syndrome[J]. CellMol Life Sci, 2000,57:1810-6.
    [40] LovellMA, Xiong S, Markesbery WR, et al. Quantitative p roteomic anal-ysis of mitochondria from p rimary neuron cultures treated with amyloid beta pep tide[J]. Neurochem Res, 2005,30(1):113-22.
    [41]周波,杨伟,纪建国,等.人脑枕叶区蛋白质组:衰老过程蛋白质的差异表达[J].高等学校化学学报, 2003,24(12):2202-7.
    [42]陆伟,周盛年,陈瑞冬,等.电聚焦双向电泳法分析Alzheimer′s病脑皮质蛋白[J].山东医科大学学报, 2001,39(2):136-40.
    [43]王鲁宁,杨国锋,何思志,等.人小脑与额叶的比较蛋白质组学分析[J].中华内科杂志, 2005,44(4):254-7.
    [44]杨国锋,王鲁宁,赵馨.老年和成年APP转基因小鼠脑蛋白质组22DE图谱比较[J].脑与神经疾病杂志, 2003,11(6):345-8.
    [45]杨国锋,王鲁宁,赵馨,等.海马注射淀粉样蛋白β大鼠与正常大鼠脑蛋白质组双向电泳图谱比较[J].第一军医大学学报, 2004,24(5):553-5.
    [46]刘卫刚,冯亚青,刘蓉辉,等.阿尔茨海默病患者空腹血糖和真胰岛素与载脂蛋白E基因型的分析.中华老年心脑血管病杂志, 2007,9:298-300.
    [47]陈主初,肖志强.疾病蛋白质组学.北京:化学工业出版社, 2006:1-106.
    [48] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progresswit h gene product mappingof t he molicutes: Mycoplasmagenitalium. Elect rophoresis, 1995,16:1090-1094.
    [49]钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社, 2003:12-95.
    [50] Kim SI, Voshol H, van Oost rum J, et al. Neuroproteomics: ex-pression profiling of t he brain’s proteomes in healt h and dis-ease. Neurochem Res, 2004,29:1317-1331.
    [51] Schonberger SJ, Edgar PF, Kydd R, et al. Proteomic analysis of t he brain in Alzheimer’s disease: Molecular phenotype of acomplex disease process. Proteomics, 2001, 1:1519-1528.
    [52] Langen H, Berndt P, Roder D, et al. Two-dimensional map of human brain proteins. Elect rophoresis, 1999,20:907-916.
    [53] Yoo BC, Kim SH, Cairns N, et al. Deranged expression of mo-lecular chaperones in brains of patient s wit h Alzheimer’s dis-ease. Biochem Biophys Res Commun, 2001,280: 249-258.
    [54] Aksenov MY, Aksenova MV, Butterfield DA, et al. Protein oxidation in t he brain in Alzheimer’s disease. Neuroscience, 2001,103:373-383.
    [55] Pamplona R, Dalfo E, Ayala V, et al. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxida-tion. Effect s of Alzheimer disease and identification of lipoxi-dation target s. J Biol Chem, 2005,280:21522-21530.
    [56] Korolainen MA, Goldsteins G, Nyman TA, et al. Oxidativemodification of proteins in t he f rontal cortex of Alzheimer’sdisease brain. Neurobiol Aging, 2006,27:42-53.
    [57] Woltjer RL, Cimino PJ, Boutte AM, et al. Proteomic determi-nation of widespread detergent-insolubility including Abeta but not tau early in t he pat hogenesis of Alzheimer’s disease. FASEB J, 2005,19:1923-1925.
    [58] Sultana R, Boyd-Kimball D, Poon HF, et al. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hip-pocampus and cerebellum: An approach to understand pat ho-logical and biochemical alterations in AD. Neurobiol Aging, 2006,27: 1564-1576.
    [59] Porchet R, Probst A, Bouras C, et al. Analysis of glial acidic fibrillary protein in t hehuman entorhinal cortex during aging and in Alzheimer’s disease. Proteomics, 2003,3: 1476-1485.
    [60] Korolainen MA, Auriola S, Nyman TA, et al. Proteomic anal-ysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiology of Disease, 2005,20: 858-870.
    [61] Wang Q, Woltjer RL, Cimino PJ, et al. Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J, 2005,19:869-871.
    [62] Cott rell BA, Galvan V, Banwait S, et al. A pilot proteomic study ofamyloid precursor interactors in Alzheimer’s dis-ease. Ann Neurol, 2005,58:277-289.
    [63] Sultana R, Boyd-Kimball D, Poon HF, et al. Oxidative modify-cation and down- regulation of Pin1 in Alzheimer’s disease hip-pocampus a redox proteomics analysis. Neurobiol Aging, 2006,27:918-925.
    [64] Ho L, Sharma N, Blackman L, et al. From poteomics to bio-marker discovery in Alzheimer’s disease. Brain Research Re-views, 2005,48:360-369.
    [1] Skausig, OB. [Drugtherepy of Alzheimerdisease]. Ugeskr Laeger, 2004,166:4497-4499; author reply 4498.
    [2] Tuszynski, MH, U, HS, Alksne, et al. Growth factor gene therapy for Alzheimer disease. Neurosurg Focus, 2002,13:5.
    [3] Stromberg, I, Wetmore, CJ, Ebendal, T, et al. Rescue of basal forebrain cholinergic neurons after implantation of genetically modified cells producing recombinant NGF. J Neurosci Res, 1990,25:405-411.
    [4] Brodski, C, Schnurch, H and Dechant. G.Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc Natl Acad Sci USA, 2000,97:9683-9688.
    [5] Nonner, D, Barrett, EF, Kaplan, P, et al. Bone morphogenetic proteins (BMP6 and BMP7) enhance the protective effect of neurotrophins on cultured septal cholinergic neurons during hypoglycemia. J Neurochem, 2001,77:691-699.
    [6] Aloe, L. Rita Levi-Montalcini and the discovery of nerve growth factor .past and present studies. Arch Ital Biol, 2003,141:65-83.
    [7] Calissano, P, Levi, A, Alema, S, et al. Proceedings: Studies on the interaction of nerve growth factou with tubulin and actin. Hoppe Seylers Z Physiol Chem, 1975,356: 382-383.
    [8] Hamburger, V. The history of the discovery of the nerve growth factor. J Neurobiol, 1993,24:893-897.
    [9] LevimA and Alema, S. The mechanism of action of nerve growth factor. Annu Rev Pharmacol Toxicol, 1991,31:205-228.
    [10] Brodski, C, Schnurch, H and Dechant, G.Neurotrophin-3 promotes the cholinergic differentiation of sympathetic neurons. Proc Natl Acad Sci USA, 2000,97:9683-9688.
    [11] Connor, B, Young, D, Yan, Q, et al. Brain-derived neurophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res, 1997,49:71-81.
    [12] Laske, C, Stransky, E, Leyhe, T, et al. Decreased brain-derived neurotrophic factor(BDNF)- and beta-thromboglobulin (beta-TG) -blood levels in Alzheimer’s disease. Thromb Haemost, 2006,96:102-103.
    [13] Pezet, S, and Malcangio, M. Brain-derived neutrophic factou as a drug target for CNS disorder. Expert Opin Ther Targets, 2004,8:391-399.
    [14] Hamburger, V. The history of the discovery of the nerve growth factor. J Neurobiol, 1993,24:893-897.
    [15] Wirenfeldt M, Babcock AA, Ladeby R, et al. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury [J]. J Neutrosci Res, 2005,82:507-14.
    [16] Ducray A, Kipfer S, HuberAW, et al. Creatine and neurotrophin-4 /5 promote survival of nitric oxide synthase expressing interneurons in striatal cultures [J]. Neurosci Lett, 2006,395:57-62.
    [17] Omura T, Sano M, Omura K, et al. Different expressions of BDNF, NT3, and NT4 in muscle and nerve after various types of peripheral nerve injuries [J]. J PeripherNerv Syst, 2005,10:293-300.
    [18]徐巳奕,包映晖,江基尧.神经营养因子与血脑屏障的研究进展.中华神经医学杂志[J]. 2005,4(1):92-94.
    [19] Qin DX, Zou XL, Luo W, et al. Expression of some neurotrophins in the spinal motoneurons after cord hemisection in adult rats [J]. Neurosci Lett, 2006,410(3):222-7.
    [20] Seiger A, Nordberg A, von Holst H, et al. Intracranial infusion of purified nerve growth factor to an Alzheimer patient: the first attempt of a possible future treatment strategy [J]. Behav Brain Res, 1993,57:255-61.
    [21] Dejda A, Sokoowska P, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI [J]. Phamacological Report. 2005,57:307-20.
    [22] Brennema DE, Gozes I. A femtomolar-acting neuroprotective peptide [J]. Clinical Investigation, 1996,97:2299-307.
    [23]徐巳奕,包映晖,江基尧.神经营养因子与血脑屏障的研究进展.中华神经医学杂志[J]. 2005,4(1):92-94.
    [24] Zamostiano R, Pinhasov A, Gelber E, et al. Cloning and characterization of the human activity-dependent neuroprotective protein [J]. Biol. Chem. 2001,276;708-714.
    [25] Smith Swintosky VL, Gozes I, Brenneman DE. Activity dependent neurotrophic factor-9 and NAP promote neurite growth in rat hippocampal and cortical culutures. J Neurosci. 2000,19(9):161-170.
    [26] Beni-Adani L, Gozes I, Cohen Y, et al. A peptide derived from activity dependent neuroprotective protein ameliorates injury reponse in closed head injury in mice. J Pharmacal Exp Ther 2001,296(7):57-63.
    [27] Zemlyak I, Furman S, Brenneman DE, Gozes I. A novel peptide prevents death in enriched neuronal culutures.Regul pept. 2000,96(4):39-43.
    [28] Leker RR, Teichner A, Grigoriadis N, et al. NAP, a femtomolar acting peptide, protects the brain against ischemic injury by reducing apoptotic death. Stroke. 2002,33(6): 1085-1092.
    [29] Gozes I, Alcalay R, Giladi E, Pinhasov A, Furman S, Brenneman DE. NAP accelerates the performance of normal rats in the water maze. J Mol Neurosci. 2002,19(7): 161-170.
    [30] Roy N. Alcalay, Eliezer Giladi, Chaim G..Pick, Illana Gozes.Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety- like behavior in aging mice in the elevated plus maze. J Neuroscience. 2004,61(12):128-131.
    [31]赵彩红,王钦富.小鼠白然衰老模型的评价[J].中国行为医学科学, 2003,12(5): 588-589.
    [32] Miyamoto M. Characteristics of memory and behavioral disorders in SAMP8 mice.In; Takeda T (ed). The SAM modelof Senescence[M]. Amsterdam; Excerpta Medica ElsevierScience B V, 1994:61-46.
    [33] Lewia J. Nurfibrillary tanglee, amyotrophy and progressive motor disturbauce mice expressing mutant (P301L) tau protein [J]. Nature Genet, 2000,25(4):402-5.
    [34] Dodart JC, M eziane H, M ath is C, et al. Behavio ral disturbances intransgenic m ice overexp ressing the V 717F beta-2amylo id p recurso r protein [J]. Behav N euro sci, 1999,113(5);982-990.
    [35] Zamostiano R, Pinhasov A, Gelber E, et al. Cloning and characterization of the human activity-dependent neuroprotective protein [J]. Biol. Chem. 2001,276:708-714.
    [36] Brenneman DE, Hauser J, Neale E. Activity-Dependent Neurotrophic Factor: Structure-activity relationships of Femtomolar-acting peptides [J]. JPET, 1998,285: 619-27.
    [37] Blondel O, Collin C, William J. A glia-derived signal regulating neuronal differenti- Ation [J]. Neurosci, 2000,20(21):8012-20.
    [38]杨宇,吴江,杨欣,等. NT4-NAP融合基因原核表达载体的构建及在大肠杆菌中的表达[J].中华神经科杂志, 2004.6,37(3):260-261.
    [39] Gozes I, Giladi E, Pinhasov A, et al. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-activity peptides improve performance in water maze [J]. JPET, 2000,293:1091-98.
    [40] Beni-Adani L, Gozes I, Cohen Y, et al. A peptide derived from activity- dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice [J]. JPET, 2001,296:57-63.
    [41] Zaltzman R, Alexandrovich A, Trembovler V, et al. The influence of the peptide NAP on Mac-1-deficient mice following closed head injury [J]. Peptides. 2005,26:1520-27.
    [42] Wilkemeyer MF, Chen SY, Menkari CE, et al. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced [J]. PNAS. 2003,14:8543-48.
    [43] Steingart RA, Gozes I. Epub 2006 May 15. Recombinant activity-dependent neuroprotective protein protects cells against oxidative stress [J]. Mol Cell Endocrinol. 2006,252(1-2):148-53.
    [44]杨宇,吴江.血管内皮活性肠肽介导的高活性神经保护肽的研究进展.中风与神经疾病杂志, 2004.6,21(3):284-285.
    [45] Rotstein M, Bassan H, Kariv N, et al. NAP enhances neurodevelopment of newborn apolipoprotein E-deficient mice subjected to hypoxia [J]. J Pharmacol Exp Ther. 2006,319(1):332-9.
    [46]杨宇,吴江,杨欣,胡林森. NT4-NAP嵌合基因原核表达载体的构建及在大肠杆菌中的表达.中华神经科杂志, 2004.6,37(3):260-261.
    [47]郑国玺,杨宇,朱宏亮,等. NT4-ADNF-9嵌合基因原核表达载体的构建.西安交通大学学报(医学版), 2003.10,24(5):427-430.
    [48]吴昊,吴江,杨宇,等.携带有信号肽NT4-GFP-穿膜肽Ant融合基因的重组腺相关病毒载体的构建及意义.吉林大学学报(医学版), 200709,33(5):798-801.
    [49]吴昊,吴江,杨宇,等. NT4-GFP-ANT重组腺相关病毒载体的构建及病毒包装、滴度测定.中风与神经疾病杂志, 200706,24(3):263-265.
    [50]邢俊平,杨宇,杨广笑. GFP重组腺相关病毒报告病毒的构建及其在NIH3T3细胞中的表达.西安交通大学学报(医学版). 2005.8,26(4):316-319.
    [51]郑国玺,杨宇,朱宏亮,等. NT4-ADNF-9嵌合基因原核表达载体的构建.西安交通大学学报(医学版), 2003.10,24(5):427-430.
    [52]杨宇,吴江,杨欣,等.携强绿色荧光蛋白重组慢病毒的构建及其在原代培养SD大鼠皮层神经细胞中的表达.吉林大学学报(医学报), 2007,33(2):237-40.
    [53]杨宇,吴江,杨欣,胡林森. NT4-NAP嵌合基因原核表达载体的构建及在大肠杆菌中的表达.中华神经科杂志, 2004.6,37(3):260-261.
    [54]杨宇,吴江,杨欣.分泌表达神经保护短肽重组慢病毒对SK-N-SH细胞的保护作用.中国老年学杂志, 2007,27(3):213-6.
    [55]吴昊,吴江,杨宇,等.携带有信号肽NT4-GFP-穿膜肽Ant融合基因的重组腺相关病毒载体的构建及意义.吉林大学学报(医学版), 200709,33(5):798-801.
    [56]吴昊,吴江,杨宇,等. NT4-GFP-ANT重组腺相关病毒载体的构建及病毒包装、滴度测定.中风与神经疾病杂志, 200706,24(3):263-265.
    [57] BYAN KM, ERNSTM K, R ICE N R, et al. Role of NF-κB in p53-midiated programmed cell death [J]. Nature, 2000,404(20):892-897.
    [58] CHEN F, CASTRANOVA V, SH IX. New insights into the role of nuclear factor-kappaB in cell growth regulation [J]. Am J Pathol, 2001,159(2):387-397.
    [59] PERKINS N D. Integrating cell-signalling pathwayswith NF-kapp-aB and IKK function [J]. Nat RevMol CellBiol, 2007,8(1):49-62.
    [60] DUTTA J, FAN Y, GUPTA N, et al. Current insights into the reg-ulation of programmed cell death by NF-kappaB [J]. Oncogene, 2006,25:6800-6816.
    [61] MEMET S. NF-κB functions in the nervous system: From develop-ment to disease [J]. Biochem Pharmacol, 2006,72:1180-1195.
    [62] KALTSCHMIDT B, W IDERA D, KALTSCHMIDT C. Signaling via NF-κB in the nervous system [J]. Bba-Mol Basis Dis, 2005,1745:287-299.
    [63] PIZZIM, SPANO P. Distinct roles of diverse nuclear factor-κB c-omp lexes in neuropathological mechanisms [J]. Eur J Pharmacol, 2006,545:22-28.
    [64] FREUDENTHAL R, ROMANO A, ROUTTENBERG A. Transcrip tion factorNF-κB activation after in vivo perforant path LTP in mouse hippocampus [J]. Hippocampus, 2004,14:677-683.
    [65] MATTSON M P.NF-κB in the survival and p lasticity of eurons [J]. Neurochem Res, 2005,30:883-893.
    [66] ROMANO A, FREUDENTHAL R, MERLO E, et al. Evolutio-Narily-conserved role of the NF-κB transcrip tion factor in neuralp lasticity and memory [J]. Eur J Neurosci, 2006,24:1507-1516.
    [67] R ICARD VB, BRAMB ILLA R, LEVENSON J, et al. Astroglial nuclear factor-kB regulates learning and memory and synap tic p las-ticity in female mice [J]. J Neurochem, 2008,104:611-623.
    [68] COLL ISTER KA, ALBENSIB C. Potential therapeutic targets in the NF-kappaB pathway for Alzheimer’s disease [J]. Drug News Perspect, 2005,18(10):623-629.
    [69] FAN Y, DUTTA J, GUPTA N, et al.Regulation of programmed cell deathbyNF-kappaB and its role in tumorigenesis and therapy [J]. Adv Exp Med Biol, 2008, 615: 223-250.
    [70] HOLCOMB B, YIP2SCHNEIDER M, SCHMIDT CM.The role of nuclear factor kappaB in pancreatic cancer and the clinical app li-cations of targeted therapy [J]. Pancreas, 2008,36(3):225-235.
    [71] Tajima H, Niikura T, Hashimoto Y. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults [J]. Neurosci Lett, 2002; 324(3):227-31.
    [72] Kerr JFR. Apoptosis.a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972,26:239-257.
    [73] Wijsman JH, Jonker RR, Keijzer R, et al. A new method detect apoptosis in paraffin sections: in situend-labeling fragmented DNA. J Histochem & Cytochem, 1993,41:7-12
    [74] Qrrenius S. Apoptosis:molecular mechanisms and implications for human disease. J Intern Med, 1995,237:529-536.
    [75]王巧稚,等.β-淀粉样蛋白与阿尔茨海默病神经细胞凋亡的关系.四川解剖学杂志, 2003,11(2):33-35.
    [76] Shlmohama S, et al. Changesin caspase expression in Alzhelmers Disease:comparison with development and anging. Blcchem Biophys Res Commun, 1999,256(2):381-384.
    [77] Zhu SG, et al. Increased Interleukin-1βconverting enzyme expression and activity in Alzhelmer’s Disease. J Neurophthol Exp Neurol, 1999:58(6):582-587.
    [78] Gerke V, Moss SE. Annexins and membrane dynamics. Biochim Biophys Acta, 1997,1357:129-5
    [79] Bohn H, Kraus W. Isolation and characterization of a new placenta specific protein (PP10) [in German]. Arch Gynecol, 1979,227:125-134.
    [80] Funakoshi T, Hendrickson E, McMullen A, et al. Primary structure of human placental anticoagulant protein. Biochemistry, 1987,26(25):8087-8092.
    [81] Huber R, Schneider M, Mayr I, et al. The calcium binding sites in human annexin V bycrystal structure analysis at 2.0 A resolution.Implications for membrane binding and calcium channel activity. FEBS Lett, 1990,275:15-21.
    [82] Huber R, Berendes R, Burger A, et al. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J. Mol. Biol, 1992,223(3): 683-704
    [83] Concha O, Head F, Kaetzel A, et al. Rat annexin V crystal structure:Ca2+-induced conformational changes. Science, 1993,261(5126):1321-1324.
    [84] Sopkova J, Renouard M, Lewit-Bentley A. The crystal structure of a new high-calcium form of annexin V. J. Mol. Biol, 1993,234(3):816-825.
    [85] Bewley C, Boustead M, Walker H, et al. Structure of chicken annexin Vat 2.25-A resolution. Biochemistry, 1993,32(15):3923-3929.
    [86] Olofsson A, Mallouh V, Brisson A. Two-dimensional structure ofmembrane-bound annexin V at 8 A resolution. J. Struct. Biol, 1994,113(3):199-205.
    [87] Voges, D, Berendes R, Burger A, et al. Three-dimensional structure of membrane- bound annexin V.Acorrelative electron microscopy-X-ray crystallography study. 1994, 238(2):199-213.
    [88] Oling F, Santos JS, Govorukhina N, et al. Structure of membrane-bound annexin A5 trimers: a hybrid cryo-EM - X-ray crystallography study. J.Mol. Biol, 2000,304(4): 561-573.
    [89] Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972,26:239-257.
    [90] Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogen- ous endonuclease activation. Nature, 1980,284:555-556.
    [91] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972,26:239-257.
    [92] Wyllie AH, Kerr JF, Currie AR, Cell death: the significance of apoptosis. Int Rev Cytol,1980,68:251-306.
    [93] Kohler C, Orrenius S, Zhivotovsky B, Evaluation of caspase activity in apoptotic cells. J Immunol Methods, 2002,265:97-110
    [94] ould K, Woodgett C, Isacke M, et al. The protein-tyrosine kinase substrate p36 is also a substrate for protein kinase C in vitro and in vivo. Mol. Cell. Biol, 1986,6:2738-2744.
    [95] Hullin F, Raynal J, Ragab-Thomas J, et al. Effect of dexamethasone on prostaglandin synthesis and on lipocor-tin status in human endothelial cells. J. Biol. Chem, 1989, 264:3506-3513.
    [96] Savill, J, Fadok V. Corpse clearance defines the meaning of cell death. Nature, 2000, 407(6805):784-788.
    [97] Van Heerde WL, de Groot PG. Reutelingsperger CPM, The complexity of the phospholipid binding protein annexin V. Thromb Haemost, 1995,73:172-9.
    [98] Andree HAM, Reutelingsperger CPM, Hauptmann R, et al. Binding of vascular anti- coagulant (VAC) to planar phospholipid bilayers. J Biol Chem, 1990,265: 4923-4928.
    [99] Tait JF, Gibson D, Fujikawa K. Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family. J Biol Chem, 1989, 264: 7944-7949.
    [100] Timothy E. Hawkins, Debipriya Das, Barry Young, et al. DT40 cells lacking the Ca2+-binding protein annexin 5 are resistant to Ca2+-dependent apoptosis. PNAS, 2002,99:8054-8059.
    [101] Wang W, Xu J, Kirsch T, Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem, 2003,278:3762-3769
    [102] Virginie Monceaua, Yulia Belikovaa, Gueorgui Kratassiouka, et al. Externalization of endogenous annexin A5 participates in apoptosis of rat cardiomyocytes. Cardiovascular Research, 2004,64:496-506.
    [103] KAZUHIROT, AKEMICHIB, TOSHIOM. Astrocyteapoptosis:implications for neuroprotection [J]. Prog Neurobiol, 2004,72(2):111-127.
    [104] JULIEWF, STEVENFM, LINDARW. Glialactivationandpathologicalpain[J]. NeurochemInt, 2004,45(2-3):389-395. Na+-K+-APTasc
    [105] FadenA, J, ChanP, LongarS. Alterations in lipid metabolism, activity and tissue water content of spinal cord following experimental traumaticin jury.J, Neurochem, 1987,48: 1809.
    [106] OhenovitchTP, Urenjak, J. Ishigh extracellul arglutamatethekctoexcito toxicity intraumatic brain injury[J]. JNeurotrauma, 1997,14:677.
    [107] Smith DH, Mclntosh TK. Traumatic brain injury and excitatory aminoacids. In: Nataan RK, Wilh erger, JE, Povlishock, JT, ed, Neurotrayuma. New York: McGraw-Hill, 1996:1445-1458.
    [108] VONEuler M, LiLi M, Whittemore S, et al. No Protectiveeffect of the NMD Aantagonistmemantineinexperimentalspinalcord injuries. JNeurotrauma, 1997,14:53.
    [109] Choi DW. Excitotoxiccelldeath. JNeurobiol, 1992,23:1261.
    [110] Choi DW. Ionicdependenceofglutamateneurotoxicity. Jneurosci, 1987,7:369.
    [111]南国星,贾军,孙正义,等.大鼠脊髓压迫损伤减压后钙离子和兴奋性氨基酸的变化.第四军医大学学报, 2003,24(1):32-34.
    [112] SUNGB, LIMG, MAOJ. Tltered expression and uptake activity of spinal glutamatetranspers after nerve injury contribute to the path ogenesis of neuropathic paininrats [J]. JNEUROSCI, 2003,23(7):2899-2910.
    [113]朱林燕,冯建强.星形胶质细胞胞质[Ca2+]震荡的洋酒进展[J].解剖学研究, 2004,26(3):219-221.
    [114]韩济生.神经科学原理[M]. 2版.北京:北京医科人学出版社, 1999:527-528, 1077-1079.
    [115] Wirenfeldt M, Babcock AA, Ladeby R, et al. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury [J]. Neutrosci Res, 2005,82:507-14.
    [116] Ducray A, Kipfer S, HuberAW, et al. Creatine and neurotrophin-4 /5 promote survivalof nitric oxide synthase expressing interneurons in striatal cultures [J]. Neurosci Lett, 2006,395:57-62.
    [117] Omura T, SanoM, Omura K, et al. Different expressions of BDNF, NT3, and NT4 in muscle and nerve after various types of peripheral nerve injuries [J]. J PeripherNerv Syst, 2005,10:293-300.
    [118] Senechal Y, Larmet Y, Dev KK. Unraveling in vivo functions of amyloid precursor protein: insights from knockout and knockdown studies [J]. Neurodegener Dis. 2006; 3 (3):134-47. Review.
    [119]舒斯云,包新民.神经元:细胞和分子学.科学技术出版社, 2001,1:154-155.
    [120] Selvatici R, Marina S, Piubello C, et al. Protein kinase C activity, translocation, and selective isoform subcellular redistribution in the rat cerebral cerebral cortex after in vitro ischemia. JNeurosci Res, 2003,71:64-71.
    [121] Altman A, Isakov N, Baier G.Protein kinase Ctheta: a new essential superstar on the T-cell stage. Immunol Today. 2000 Nov; 21(11):567-73.
    [122] Saibil SD, Jones RG, Deenick EK, Liadis M, Elford AR, Vainberg MG, Baerg H, Woodgett JR, Gerondakis S, Ohashi PS. CD4+and CD8+T cell survival is regulated differentially by protein kinase Ctheta,c-Rel,and protein kinase B.J Immunol.2007Mar 1; 178(5):2932-9.
    [123] Altman A, Villalba M Protein kinase C-theta (PKCtheta): it’s all about location, location, location. Immunol Rev. 2003 Apr; 192:53-6.
    [124] Valverde AM, Lorenzo M, Navarro P, Benito M, Phosphatidylinositol 32kinase is a requirement for insulin2like growth factor 12induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocri nol, 1997;11(5):595-607.
    [125] Nishikawa K, Yamamoto S, Nagumo H, Kato R. Activation of phorbol ester responsive form of protein kinase C zeta in association with Ca2+induced differentiation of primary cultured mouse epi2dermal cells.Jpn J Pharmacol, 1997,73(2):171-4.
    [126] Satoh A, Gukovskaya AS, Nieto JM, Cheng JH, Gukovsky I, Reeve, JR Jr,Shimosegawa T, Pandol SJ, PKC-delta and-epsilon regulate NF-kappa B activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2004 Sep; 287(3):G582-91. Epub 2004 Apr 29.
    [127] Lallena MJ, Diaz Meco MT, MBren G, et al. Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol, 1999,19(3):2180-2188.
    [128] Eitel K, Staiger H, Rieger J. Protein kinase C Delta activation and tmnslocation to the nucleus are required fou fatty acid-inducded apopotosis of insulin-secretin cells [J]. Diabetes, 2003,52(4):991-997.
    [129] Yoshida K, Miki Y, Kufe D. Activation of SAPK/JNK signaling by PKCd in respinse to DNA damage [J]. J Biol Chem, 2002,277(50):48372-8378.
    [130] Jone L S. Trends Neurosci, 1996,19(2):68-72.
    [131] Grooms S Y, et al. Exp Neural, 1993,122(2):253-259.
    [132] Yednock TA, et al. Nature, 1992,356:63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700