体内性激素对大鼠局灶性脑缺血影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床资料表明性别不同,中风的发生率及结局明显不同,说明性激素在中枢神经系统损伤中起一定作用。因此本研究在建立雄激素致不孕大鼠(ASR)模型的基础上,给予果纳芬(rhFSH)后应用线栓法建立大鼠大脑中动脉阻塞(MCAO)模型,探讨体内性激素的改变对局灶性脑缺血的影响及作用机制。
     结果表明:ASR+MCAO组神经评分、脑梗死面积、脑水含量及缺血侧坏死的神经数目明显增加,说明MCAO可造成严重的脑损伤;通过抑制EAAT1、EAAT2、EAAT3的表达,上调mGluR4及mGluR6的表达,增加兴奋性氨基酸的神经毒性,加重脑损害;ACE、AT1及AT2的表达增高,可激活RAS系统,通过缩血管,促凋亡等加重脑损伤;CLIC4的表达增高及AKT的表达降低,可促进细胞凋亡,抑制细胞存活,加重脑损伤;PDGF-B在脑缺血过程中表达上调,是机体的一种代偿反应,有利于血管增生以及重塑。给予rhFSH后能明显降低ASR+MCAO组神经评分、脑梗死面积及脑水含量,同时使大脑缺血侧坏死的神经数目减少,说明rhFSH具有明显的脑保护作用;其机制包括:上调EAAT1、EAAT2及EAAT3的表达,同时下调mGluR4及mGluR6的表达,加强谷氨酸转运;下调ACE、AT1及AT2的表达,抑制RAS系统的激活;下调CLIC4的表达,上调AKT及PDGF-B的表达,抑制凋亡,促进细胞存活及血管增生。
     结论:由雄激素增高导致体内性激素的紊乱可通过多种途径加重脑缺血造成的损害,而rhFSH具有促进雌激素分泌的作用,可拮抗体内性激素的紊乱造成的脑损伤。
There are 2.5 million new patients of cerebrovascular disease in our country each year. And 1.5 million patients die of cerebrovascular disease each year. 75% of survivor will loss of work ability. Cerebrovascular dease is the second causing death and is also the first cause of mutilation. Cerebrovascular disease brings not only heavy health burden to patients, but also heavy economic burden to patients, society and government. So it is very important to explore the mechanism of cerebrovascular disease and to search the drug.
     The incidence rate and outcome of stroke is depend on the sex. Several clinical investigations have demonstrated that the incidence rate of stroke in premenopause women was lower than that in man, but incidence rate of stroke in menopause women was increasing. The clinic retrospective investigations have demonstrated that incidence rate of stroke and myocardial infarction in menopause women treated with estradiol or estradiol plus progesterone was decreasing. It is suggested that sex hormone was involved in central nerve system injury.
     Aim: The androgen-induced sterile rats (ASR) model was first made, then administrated by recombinant human follitropin alfa(rhFSH). The middle cerebral artery occlusion (MCAO) model was also established after rhFSH treatment. Then the effect of sex hormone on focal ischemia in rat brain and its mechanism was explored.
     Methods: The androgen-induced sterile rats model was first made, then administrated by rhFSH. The MCAO model was also established after rhFSH treatment. The rats were divided into four group: ASR+sham, ASR+ rhFSH+sham, ASR+MCAO, ASR+rhFSH+MCAO. There were 12 rats in each group. The neurological severity score were performed at o hours and 24 hours in all group according to Zea Longa, respectively. The brain ischemia area was measured by TTC stain. The cortex morphological change was measured by HE staining. The cerebral water content was measured by using dry-wet weight method. The EAAT1,EAAT2,EAAT3, mGluR4,mGluR6,AGT, ACE, AT1,AT2, CLIC4, Akt, PDGF B mRNA and protein expression in cortex were assayed by RT-PCR and Westernblot.
     Results and discussion: The rat in this experiment are all ASR rat. The testosterone in the serum is higher than normal. It means that ASR is a kind of sterilized rat induced by high androgen. The androgen is higher in serum of female rat. So we can use this kind of model to explore the effect of sex hormone on body. rhFSH can promote secretion of estrogen, so it can cure the sex hormone disturbance.
     The neurological severity score, brain ischemia area and cerebral water content in ASR+MCAO was higher than that of ASR+sham. It suggested that the MCAO model is successfully established. HE staining showed that the number of neuron in ischemia side of ASR+MCAO group is decreasing and the axon is disappeared. The nucleus in neuron is blurred, and nucleolus is disappeared. It suggested that the cerebral injury was induced by MCAO. rhFSH can decrease the neurological severity score, brain ischemia area and cerebral water content in ASR+MCAO group. HE staining showed the number of necrosis neuron in ischemia side of ASR+rhFSH+MCAO group is decreasing. It was implied that rhFSH has protective effect on brain ischemia in ASR rat with MCAO.
     The expression of genes related to excitatory amino acids was measured. The results showed that the EAAT1, EAAT2 and EAAT3 expression in ischemia side of ASR+MCAO group were obviously lower than that of ASR+sham group. This will result in accumulation of Glu in synaptic cleft because of Glu uptake by neuron and glial cell is decreasing. The mGluR4 and mGluR6 expression in ischemia side of ASR+MCAO group were obviously higher than that of ASR+sham group. The interaction between iGluR and mGluR will enhance the toxicity of excitatory amino acid. The rhFSH can lessen the toxicity of excitatory amino acid by upregulating the expression of EAAT1,EAAT2,EA AT3 and downregulating the expression of mGluR4 and mGluR6.
     The expression of genes related to renin-angiotensin system(RAS) was also measured. The results showed that the ACE, AT1 and AT2 expression in ischemia side of ASR+MCAO group were obviously higher than that of ASR+sham group, but the AGT did not change. It suggested that the brain damage was deteriorated by the activation of RAS in cortex. The activation of RAS will result in vasoconstriction, blood pressure elevation and apoptosis. The rhFSH can lessen the brain ischemia injury by downregulating of RAS.
     On the other hand, the CLIC4 expression in ischemia side of ASR+MCAO group were obviously higher than that of ASR+sham group. It suggested that CLIC4 was involved in apoptosis. AKT expression in ischemia side of ASR+MCAO group were obviously lower than that of ASR+sham group. It suggested that the cell survive is inhibited. The PDGF-B expression in ischemia side of ASR+MCAO group were obviously higher than that of ASR+sham group. It suggested that upregulation of PDGF-B is a compensation for ischemia. It is helpful for vascular proliferation and remodeling.
     Conclusions:
     1. The androgen-induced sterile rats model was first made, then administrated by rhFSH. The MCAO model was also established after rhFSH treatment. So we can use this kind of model to explore the effect of sex hormone disturbance on brain ischemia.
     2. The inhibition of excitatory amino acids transporter (EAAT) and upregulation of mGluR induced by sex hormone disturbance was involved in brain ischemia injury. The rhFSH can lessen the brain ischemia injury by upregulating of EAAT and downregulating of mGluR.
     3. The activation of rennin-angiotensin system(RAS) induced by sex hormone disturbance was involved in brain ischemia injury. The rhFSH can lessen the brain ischemia injury by downregulating of RAS.
     4. The upregulating of CLIC4 and downregulating of AKT induced by sex hormone disturbance was involved in brain ischemia injury. The rhFSH can lessen the brain ischemia injury by upregulating of AKT and downregulating CLIC4.
     5. The upregulation of PDGF-B is a compensation for brain ischemia. It is helpful for vascular proliferation and remodeling. The rhFSH can lessen the brain ischemia injury by upregulating of PDGF-B
引文
[1]Blaustein JD.Cytoplasmic estrogen receptors in rat brain: immunocytochemical evidence using three antibodies with distinct epitopes. Endocrinology, 1992, 131: 1336-1342.
    [2]Del Rio G, Velardo A , Menozzi R , et al . Acute estradiol and progesterone administration reduced cardiovascular and catecholamine responses to mental stress is meno- pausal women. Neuroendocrinology ,1998 ,67 :269-274.
    [3]Petitti DB, Sideny S, Bernstein A, et al. Stroke in users of low-dose oral contraceptives. N Engl J Med, 1996,335(1):8-15.
    [4]Wenger NK,Speroff L,Packard B. Cardiovascular health and disease in women. N Engl J Med,1993,329:247-256.
    [5]Branner LL,Kanter DS,Manson JE. Primary prevention of stroke. N Engl J Med, 1995, 33:1392-1400.
    [6]Falkeborn M, Persson I, Terent A, et al. Hormone replacement therapy and the risk of stroke. Follow-up of a population based cohort in Sweden. Arch Intern Med. 1993,153: 1201-1209.
    [7]Akalyed NJ, Harukuni I, Kimes AS, et al. Gender-linked brain injury in experimental stroke,. Stroke, 1998, 29: 159-166.
    [8]Simpkins JW, Rajakumar G, Zhang YQ, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral arteryocclusion in the female rat, J Neurosurg, 1997, 87: 724-730.
    [9]Toung TJ, Traystman RJ, Hurn PD. Estrogen mediated neuroprotection after experimental stroke in male rats. Stroke, 1998, 29(8):1666-1670.
    [10]Kenji Fukuda, Hiroshi Yao, Setsuro Ibayashi, et al. Ovariectomy exacerbates and estrogen replacement attenuates photothrombotic focal ischemic brain injury in rats. Stroke, 2000, 31: 155-160.
    [11]Shi J, Bui JD, Yang SH, et al. Estrogens decrease reperfusion-associated cortical ischemic damage : an MRI analysis in a transient focal ischemia model. Stroke, 2001, 32(4): 98-992.
    [12]Dubal DB, Wise PM, Neuroprotective effects of estradiol in middle-aged female rats. Endocrinology, 2001, 142(1):43-48.
    [13]McCullough LD, lkayed NJ, Traystman RJ, et al. Postischemic estrogen reduces hypoperfusion and secondary ischemia agter experimental stroke. Stroke, 2001, 32(3): 796-802.
    [14]Carswell HV, Anderson NH, Morton JJ, et al. Investigation of estrogen status and increased stroke sensitivity on cerebral blood flow after a focal ischemic insult. J Cereb Blood Flow Metab, 2000, 20(6): 931-936.
    [15]Liu X, Zhang W, Alkayed NJ, et al. Lack of sex-linked differences in cerebral edema and aquaporin-4 expression after experimental stroke. J Cereb Blood Flow Metab. 2008, 28(12): 1898-906.
    [16]Hurn PD, Littleton-Kearney MT, Kirsch JR, et al. Postischemic cerebral blood flow recovery in the female: effect of 17 beta-estradiol. J Cereb Blood Flow Metab. 1995, 15(4): 666-72.
    [17]Sudo S, Wen TC, Sudo S, et al. Beta-estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neurosci Res. 1997,29(4):345-54.
    [18]Kondo Y, Suzuki K, Sakuma Y. Estrogen alleviates cognitive dysfunction following transient brain ischemia in ovariectomized gerbils. Neurosci Lett. 1997, 238(1-2):45-8.
    [19]Weaver CE Jr, Park-Chung M, Gibbs TT, et al. 17beta-Estradiol protects against NMDA- induced excitotoxicity by direct inhibition of NMDA receptors. Brain Res. 1997 Jul 4;761(2):338-41.
    [20]Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neirons via a membrane receptor. J Neurosic, 1996, 16(2): 595-604.
    [21]Santizo RA, Anderson S, Ye S, et al. Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke. 2000, 31(9):2231-5.
    [22]Koh EH, Ro J, Wildrick DM, et al. Analysis of the estrogen receptor gene structure in human breast cancer. Anticancer Res. 1989,9(6):1841-5.
    [23]Cheng LP, Kuwahara M, Jacobsson J, et al. Inibition of myointimal hyperplasia and macrophage in aorta allografts, Transplantation, 1991, 52(6): 967-972.
    [24]Dubal DB, Kashon ML, Pettigrew LC, et al. Estradiol protects against ischemic injury, J Cereb Blood Flow Metab, 1998, 18(11): 1253-1258.
    [25]Nabulsi AA, Polsom AAR, White A, et al. Association of hormone replacement therapy with various cardiovascular risk factors in postmentopausal women. N Engl J Med, 1993, 328: 1069-1075.
    [26]常全忠,张淑玲.雌激素对NMDA诱导离体大鼠海马神经元凋亡的作用.中国药理学通报,2006; 22 (4) : 456-60.
    [27]Rubanyi GM, Freay AD, Kauser K, et al. Vascular estrogen receptors and endothelium-derived nitric oxide production in the mouse aorta. Gender difference and effectof estrogen receptor gene distuption. J Clin Invest, 1997, 99(10):2429-2437.
    [28]Behl C, Widmann M, Trapp T, et al. 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun. 1995, 216(2):473-82.
    [29]Goodman Y, Bruce AT, Cheng B, et al. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem. 1996,66(5):1836-44.
    [30]McCrohon JA,Death AK,Nakhla S,et al. Androgen receptor expression is greater in macrophages frommale than from female donors. A sex difference with implications for atherogenesis[J]. Circulation, 2000,101: 224-226.
    [31]Meijing Wang, Mathenge Wairiuko and Daniel R. Meldrum Role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia- reperfusion. Am J Physiol Heart Circ Physiol, 2005,288: H221-H226.
    [32]Peter A , Jens H, Clans C. The relationship of natural androgens to coronary heart disease in males. Atherosclerosis,1996; 125 (1):1-13.
    [33]Anderson CS,Jamrozid KD,Burvill PW et al. Ascertaining the incidence of stroke experience from the Perth Community Stroke Study,1989-1990.Med J Aust, 1993,158:80-84.
    [34]Boysen G, Nyboe J, Appleyard M, et al. Stroke incidence and risk factors for stroke in Copenhagen, Denmark. Stroke. 1988;19(11):1345-53.
    [35]Jeppesen LL,Jorgensen HS,Nakayama H,et al.Decreased serum testosterone in men with acute ischemic stroke.Arterioscler Thromb Vasc Biol 1996;16:749-54.
    [36]Beyenburg S , Watzka M , Clusmann H , et al . Androgen receptor mRNA expression in the human hippocampus [ J ] . Neuroscie Letters ,2000 ,294 (1) :25-28.
    [37]DonCarlos LL , Garcia-Ovejero D , Sarkey S , et al . Androgen receptor immunore- activity in forebrain axons and dendrites in the rat[J]. Endocrinology ,2003 ,144 (8) : 3632-3638.
    [38]Garcia-Segura LM , Azcoitia I ,Doncarlos LL. Neuroprotection by estradiol [J].Progress in Neurobiology ,2001 ,63 (1) :29-60.
    [39]Ahlbom E, Grandison L, Bonfoco E, et al. Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stress in vitro. Eur J Neurosci. 1999;11(4):1285-91.
    [40]Ahlbom E ,Gail SP ,Sandra C. Testosterone protects cerebellar granule cells from oxidative stess induced cell death through a receptor mediated mechanism [J] . Brain Res , 2001 ,892 (2) :255-262.
    [41]Khaw KT,Barrett Connor. Endogenous sex hormones,high density lipoproteincholesterol,and other lipoprotein fractions in men[J].A rterioscler Thromb, 1991,11(3):489-494.
    [42]Hawk T., Zhang YQ, .Rajakumar G. et al. Testosterone increases and estradiol decreases middle cerebral artery occlusion lesion size in male rats.Brain Research. 1998, 796(1-2): 296-8,
    [43]Yang SH, Perez E, Cutright J,et al. Testosterone increases neurotoxicity of glutamate in vitro and ischemia reperfusion injury in an animal model.J Appl Physiol 2002, 92:195-201.
    [44]Cheng J, Alkayed NJ, Hurn PD. Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab. 2007, 27(9):1553-1562.
    [45]Cheng J, Alkayed NJ, Hurn PD. Deleterious effects of dihydrotestosterone on cerebral ischemic injury. J Cereb Blood Flow Metab. 2007, 27(9): 1553-62.
    [46]Razmara A, Krause DN, Duckles SP.Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. Am J Physiol Heart Circ Physiol. 2005; 289(5): H1843-50.
    [47]Sotgiu S, Zanda B, Marchetti B, et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur J Neurol. 2006 May;13(5):505-13.
    [48]Toung TJ, Traystman RJ, Hurn PD. Estrogen-mediated neuroprotection after experimental stroke in male rats. Stroke 1998,29:1666–1670.
    [49]Li Zhan-Kui, Feng Jin-Xing, Zhao Chun-Yan, et al. Protection of androgen against hypoxic- ischemic brain damage in neonatal rats and possible mechanisms. Chin J Contemp Pediatr, 2006,8(6):441-6.
    [50]Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990, 11(11):462-8.
    [51]Seal RP, Amara SG. Excitatory amino acid transperters: a family in flux[J]. Annu Rev Pharmacol Toxicol , 1999, 39:431-456.
    [52]Danbolt NC, Chaudhry FA, Dehnes Y, et a l. Properties and localization of glutamate transporters. Prog Brain Res. 1998, 116: 23-43.
    [53]Niels C. Danbolt. Glutamate uptake [J]. Prog Neurobiol, 2001, 65:1-105.
    [54]Slotboom DJ , Konings WN , Lolkema JS. Structure feature of the glutamate transporter family. Microbiol . Mol . Boil . Rev , 1999 ,63(2) : 293-307.
    [55]O’Shea R. Roles and regulation of glutamate transporters in the central nervous system[J]. Clin Exp Pharmacol Physiol, 2002, 29:1018-1023.
    [56]Ye ZC, Rothstein JD, Sontheimer H. Compromised glutamate transport in human glioma cells: reduction–mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine–glutamate exchange[J]. J. Neurosci. 1999,19(24):10767-10777.
    [57]Rothstein JD, Martin L, Levey AI,et al.Localization of neuronal and glial glutamate transporters. Neuron. 1994, 13(3):713-25.
    [58]Martin LJ, Brambrink AM, Lehmann C,et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol, 1997, 42: 335–348.
    [59]Casado M, Bendahan A, Zafra F, et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem. 1993, 268(36):27313-7.
    [60]Rothstein JD, Dykes-Hoberg M , Pardo CA , et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron , 1996 , 16: 675-686.
    [61]Gegelashvili G, Dehnes Y, Danbolt NC, et al . The high affinity glutamate transporters GLT1 , GLAST and EAAT4 are regulated via different signalling mechanisms [J]. Neurochem Int, 2000, 37:163-70.
    [62]Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science,1997, 276:1699-1702.
    [63]Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron,1996, 16, 675– 686.
    [64]Bacci A,Verderio C, Pravettoni E, et al. The role of glial cells in synaptic function. Philos Trans R Soc Lond B Biol Sci , 1999 , 354(1381):403-409.
    [65]Suchak SK, Baloyianni NV, Perkinton MS , et al. The‘glial’glutamate transporter , EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem, 2003, 84(3): 522-532.
    [66]Takahshi M, Billups B, Rossi D, et al. The role of glutamate transporters in glutamate homeostasis in the brain[J]. J Exp Biol, 1997;200:401-9.
    [67]Jabauon D , Scanziani M, Gahwiler BH , et al . Acute decrease in net glutamate uptake during energy deprivation[J] . Proc Natl Acad Sci USA , 2000 ;97:5610-5.
    [68]Pillis JW, Ren J , O’Regan MH. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex : studies with DL-threo-beta-benzyloxyas- partate[J] . Brain Res , 2000 ;868:105-112.
    [69]Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed up take [ J ]. Nature, 2000, 403(6767) : 316-321.
    [70]Bowman CL, Kimelberg HK.Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature,1984, 311:656–659.
    [71]Schinder AF , Olson EC , Spitzer NC , et al . Mitochondrial dysfunction is a primary event in glutamate neurotoxicty [J] . J Neurosci ,1996;16 :6125-33.
    [72]Rao VL, Bowen KK, Demp sey RJ. Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain[J]. Neurochem Res, 2001, 26 (5): 497-502.
    [73]Mitani A, Tanaka K. Functional changes of glial glutamate transportter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1 [J]. J N eurosci, 2003, 23 (18) : 7176-7182.
    [74]Trotti D, Rizzini BL, Rossi D, et al. Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur J Neurosci 1997;9:1236-1243.
    [75]Jabaudon D, ScanzianiM, Gahwiler BH, et al. Acute decrease in net glutamate uptake during energy deprivation [J]. Proc Natl Acad Sci, 2000; 97 (10): 5610-5615.
    [76]邱永明,陆兆丰,田鑫,等.大鼠全脑缺血后谷氨酸转运体的表达.中国脑血管病杂志,2006, 3(2): 74-78, 95.
    [77]Gill SS, Pulido OM. Glutamate receptors in peripheral tissues: Current knowledge, future research and implications for toxicology [J]. Toxicol Pathol, 2000, 29 (1) : 208-223.
    [78]Moryoshi K,Masu M ,Lshii T , et al. Molecular cloning and characterizaton of the rat NMDA receptor[J] . Nature, 1991, 354(7) :31-37.
    [79]Kuriyama I, Asano N, Kato I, et al. Dipeptide alcohol-based inhibitors of eukaryotic DNA polymerase alpha [J]. Bioorg Med Chem, 2005, 13 (6) : 2187-2196.
    [80]Pellegrini-Giampietro DE , Pulsinelli WA , Zukin RS. NMDA and non-NMDA receptor gene expression following global brain ischemia in rats : effect of NMDA and non-NMDA receptor antagonists. J Neurochem , 1994 ,62 (3) :1067-1073.
    [81]Le D, Das S, Wang YF, et al. Enhanced neuronal death from focal ischemia in AMPA receptor transgenic mice. Brain Res Mol Brain Res ,1997 ,52 (2) :235-241.
    [82]Paschen W, Schmitt J, Uto A. RNA editing of glutamate receptor subunits GluR2 , GluR5 and GluR6 in transient cerebral ischemia in the rat . J Cereb Blood Flow Metab , 1996 ,16 (4) :548-556.
    [83]Pellegrini-Giampietro DE, Gorter JA, Bennett MVL, et al . The GluR2 (GluR2B) hypothesis:Ca2+ permeable AMPA receptors in neurological disorders. Trends Neurosci , 1997,20 (10) :464-470.
    [84]Iversen L, Mulvihill E, Haldeman B, et al . Changes in metabotropic glutamate receptor mRNA levels following global ischemia :increase of a putative presynaptic subtype(mGluR4) in highly vulnerable rat brain areas. J Neurochem ,1994 ,63 (2) :625-633.
    [85]Brorson JR ,Manzolillo PA ,Miller RJ . Ca2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci , 1994 ,14 (1) :187-197.
    [86]Seeburg PH ,Higuchi M,Sprengel R. RNA editing of brain glutamate receptor channels : mechanism and physiology. Brain Res Rev ,1998 ,26 (223) :217-229.
    [87]Greengard P. The neurobiology of slow synap tic transmission [J]. Science, 2001, 294: 1024-1029.
    [88]Susan T. Rouse, Michael J . Marino, Stefania R. Bradley et al .Distribution and roles of metabotropic glutamate receptors in the basal ganglia motor circuit : Implications for treatment of Parkinsons disease and related disorders. Pharmacol & Ther , 2000 ;88 :427-35.
    [89]Aguirre JA , Andbjer B , Gonzalez-Baron S et al . Group I mGluR antagonist AIDA protects nigral DA cells from MPTP induced inury. Neuroreport , 2001;12 (12) :2615-2617.
    [90]K Takahashi,K Tsuchida.Y Tanabe,et al.Role of the large extra cellular domain of metabotrobic glutamate receptor in agonist selectivity determination[J].J Bio Che,1993,26: 19341-19345.
    [91]Pin JP, Parmentier ML, Joly C, et al. Coupling of metabotropic glutamate receptors to G- proteins: differences from and similarities with other G- protein- coupled receptors. // Moroni F, Nicoletti F, Pellegrini- Giampietro DE. Metabotropic glutamate receptors and brain function. Colchester (UK): Portland Press, 1998: 9-18.
    [92]Ango F, Prezeau L, Muller T, et al. Agonist- independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature, 2001, 411: 962-965.
    [93]Ferraguti F, Baldani- Guerra B, Corsi M, et al. Activation of the extracellular signal- regulated kinase by metabotropic glutamate receptors. Eur J Neurosci, 1999, 11: 2073- 2082.
    [94]Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium dependent glutamate release in astrocyte[J]. Nature, 1998, 391 (6664): 281-285.
    [95]Shigemoto R, Kinoshita A, Wade E, et al. Differential presynaptical localization of metabotropic glutamate receptor subtype in rat hippocampus[J]. J Neurosci, 1997, 17(19): 7503-7522.
    [96]D’Onofrio M, Cuomo L, Battaglia G, et al. Neuroprotection mediated by glia groupⅡmetabotropic glutamate receptors requires the activation of the MAP kinase and the phosphatidylinositol-3-kinase pathways[J]. J Neurochem, 2001 , 78 (2) : 435-445.
    [97]Gegelashvili G, Dehnes Y, Danbolt NC, et al. The high affinity glutamate transporters GLT-1, GLAST and EAAT4 are regulated via differential signalling mechanisms[J] .Neurochem Int, 2000;37(2-3):163-170.
    [98]Bruno V ,Wroblewska B ,Wroblewski JT, et al. Neuroprotective activity of N- acetylaspartylglutamate in cultured cortical cells[J] . Neuroscience , 1998 ;85(3) :751 -757.
    [99]Sagara Y, Schubert D. The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress [J] . J Neurosci , 1998; 18(17) : 6662-71.
    [100]Antoni Davalo MD, et al. Duration of glutamate release after acute ischemic [J] . Stroke , 1997 ; 28 (24) :708-710.
    [101]Pellegrin-Giampietro DE, Cozzi A, Moroni F. The glycine antagonist and free radical scavenger 7-cl-thiokynurenate reduces CAl ischemic damage in the gerbil[J] . Neurosci , 1994, 63(3) : 701-709.
    [102]Pellegrini-Giampietro DE, Pulsinelli WA, Zukin RS. NMDA and non-NMDA receptor gene expression following global brain ischemia in rats: effect of NMDA and non-NMDA receptor antagonists. J Neurochem. 1994, 62(3):1067-73.
    [103]Heurteaux C ,Lauritzen I ,Widmann C , et al . Glutamate induced overexpression of NMDA receptor messenger RNAs and protein triggered by activation of AMPA/kainate receptors in rat hippocampus following forebrain ischemia.Brain Res ,1994 ,659 (122) :67-74.
    [104]Liu JR, Ding MP, Wei EQ, et al.GM1 stabilizes expression of NMDA receptor subunit 1 in the ischemic hemisphere of MCAo/reperfusion rat. J Zhejiang Univ Sci B. 2005;6(4):254-8.
    [105]Saleh MC, Connell BJ, Saleh TM. Ischemic tolerance following low dose NMDA involves modulation of cellular stress proteins. Brain Res. 2009;1247:212-20.
    [106]Cimarosti H, Lindberg C, Bomholt SF, et al. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology. 2008;54(2):280-9.
    [107]Gottlieb M,Matute C. Expression of ionotropic glutamate receptor subunits in glial cells of the hippocampal CA1 area following transient forebrain ischemia. J Cereb Blood Flow Metab ,1997 ,17 (3) :290-300.
    [108]Copani A, Casabona G, Bruno V, et al. The metabotropic glutamate receptor mGlu5 controls the onset of developmental apoptosis in cultured cerebellar neurons. Eur J Neurosci. 1998;10(6):2173-84.
    [109]Cambonie G, Laplanche L, Kamenka JM, et al. N-methyl-D-aspartate but not glutamate induces the release of hydroxyl radicals in the neonatal rat: modulation by group I metabotropic glutamate receptors.J Neurosci Res. 2000 Oct 1;62(1):84-90.
    [110]SimonyiAJP, Sun GY. Changes in mRNA levels for groupⅠmetabotropic glutmate reccptors following in utero hypoxia-ischemia[J].Brain Res Dev Brain Res, 1999, 112(1):31-37.
    [111]Fitzjohn SM, Irving AJ, Palmer MJ,et al. Activation of groupⅠmGluRs potentiates NMDA responses in rat hippocampal slices.Neurosci Lett,1996;203(3):211-213.
    [112]Sistiaga A, Sanchez-Prieto J. Protein phosphatase1A and 2A inhibitors prolong the switch in the control of glutamate release by groupⅠmetabotropic glutamate receptors: Characterization of the inhibitory pathway.JNeurochem,2000;75(4):1566-1574.
    [113]Keyvani K, Bosse F, Reinecke S, et al. Postlesional transcriptional regulation of metabotropic glutamate receptors: implications for plasticity and excitotoxicity. Acta Neuropathol. 2001 Feb;101(2):79-84.
    [114]Henrich-Noack P, Flor PJ, Sabelhaus CF, et al. Distinct influence of the group III metabotropic glutamate receptor agonist (R,S)-4-phosphonophenylglycine [(R,S)-PPG] on different forms of neuronal damage. Neuropharmacology. 2000;39(5):911-7.
    [115]MeDonald JW,Fix AS,Tizzano JP,et al. Seizures and brain injury in neonatal rats induced by 1s,3R-ACPD,a metabotropic glutamate receptor agonist. J Neurosei,1993,13: 4445-4450.
    [116]Humm JL,Kozlowski DA,Bland ST,et al. Used dependant exaggeration of brain injury:is glutamate involved. Exp Neurol,1999,157(2):349-358.
    [117]Opitz T,Riehter P,Reymann KG. The metabotropic glutamate receptor antagonist (α-methyl-4-carboxyphenylglycine) protects hippocampal CA1 neurons of the rat from in vitro hypoxia/hypoglycemia. Neuropharmaeology,1994,33(55):715-717.
    [118]Lee MA, B?hm M, Paul M, et al.Tissue renin-angiotensin systems. Their role in cardiovascular disease.Circulation. 1993;87(5 Suppl):IV7-13.
    [119]Ohyama K, Yamano Y, Sano T, et al. Disulfide bridges in extracellular domains of angiotensin II receptor type IA. Regul Pept. 1995, 57(2):141-7.
    [120]Balmforth AJ, Lee AJ, Shepherd FH, et al. G-protein-coupled receptors for peptide hormones: angiotensin II receptors. Biochem Soc Trans. 1997, 25(3):1041-6.
    [121]Kambayashi Y, Bardhan S, Takahashi K, et al. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993, 268(33):24543-6.
    [122]Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens. 2000,13(1 Pt 2):31S-38S.
    [123]Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest. 1991,88(3):921-33.
    [124]Unger T. The angiotensin type receptor : variations on an enig-matic theme. J Hypertens , 1999 , 17 (12 Pt 2) : 1775-17861.
    [125]Campbell DJ. Tissue rennin-angiotension system: sites of angiotension formation . J Cardiovasc Pharmacol, 1987,10 (suppl 7) : s12s8.
    [126]Paul M, Wagner D, Metzger R, et al. Quantification of renin mRNA in various mouse tissues by a novel solution hybridization assay. J Hypertens. 1988,6(3):247-52.
    [127]Plunkett LM, Correa FM, Saavedra JM. Quantitative autoradiographic determi- nation of angiotensin-converting enzyme binding in rat pituitary and adrenal glands with 125I-351A, a specific inhibitor. Regul Pept. 1985, 12(4): 263-72.
    [128]Robinson MM , McLennan GP , Thunhorst RL , et al. Interactions of the systemic and brain rennin- angiotensin systems in the control of drinking and the central mediation of pressor responses. Brain Res , 1999 , 842 (1) : 55-61.
    [129]Walther T,Olah L,Harms C, et al. Ischemic injury in experimental stroke depends on angiotensin II[J]. FASEB J,2002,16:169-176.
    [130]杨卉,王赤波,梁辉.肾素-血管紧张素系统与卒中.国外医学脑血管疾病分册, 2001, 9(4): 227-230.
    [131]曹桂华,刘丹,王颖慧.不同部位、范围急性脑血管病患者肾素-血管紧张素系统的变化.临床神经病学杂志, 2002,15(6): 355-357.
    [132]Reid IL, Rubin PC. Peptides and central neural regulation of the circulation. Physiolog Rev ,1987, 67(3) :725 -728.
    [133]Fernandez LA , Caride VJ , Stromberg C , et al. Angiotensin AT2 receptor stimulation increases survival in gerbils with abrupt unilateral carotid ligation. J Cardiovasc Pharmacol , 1994 , 24 (6) : 937-940.
    [134]冯娟,张德英,黄洁,等.脑梗塞患者血浆内皮素和血管紧张素II变化的临床观察.中风与神经疾病杂志,1998,15(2): 87-89.
    [135]Suzuki Y, Ruiz-OrtegaM, Lorenzo O, et al. Inflammation and angiotensinⅡ[J]. Int J Biochem Cell Biol, 2003, 35: 881.
    [136]周珂,余绍祖,王惠玲.局灶性缺血再灌注大鼠脑血管紧张素Ⅱ1型受体基因的表达.中华老年心脑血管病杂志,2003,5(4):268-270.
    [137]Chen Y, Doodsoo K, Toru A, et al. Functional interp lay between angiotensin II and nitricoxide : cyclic GMP as a key mediator [ J ]. Arterior Thromb Vascular Biol, 2003, 23: 26.
    [138]戴文卓,石静萍,葛剑青,等.厄贝沙坦对急性脑梗死患者血浆溶血磷脂酸、内皮素-1和血清一氧化氮含量的影响[J].临床神经病学杂志, 2007, 20: 81.
    [139]Li J, Culman J, Hortnagl H, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury [ J ]. FASEB J, 2005, 19: 617.
    [140]Iwanami J, Mogi M, Iwai M, et al. Inhibition of the renin-angiotensin system and target organ protection. Hypertens Res. 2009, 32(4):229-37.
    [141]Jentsch TJ, Friedrich T, Schriever A, Yamada H. The ClC chloride channel family. Pflugers Arch, 1999;437:783-95.
    [142]Suh KS, Yuspa SH. Intracellular chloride channels: critical mediators of cell viability and potential targets for cancer therapy. Curr Pharm Des. 2005, 11(21) : 2753– 2764.
    [143]Paul SM, Beitel GJ. Developmental biology. Tubulogenesis CLICs into place. Science. 2003, 302(5653) : 2077-2078.
    [144]Suh KS, Mutoh M, Gerdes M, et al. CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J Investig Dermatol Symp Proc. 2005;10(2):105-9.
    [145]Ashley RH. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review). Mol Membr Biol 2003;20:1–11.
    [146]Singh H, Ashley RH. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol Membr Biol. 2007;24(1):41-52.
    [147]Fernández-Salas E, Sagar M, Cheng C, et al. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein[J]. J Biol Chem. 1999; 274(51):36488-97.
    [148]Fernández-Salas E, Suh KS, Speransky VV, et al. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53[J]. Mol Cell Biol. 2002;22(11):3610-3620.
    [149]Shiio Y, Suh KS, Lee H, et al. Quantitative proteomic analysis of myc-induced apoptosis: a direct role for Myc induction of the mitochondrial chloride ion channel, mtCLIC/CLIC4. J Biol Chem. 2006 Feb 3;281(5):2750-6. Epub 2005 Nov 29.
    [150]Suh KS, Mutoh M, Nagashima K, et al. The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J Biol Chem. 2004 Feb 6;279(6):4632-41.
    [151]孔晓霞,张宏宇,袁兆新,等.线粒体氯通道蛋白CLIC4 (mtCLIC/CLIC4)在过氧化氢引起神经胶质瘤C6细胞损伤中的作用,中国病理生理学杂志,2008, 24 (3) : 481-483.
    [152]孔晓霞,张宏宇,李扬,等. NPPB和尼弗灭酸对H2O2损伤C6胶质细胞谷氨酸半胱氨酸合成酶及CLIC4表达的影响,中国病理生理杂志,2008, 24 (10) : 1962-1965.
    [153]Suh KS, Mutoh M, Gerdes M, et al. Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factorα-induced apoptosis, and inhibits tumor growth[J]. Cancer Res. 2005, 65(2):562-71.
    [154]Berryman MA, Goldenring JR. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton. 2003, 56(3):159-72.
    [155]R?nnov-Jessen L, Villadsen R, Edwards JC, et al. Differential expression of a chloride intracellular channel gene, CLIC4, in transforming growth factor-beta1-mediated conversion of fibroblasts to myofibroblasts. Am J Pathol. 2002, 161(2):471-80.
    [156]Suh KS, Crutchley JM, Koochek A, et al. Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin Cancer Res. 2007, 13(1):121-31.
    [157]周家文,孙际童,王岩,等.大鼠局灶性脑缺血脑皮质线粒体氯通道基因的表达,中国老年学杂志,2008, 28(16): 1561-1562.
    [158]Quintana A, Molinero A, Borup R, et al. Effect of astrocyte-targeted production of IL-6 on traumatic brain injury and its impact on the cortical transcriptome. Dev Neurobiol. 2008, 68(2):195-208.
    [159]姜华,张学军. PKB/ Akt:一个具有多种功能的蛋白激酶[J].生命科学,2004,16 (3):148-153 ,164.
    [160]Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546(1):108-12
    [161]Shiota C, Woo JT, Lindner J, et al. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell. 2006;11(4):583-9.
    [162]Yano S, Tokumitsu H, Soderling TR. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998, 396(6711):584-7.
    [163]Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999,13(22):2905-27.
    [164]Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997,275(5300): 661-5.
    [165]Zundel W, Giaccia A. Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev. 1998,12(13):1941-6.
    [166]Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem. 1998, 273(12):7141-7.
    [167]Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT- a major therapeutic target. Biochim Biophys Acta, 2004, 1697(1-2):3-16.
    [168]Fukunaga K, Kawano T. Akt is a molecular target for signal transduction thereapy in brain ischemic insult. J pharmacol Sci 2003,92(4): 347-27.
    [169]Kristian T. Metabolic stages, mitochondria and calcium in hypoxic/ischemic brain damage. Cell calcium, 2004, 36(3-4): 221-33.
    [170]Franke TF, Hornik CP, Segev L. et al . PI3K/Akt and apoptosis: size matters. Oncogene, 2003, 22(56): 8983-98.
    [171]Yamashita K, Kajstura J, Discher DJ,et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res. 2001 Mar 30;88(6):609-14.
    [172]Eves EM, Xiong W, Bellacosa A, et al. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol. 1998,18(4):2143-52.
    [173]Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995,376(6541):599-602.
    [174]Philpott KL, McCarthy MJ, Klippel A, et al. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Cell Biol. 1997,139(3):809-15.
    [175]Kitagawa H, Warita H, Sasaki C, et al. Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett. 1999;274(1):45-8.
    [176]Ouyang YB, Tan Y, Comb M, et al. Survival- and death-promoting events after transient cerebral ischemia: phosphorylation of Akt,release of cytochrome C and Activation of caspase-like proteases. J Cereb Blood Flow Metab. 1999,19(10):1126-35.
    [177]Yano S, Morioka M, Fukunaga K, et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2001,21(4):351-60.
    [178]Kawano T, Fukunaga K, Takeuchi Y, et al. Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab. 2001,21(11):1268-80.
    [179]Ohba N, Kiryu-Seo S, Maeda M, et al. Transgenic mouse overexpressing the Akt reduced the volume of infarct area after middle cerebral artery occlusion. Neurosci Lett. 2004, 359(3):159-62.
    [180]Yano S, Morioka M, Fukunaga K, et al. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab. 2001;21(4):351-60.
    [181]Lokker NA, O'Hare JP, Barsoumian A,et al. Functional importance of platelet-derived growth factor (PDGF) receptor extracellular immunoglobulin-like domains. Identification of PDGF binding site and neutralizing monoclonal antibodies. J Biol Chem. 1997, 272(52):33037-44.
    [182]Ross R, Raines EW, BowerrPope PF. The biology of platelet-derived growth factor. Cell, 1986, 46: 155-169.
    [183]Smits A, Kato M, Westernark B, et al. Neurotrophic acticity of platelet derived growth factor(PDGF): Rat neuronal cells possess functional PDGF type receptors and respond to PDGF. Proc Natl Acad Sci USA, 1991, 88: 8159-8163.
    [184]Giacobini MMJ, Smits A, Funa K, et al. Differential effects of platelet derived growth factors on fetal hippocampal and cortical grafts: Evidence from intraocular transplantation in rats. Neurosci Lett, 1992, 136: 227-231.
    [185]Ohno M,Sasahara M,Narumiya S,et al.Expression of platelet-derived growth factor B-chain and beta-receptor in hypoxic/ischemic encephalopathy of neonatal rats[J]. Neurosci- ence, 1999,90(2):643-651.
    [186]Renner O,Tsimpas A,Kostin S,et al.Time-and cell type-specific induction of platelet-derived growth factor receptor-beta during cerebral ischemia[J].Brain Res Mol Brain Res,2003,113(1-2): 44-51.
    [187]Mori S, Heldin CH, Claesson-Welsh L. Ligand-induced ubiquitination of the platelet-derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem. 1993,268(1):577-83.
    [188]Krupinski J, Issa R, Bujny T, et al. A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke, 1997, 28(3):564-73.
    [189]Iihara K, Sasahara M, Hashimoto N, et al. Ischemia induces the expression of the platelet-derived growth factor-B chain in neurons and brain macrophages in vivo. J Cereb Blood Flow Metab. 1994;14(5):818-24.
    [190]Ohno M, Ono K, Shimada M. Neonatal hypoxic/ischemic encephalopathy: neuropathology and plasticity. No To Hattatsu. 1996;28(2):118-24.
    [191]Raines EW, Koyama H, Carragher NO. The extracellular matrix dynamically regulates smooth muscle cell responsiveness to PDGF. Ann N Y Acad Sci. 2000,902:39-51;discussion 51-2.
    [192]Heidaran MA, Pierce JH, Yu JC, et al. Role of alpha beta receptor heterodimer formation in beta platelet-derived growth factor (PDGF) receptor activation by PDGF-AB. J Biol Chem. 1991,266(30):20232-7.
    [193]Johnston RE, Dillon C, Freed WJ, et al. Trophic factor sectrting kidney cell lines: in vitro characterization and functional effects following transplantation in ischemic tats. Brain Res, 2001, 900(2): 268-276.
    [194]Eichner W, J?ger V, Herbst D,et al. Large-scale preparation of recombinant platelet-derived growth factor AA secreted from recombinant baby hamster kidney cells. Eur J Biochem. 1989,185(1):135-40.
    [195]Iihara K, Hashimoto N, Tskahara T, et al. Platelet-derived growth factor BB, but not AA, prevents delayed neuronal death agter forebrain ischemia in rats. J CereB Blood Flow, 1997, 17:1097-1106.
    [196]Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science. 1995,268(5208): 233-9.
    [197]Heldin CH. Structural and functional studies on platelet-derived growth factor. EMBO J. 1992,11(12):4251-9.
    [198]Satoh T, Fantl WJ, Escobedo JA,et al. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types. Mol Cell Biol. 1993, 13(6):3706-13.
    [199]203. Fretto LJ, Snape AJ, Tomlinson JE, et al. Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to alpha and beta PDGF receptor. J Biol Chem. 1993, 268(5):3625-31.
    [200]杜娟,张微微.脑缺血/再灌注PDGF-BB和TGF-β1表达的实验研究.硕士论文,2004
    [201]俞瑾,扬淑萍,张月萍,等.雄激素致高胰岛素高雄激素无排卵大鼠模型[J].生殖医学杂志,1993,29(4):251-259
    [202]周家文,孙际童,王岩,等.大鼠局灶性脑缺血脑皮质线粒体氯通道基因的表达[J],中国老年学杂志,2008,28(16):1561-1562.
    [203]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84-91.
    [204]张成英,苗华,田鹤村,等.大鼠椎-基底动脉的解剖学观察及其在脑缺血模型中的应用.中国临床解剖学杂志,1995,139 (1) :53-55.
    [205]Tamura A,Graham DI,McCulloch J et al.Focal cerebral ischemia in the rat: 1.Description of technique and early neuropathological consequences following middle cerebral artery occlusion.J Cereb Blood Flow Metab,1981,1(1):53.
    [206]Watson BD,Dietrich WD,Busto R et al.Induction of reproducible brain infarction by photochemically initiated thrombosis.Ann Neurol,1985,17(5):497.
    [207]杨渊,郭瑞友.光化学诱导老年大鼠局灶性脑梗死模型的研究[J] .中国老年医学杂志,2001 ,21 (1) :35.
    [208]Kudo M,Aoyama A,Ichimori S et al.An animal model of cerebral infarction: Homologous blood clot emboli in rats.Stroke,1982,13(4):505.
    [209]Krueger K,Busch E. Protocol of a thromboembolic stroke model in the rat : review of the experimental procedure and comparison of models [J] . Invest Radiol , 2002 , 37 (11) : 600.
    [210]Koizumi J , Yoshid Y, Nakazawa T , et al. Experimental studies of ischemic brain edema, A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area[J]. Jpn J Stroke ,1986 ,8(1) :1-8.
    [211]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J ]. Stroke. 1989;20(1):84-91.
    [212]Paganini-Hill A, Ross RK, and Henderson BE. Postmenopausal oestrogen treatment and stroke: a prospective study. BMJ. 1988,297 (6647): 519-522.
    [213]Stegmayr,B et al.Stroke incidence and mortality correlated to stroke risk factors in the WHO MONICA Project:an ecological study of 18 populations.Stroke 1997;28:1367-1374.
    [214]Pan Y, Zhang H, Acharya AB, et al.Effect of testosterone on functional recovery in a castrate male rat stroke model[J].Brain Res. 2005,1043(1-2):195-204.
    [215]俞瑾,扬淑萍,张月萍,等.雄激素致高胰岛素高雄激素无排卵大鼠模型[J].生殖医学杂志,1993,29(4):251-259.
    [216]刘喆,赖新生.大脑中动脉闭阻脑缺血模型大鼠的建立与评价.中国行为医学科学,2005,14(10):877-881.
    [217]Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab, 2000, 20: 1393-1408.
    [218]Zausinger S, Hungerhuber E, Baethmann A, et al. Neurological impairment in rats after transient middle cerebral artery occlusion: a comparative study under various treatment paradigms. Brain Res. 2000 Apr 28;863(1-2):94-105.
    [219]Bederson JB, Pitts LH, Germano SM,et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986 ;17(6):1304-8.
    [220]Paczynski RP, He YY, Diringger M N, et al. Multiple dose mannitol reduces brain water content in a rat model of cortical infarction. Srtoke , 1997, 28: 1437-1444.
    [221]Kimelberg HK. Current concepts of brain edema . J Neurosurg , 1995 , 83 : 1051-1059.
    [222]Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009 Apr;43(4):348-64.
    [223]Chi OZ, Hunter C, Liu X, Weiss HR. Effects of Exogenous Excitatory Amino Acid Neurotransmitters on Blood-Brain Barrier Disruption in Focal Cerebral Ischemia. Neurochem Res. 2009 Jan 6. [Epub ahead of print].
    [224]Mayhan WG, Didion SP. Glutamate2induced disruption of the blood brain barrier in rats. Role of nitric oxide. Stroke , 1996 , 27 : 965-970.
    [225]Mun-Bryce S, Rosenberg GA. Matrix metalloproteinases in cerebrovascular disease. J Cereb Blood Flow Metab , 1998 ,18 :1163-1172.
    [226]Yong VW, Krekoski CA , Forsyth PA et al . Matrix metalloproteinases and diseases of the CNS. Trends Neurosci , 1998 , 21 :75-80.
    [227]Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009;(190):159-70.
    [228]Thanvi B, Treadwell S, Robinson T. Early neurological deterioration in acute ischaemic stroke: predictors, mechanisms and management. Postgrad Med J. 2008;84(994): 412-7.
    [229]Belayev L , Busto R , Zhao W et al . Quantitative evaluation of blood brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res , 1996 , 739 :88-96.
    [230]Menziea SA, Betz AL, Hoff JT, Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J Neuro surg , 1993, 78 (2) : 257-266.
    [231]Teede HJ. The menopause and HRT. Hormone replacement therapy, cardiovascular and cerebrovascular disease. Best Pract Res Clin Endocrinol Metab, 2003,17:73–90.
    [232]Behl C, Skutella T, Lezoualc'h F, et al.Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol. 1997;51(4):535-41.
    [233]祝伟华,勾振堂,齐立伟,等.雌激素对大鼠脑缺血再灌注损伤脑皮质EAA含量的影响.中风与神经疾病杂志,2003,20(3):231-232.
    [234]Tomás-Camardiel M, Venero JL, Herrera AJ,et al. Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: protective effect by estradiol treatment in ovariectomized animals. J Neurosci Res. 2005;80(2):235-46.
    [235]Fonnum F . Glutamate: a neurotransmitter in mammalian brain. J Neurochem. 1984 Jan;42(1):1-11.
    [236]杨晓运、李智、秦绿叶、于常海,星形胶质细胞和神经元之间谷氨酸-谷氨酰胺的代谢偶联,生理科学进展,2003,34(4):352.
    [237]Watase K, Hashimoto K, Kano M, et al . Motor discoordination and increased susceptibility to cerebral injury in GLAST mutant mice. Eur. J Neurosci ,1998 ,10: 976-988.
    [238]Akira M, Kohichi T. Funtional changes of glial glutamate transporter GLT-1 during ischemia : an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci , 2003,23(18) : 7176-7182.
    [239]Peghini P , Janzen J , Stoffel W. Glutamate transporter EAAC1 deficient mice develop dicacarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J , 1997,16:3822-3832.
    [240]杨如、杨雄里,高亲和力谷氨酸转运体,生理科学进展,2000,34(4):293-298.
    [241]Douen AG, Akiyama K, Hogan MJ, et al. Preconditioning with cortical spreading depression decreases intraischemic cerebral glutamate levels and down-regulates excitatory amino acid transporters EAAT1 and EAAT2 from rat cerebal cortex plasma membranes. J Neurochem. 2000;75(2):812-818.
    [242]Bigdeli MR, Hajizadeh S, Froozandeh M, et al. Normobaric hyperoxia induces ischemic tolerance and upregulation of glutamate transporters in the rat brain and serum TNF-alpha level. Exp Neurol. 2008;212(2):298-306.
    [243]Singer CA, Rogers KL. Estrogen protects primary cortical neurons from glutamate toxicity[J ] . Neurosci Lett ,1996 ,212 :13-15.
    [244]Prass K, Dirnagl U. Glutamate antagonists in therapy of stroke. Restor Neurol Neurosci. 1998;13(1-2):3-10.
    [245]Montgomery JM, Madison DV. State-dependent heterogeneity in synaptic depression between pyramidal cell pairs. Neuron. 2002;33(5):765-77.
    [246]Rosdahl D, Seitzberg DA, Christensen T, et al. Changes in mRNA for metabotropic glutamate receptors after transient cerebral ischaemia. Neuroreport. 1994;5(5):593-6.
    [247]Aniksztejn L, Otani S, Ben-Ari Y. Quisqualate Metabotropic Receptors ModulateNMDA Currents and Facilitate Induction of Long-Term Potentiation Through Protein Kinase C. Eur J Neurosci. 1992;4(6):500-505.
    [248]Lonart G, Alagarsamy S, Johnson KM. (R,S)-alpha-amino-3-hydroxy-5- methylisoxazole -4-propionic acid (AMPA) receptors mediate a calcium-dependent inhibition of the metabotropic glutamate receptor-stimulated formation of inositol 1,4,5-trisphosphate. J Neurochem. 1993; 60(5):1739-45.
    [249]Chen JC, Hsu-Chou H, Lu JL, et al. Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology. 2005 ;49(5):703-14.
    [250]Ruiz-Ortega M, Lorenzo O, Rupérez M, et al. Role of the renin-angiotensin system in vascular diseases: expanding the field[J]. Hypertension. 2001,38(6):1382-1387.
    [251]Zhang H, Sun GY. LPS induces permeability injury in lung microvascular endothelium via AT(1) receptor[J]. Arch Biochem Biophys. 2005, 441(1):75-83.
    [252]Paul M, Poyan Mehr A, Kreutz R. Physiology of Local Renin-Angiotensin Systems[J]. Physiol Rev. 2006, 86(3):747-803.
    [253]Makino I, Shibata K, Ohgami Y, et al.Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain[J].Neuropeptides. 1996,30(6): 596- 601.
    [254]石静萍,董靖德,张颖冬,等.局灶性脑缺血再灌注损伤大鼠脑内肾素-血管紧张素系统的变化及厄贝沙坦干预的影响[J],临床神经病学杂志,2008, 21 (1):45-48.
    [255]Kagiyama T, Kagiyama S, Phillips MI. Expression of angiotensin type 1 and 2 receptors in brain after transient middle cerebral artery occlusion in rats[J]. Regul Pept. 2003,110(3):241-247.
    [256]Berryman M, Bretscher A. Identification of a novel member of the chloride intracellular channel gene family (CLIC5) that associates with the actin cytoskeleton of placental microvilli[J]. Mol Biol Cell. 2000,11(5):1509-21.
    [257]Edwards JC. A novel p64-related Cl- channel: subcellular distribution and nephron segment-specific expression. Am J Physiol, 1999, 276: 398-408.
    [258]Shiio Y, Suh KS, Lee H, et al. Quantitative proteomic analysis of myc-induced apoptosis: a direct role for Myc induction of the mitochondrial chloride ion channel, mtCLIC/CLIC4. J Biol Chem. 2006 Feb 3;281(5):2750-6. Epub 2005 Nov 29.
    [259]Kitagawa H, Warita H, Sasaki C, et al. Immnoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett, 1999 , 274 (1) : 45-48.
    [260]Won CK, Ha SJ, Noh HS, et al. Estradiol p revents the injury induced decrease of Akt activation and Bad phosphorylation. Neurosci Lett, 2005 , 387 ( 2 ) : 115 -119.
    [261]Ohno M, Sasahara M, Narumiya S,et al. Expression of platelet-derived growth factor B-chain and beta-receptor in hypoxic/ischemic encephalopathy of neonatal rats[J]. Neurosci, 1999,90:643-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700