Septin1,一个人类淋巴细胞特异表达基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
septin是人们在筛选芽殖酵母控制细胞周期的温度敏感型突变体时发现的一类与细胞周期调控相关的基因。随着生物学的飞速发展,人们在除植物以外的几乎所有真核生物中发现了这一类基因的存在,并发现其功能绝不仅仅在胞质分裂过程中体现,septin可能参与了细胞极化,细胞骨架重建,胞膜运动,囊跑运输和胞吞胞吐等多个过程,在细胞的生长过程中可能起到着多种重要的功能。但对其在哺乳动物中的功能信息及机制还报道不多。
     本文首次鉴定了septin1是一个人类淋系白细胞特异表达的基因,利用RNA干扰技术降低它在T淋巴瘤细胞Jurkat中的表达能够引起细胞G2/M期减少,死亡增加,因此我们认为它对淋巴细胞的生长、增殖起着重要的作用,是细胞进入分裂期所必须的。
     其次,我们首次发现septin1能够受到人CK2激酶的磷酸化修饰,同时它还具有与γ-Tubulin相互作用的能力。CK2激酶对septin1 206位ser的磷酸化修饰直接影响了septin1对细胞进入分裂期的调控,从而对细胞的生长,增殖产生影响。由于septin1与γ-Tubulin存在相互作用,提示我们septin1很可能通过与Tubulin骨架发生关系,从而完成其对细胞周期及增殖的调控。
     Septin1的组织表达特异性和其功能重要性提示我们,该基因具备了很好的成为特异性免疫抑制剂及淋巴肿瘤治疗药物筛选的药靶的潜力。因此,为了获得其三维结构,便于我们筛选小分子药物,我们利用点突变,获得了可结晶的septin1突变体,并获得了该突变体的晶体,及分辨率达到2.5 A°的衍射数据。为研究该家族的空间结构做出了初步的贡献。
The septins are a novel family of proteins that were first recognized in yeast as proteins associated with the cell cycle control. Septins are broadly expressed throughout the animal kingdom, and yet seem to be absent from plants . Although septins were originally identified as a protein family involved in cytokinesis, recent advances in the field have now ascribed additional functions to these proteins, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. They do some important function in cell growth and mitosis.
     In this paper, we first identified human septin1 is a lymphocyte specially expressed protein. When septin1 is knock down in human T lymphoma cell line(Jurkat), it will lead to cell death and cell cycle arrest. These results suggest septin1 is necessary for mitosis of lymphocyte, and it will be important for lymphocyte growth and proliferation.
     We find septin1 can be phosphorylated by human CK2 kinase in lymphocyte. CK2 kinase can phosphorylate septin1 in 206 serinine resicue. This modify will affect septin1's function in cell cycle control directly. We also find septin1 can be interact with humanγ—Tubulin. This result suggest septin1 perhaps do its function by influencing microtubles' organization or dynamics.
     The special expression and important fuction make septin1 own the potential to become a target to screen out the small molecular that can be used for inhibitor of lymphocyte and lymphoma. We try to get the structure of septin1 in order to screen out the small molecular inhibitor. Using the site mutation technic, we get the mutant that can be crystallized. This septin 1 mutant was crystallized and diffraction data were collected to 2.5 A°resolution. This work lay a foundation for the research of septin's structure.
引文
1.Pollard TD,Earnshaw WC.Cell Biology.WB Saunders:Philadelphia,2002.
    2.Sanders SL,Field CM.Cell division.Septins in common? CurrBiol 1994;4:907-910.
    3.Chant J.Septin scaffolds and cleavage planes in Saccharomyces.Cell 1996;$4:187-190.
    4.Cooper JA,Kiehart DP.Septins may form a ubiquitous familyof cytoskeletal filaments.J Cell Biol 1996;134:1345-1348.
    5.Longtine MS,DeMarini D J,Valencik ML,et al.The septins:roles in cytokinesis and other processes.Curr Opin Cell Biol1996;8:106-119.
    6.Hartwell LH.Genetic control of the cell division cycle in yeast(Ⅳ).Genes controlling bud emergence and cytokinesis.Exp CellRes 1971;69:265-276.
    7.Byers B,Goetsch L.A highly ordered ring of membrane associated filaments in budding yeast.J Cell Biol.1976;69:717-721.
    8.DiDomenico B J,Brown NH,Lupieella J,Greene JR,Yanko M,Koltin Y:Homologs of the yeast neck filament sssodated germs:isolation and sequence analysia of Candida albicans CDC3 and CDCIG Mol Gen Genet 1994,242:689-698.
    9.Momany M,Morrell JL,Harris SD,Hamer JE:Sepfum formation In Aspergillus nidulans.Can J Bat I gg5,in press.
    10.Neufeld TP,Rubin GM:The Drosophila peanut gene Is required for cytokinesla and encodes a protein aimilar to yeast putative bud neck filament proteins.Cell 1994,77:371-379.
    11.Fares HF,Peifer M,Pringle JR:Localization and possible functions of Drosophila septlns.Mol Biol Cell 1995,6:1843-185g.
    12.Nottenburg C,Gallatin WM,St.John T:Lymphocyte HEV adhealon variants differ In the expression of multiple gene sequences.Gene 1990,95:279-284.
    13.Kato K:A collection of cDNA danes with specific expression patterns In mouse brain.Eur JNeurosci 1990,2:704-711.
    14.Kumar S,Tomooka Y,Node M:Identification of a set of genes with developmentally down-ragulated expression In the mouse brain.Biochem Biophys Res Commun 1992,185:1155-1161.
    15.Nakateuru S,Sudo K,Nakmura Y:Molecular cloning of a novel human cDNA homologous to CDC10 In Seccharomyces cerevisiae.Biochem Biophys Res Commun 1 gg4,202:82-87,
    16.Leipe DD,Wolf YI,Koonin EV,Aravind L.Classification and evolution of P-loop GTPases and related ATPases.J Mol Bio12002;317:41-72.
    17.Saraste M,Sibbald PR,Wittinghofer A.The P-loop - a common motif in ATP-and GTP-binding proteins.Trends Biochem Sci 1990;15:430-434.
    18.Bourne HR,Sanders DA,McCormick F.The GTPase superfamily:conserved structure and molecular mechanism.Nature 1991;349:117-127.
    19.Field,C.M.and Kellog,D.(1999).Septins:cytoskeletal polymers or signalling GTPases? Trends Cell Biol.9,387-394.
    20.Irazoqui JE,Lew DJ.Polarity establishment in yeast.J Cell Sci 2004;117:2169-2171.
    21.Faty M,Fink M,Barral Y.Septins:a ring to part mother and daughter.Curr Genet 2002;41:123-131.
    22.Kinoshita M.The septins.Genome Bio12003;4:236-243.
    23.Kinoshita M.Assembly of mammalian septins.JBiochem(Tokyo) 2003;134:491-496.
    24.Macara IG,Baldarelli R,Field CM,et al.Mammalian septins nomenclature.Mol Biol Cell 2002;13:4111-4113.
    25.Caltagarone J,Rhodes J,Honer WG,Bowser R.Localization of a novel septin protein,hCDCrel- 1,in neurons of human brain.Neuroreport 1998;9:2907-2912.
    26.Cheon MS,Fountoulakis M,Dierssen M,Ferreres JC,Lubec G.Expression profiles of proteins in fetal brain with Down syndrome.JNeural Transm Suppl 2001;61:311-319.
    27.Dong Z,Ferger B,Paterna JC,et al.Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein,CDCrel-1.Proc NatlAcadSci USA 2003;100:12 438-12 443.
    28. Xiong JW, Leahy A, Stuhlmann H. Retroviral promoter-trap insertion into a novel mammalian septin gene expressed during mouse neuronal development. Mech Dev 1999;86: 183-191.
    
    29. Kinoshita A, Noda M, Kinoshita M. Differential localization of septins in the mouse brain. J Comp Neurol 2000; 428: 223-239.
    
    30. Methner A, Leypoldt F, Joost P, Lewerenz J. Human septin 3 on chromosome 22q13.2 is upregulated by neuronal differentiation. Biochem Biophys Res Commun 2001; 283: 48-56.
    
    31. Kinoshita A, Kinoshita M, Akiyama H, et al. Identification of septins in neurofibrillary tangles in Alzheimer's disease. Am J Pathol 1998; 153:1551-1560.
    
    32. Sakai K, Kurimoto M, Tsugu A, Hubbard SL, Trimble WS, Rutka JT. Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol 2002; 57:169-177.
    
    33. Choi P, Snyder H, Petrucelli L, et al. SEPT5 v2 is a parkinbinding protein. Brain Res Mol Brain Res 2003; 117: 179-189.
    
    34. Engidawork E, Gulesserian T, Fountoulakis M, Lubec G. Aberrant protein expression in cerebral cortex of fetus with Down syndrome. Neuroscience 2003;122: 145-154.
    
    35. Simantov R, Peng W. MDMA (Ecstasy) controls in concert a group of genes involved in GAB A neurotransmission. FEBS Lett 2004; 563: 3-6.
    
    36. Holger Kissel,1 Maria-Magdalena Georgescu. The Sept4 Septin Locus Is Required for Sperm Terminal Differentiation in Mice. Developmental Cell, Vol. 8,353-364, March, 2005,
    
    37.Zhang, J., Kong, C, Xie, H., McPherson, P. S., Grinstein, S. and Trimble, W. S.(1999). Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458-1467. 544.
    38.Xie, H., Surka, M., Howard, J. and Trimble, W. S. (1999). Characterization of the mammalian septin H5: distinct patterns of cytoskeletal and membrane association from other septin proteins. Cell Motil. Cytoskeleton 43, 52-62.
    
    39. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4:99-110.
    
    40. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695-5707.
    
    41. Hsu K, Look AT. Turning on a dimer: new insights into MLL chimeras. Cancer Cell 2003;4:81-83.
    
    42. McIlhatton MA, Burrows JF, Donaghy PG, Chanduloy S, Johnston PG, Russell SE. Genomic organization, complex splicing pattern and expression of a human septin gene on chromosome 17q25.3. Oncogene 2001; 20: 5930-5939.
    
    43. Burrows JF, Chanduloy S, Mcllhatton MA, et al. Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J Pathol 2003; 201: 581-588.
    
    44. Russell SE, Mcllhatton MA, Burrows JF, et al. Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res 2000; 60: 4729-4734.
    
    45. Kalikin LM, Sims HL, Petty EM. Genomic and expression analyses of alternatively spliced transcripts of the MLL septinlike fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 2000; 63:165-172.
    
    46. Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature 2003; 422: 775-781.
    
    47. Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004; 304: 242-248.
    
    48. Smith AE, Helenius A. How viruses enter animal cells. Science 2004; 304:237-242.
    
    49. Sibley LD. Intracellular parasite invasion strategies. Science 2004; 304: 248-253.
    
    50. Cossart P, Pizarro-Cerda J, Lecruit M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Biol Sci 2003; 13: 23-31.
    
    51. Pizarro-Cerda J, Jonquieres R, Gouin E, Vandekerckhove J, Garin J, Cossart P. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell Microbiol 2002; 4: 101-115.
    
    52. Tran van Nhieu Caron E, Hall A, Sansonetti PJ. IpaC induces actin polymerisation and filopodia formation during Shigella entry into epithelial cells. EMBO J 1999;18: 3249-3262.
    
    53. Frischknecht F, Way M. Surfing pathogens and the lessons learned for actin polymerisation. Trends Cell Biol 2001; 11: 30-38.
    
    54. Byers, B. (1976) J. Cell Biol. 69, 717-721
    
    55. Byers, B. (1981) in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (Strathern, J. N., Jones, E. W. and Broach, J. R., eds), pp.59-96, Cold Spring Harbor Laboratory
    
    56. Schafer DA. Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol 2002; 14: 76-81.
    
    57. van der Wouden JM, Maier O, van Uzendoorn SC, Hoekstra D. Membrane dynamics and the regulation of epithelial cell polarity. Int Rev Cytol 2003; 226:127-164.
    
    58. Hsu SC, Hazuka CD, Foletti DL, Scheller RH. Targeting vesicles to specific sites on the cell membrane : the role of the sec6/8 complex. Trends Cell Biol 1999; 9:150-153.
    
    59. Litchfield DW , Bosc DG, Canton DA, et al. Functional specializa—tion of CK2 isoforms and characterization of isoform—specific binding partners[J]. Mol Cell Biochem, 2001, 227(1-2): 21-29.
    
    60. Hmed K, Gerber DA, Cochet C. Joining the cell survival squad: an emerging role for protein kinase CK2[J]. Trends Cell Biol, 2002, 12(5): 226-223.
    
    61. Marin O, Samo S, Boschetti M , et al. Unique features of HIV—1 Rev protein phosphorylation by protein kinase CK2(casein kinase · 2)[J]. FEBS Lett, 2000,481(1): 63-67.
    
    62. Pinna LA. Protein kinase CK2: a challenge to canons [J]. J Cell Sci, 2002, 115(20):3873-3878.
    63.Ilhol O,Cochet C.Protein kinase CK2 and can cer:further clues are accumulating[J].Bull Cancer,2002,89(3):261-265.
    64.Litchfield DW.Protein kinase CK2:structure,regulation an d role in cellular decisions of life and death[J].Biochem J,2003,369(Pt1):I-15.
    65.Faust RA,Niehans GA,Gapany M,et al.Subcellular immunolocal-279 ization of protein kinase CK2 in normal and carcinoma cells[J].Int JBiochem Cell Biol,1999,31(9):941-949.
    66.Seldin DC,Leder P.Casein kinase Ⅱ alpha transgene-induced mR-rine lymphoma:relation to theileriosis in cattle[J].Science,1995,267(5199):894497.
    67.Landesman-Bollag E,Channavajhaha PL,CardifRD,et al.p53 deficiency an d misexpression of protein kinase CK2alpha collaboratein the development of thymic lymphomas in mice[J].Oncogene,1998,16(23):2965-2974.
    1.Pollard TD,Eamshaw WC.Cell Biology.WB Saunders:Philadelphia,2002.
    2.Sanders SL,Field CM.Cell division.Septins in common? CurrBiol 1994;4:907-910.
    3.Chant J.Septin scaffolds and cleavage planes in Saccharomyces.Cell 1996;84:187-190.
    4.Cooper JA,Kiehart DP.Septins may form a ubiquitous familyof cytoskeletal filaments.J Cell Biol 1996;134:1345-1348.
    5.Longtine MS,DeMarini D J,Valencik ML,et al.The septins:roles in cytokinesis and other processes.Curr Opin Cell Biol1996;8:106-119.
    6.Hartwell LH.Genetic control of the cell division cycle in yeast(Ⅳ).Genes controlling bud emergence and cytokinesis.Exp CellRes 1971;69:265-276.
    7.Byers B,Goetsch L.A highly ordered ring of membrane associated filaments in budding yeast.J Cell Biol.1976;69:717-721.
    8.DiDomenico B J,Brown NH,Lupieella J,Greene JR,Yanko M,Koltin Y:Homologs of the yeast neck filament sssodated germs:isolation and sequence analysia of Candida albicans CDC3 and CDCIG Mol Gen Genet 1994,242:689-698.
    9.Momany M,Morrell JL,Hams SD,Hamer JE:Sepfum formation In Aspergillus nidulans.Can J Bat I gg5,in press.
    10.Neufeld TP,Rubin GM:The Drosophila peanut gene Is required for cytokinesla and encodes a protein aimilar to yeast putative bud neck filament proteins.Cell 1994,77:371-379.
    11.Fares HF,Peifer M,Pringle JR:Localization and possible functions of Drosophila septlns.Mol Biol Cell 1995,6:1843-185g.
    12.Nottenburg C,Gallatin WM,St.John T:Lymphocyte HEV adhealon variants differ In the expression of multiple gene sequences.Gene 1990,95:279-284.
    13.Kato K:A collection of eDNA danes with specific expression patterns In mouse brain.EurJNeurosci 1990,2:704-711.
    14.Kumar S,Tomooka Y,Node M:Identification of a set of genes with developmentally down-ragulated expression In the mouse brain.Biochem Biophys Res Commun 1992,185:1155-1161.
    15.Nakateuru S,Sudo K,Nakmura Y:Molecular cloning of a novel human eDNA homologous to CDC10 In Seccharomyces cerevisiae.Biochem Biophys Res Commun 1 gg4,202:82-87,
    16.Leipe DD,Wolf YI,Koonin EV,Aravind L.Classification and evolution of P-loop GTPases and related ATPases.J Mol Bio12002;317:41-72.
    17.Field,C.M.and Kellog,D.(1999).Septins:cytoskeletal polymers or signalling GTPases? Trends Cell Biol.9,387-394.
    18.Sheffield P J,Oliver C J,Kremer BE,Sheng S,Shao Z,Macara IG.Borg/septin interactions and the assembly of mammalian septin heterodimers,trimers,and filaments.JBiol Chem 2003;278:3483-3488.
    19.Casamayor A,Snyder M.Molecular dissection of a yeast septin:distinct domains are required for septin interaction,localization,and function.Mol Cell Biol 2003;23:2762-2777.
    20.Nguyen TQ,Sawa H,Okano H,White JG.The C elegans septin genes,uric-59and unc-61,are required for normal postembryonic cytokinesis and morphogenesis but have no essential function in embryogenesis.J Cell Sci 2000;113:3825-3837.
    21.Kinoshita M.The septins.Genome Bio12003;4:236-243.
    22.Kinoshita M.Assembly of mammalian septins.JBiochem(Tokyo) 2003;134:491-496.
    23.Macara IG,Baldarelli R,Field CM,et al.Mammalian septins nomenclature.Mol Biol Cell 2002;13:4111-4113.
    24.Ian G.Macara,Richard Baldarelli,Christine M.Field,Michael Glotzer,Mammalian Septins NomenclatureMolecular Biology of the Cell Vol.13,4111-4113,December 2002
    25.Saraste M,Sibbald PR,Wittinghofer A.The P-loop - a common motif in ATP-and GTP-binding proteins.Trends Biochem Sci 1990;15:430-434.
    26.Bourne HR,Sanders DA,McCormick F.The GTPase superfamily:conserved structure and molecular mechanism.Nature 1991;349:117-127.
    27.Liu J,Rost B.NORSp:predictions of long regions without regular secondary structure.Nucleic AcidRes 2003;31:3833-3835.
    28.Dueber JE,Yeh B J,Chak K,Lim WA.Reprogramming control of an allosteric signaling switch through modular recombination.Science 2003;301:1904-1908.
    29.Casamayor A,Snyder M.Molecular dissection of a yeast septin:distinct domains are required for septin interaction,localization,and function.Mol Cell Biol 2003;23:2762-2777.
    30.Fares H,Peifer M,Pringle JR.Localization and possible functions of Drosophila septins.MolBiol Cell 1995;6:1843-1859.
    31.Frazier JA,Wong ML,Longtine MS,et al.Polymerization of purified yeast septins:evidence that organized filament arrays may not be required for septin function.J Cell Biol 1998;143:737-749.
    32.Mendoza M,Hyman AA,Glotzer M.GTP binding induces filament assembly of a recombinant septin.Curr Bio12002;12:1858-1863.
    33.Field CM,Kellogg D.Septins:cytoskeletal polymers or signalling GTPases?Trends Cell Biol 1999;9:387-394.
    34.Field CM,al-Awar O,Rosenblatt J,Wong ML,Alberts B,Mitchison TJ.A purified Drosophila septin complex forms filaments and exhibits GTPase activity.J Cell Biol 1996;133:605-616.
    35.Kinoshita M,Kumar S,Mizoguchi A,et al.Nedd5,a mammalian septin,is a novel cytoskeletal component interacting with actin-based structures.Genes Dev 1997;11:1535-1547.
    36.Oegema K,Desai A,Wong ML,Mitchison TJ,Field CM.Purification and assay of a septin complex from Drosophila embryos.Methods Enzymol 1998;298:279-295.
    37.Kim HB,Haarer BK,Pringle JR.Cellular morphogenesis in Saccharomyces cerevisiae cell cycle:localisation of the CDC3 gene product and the timing of events at the budding site.J Cell Biol 1991;112:535-544.
    38.Neufeld TP,Rubin GM.The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins.Cell 1994;77:371-379.
    39.Kinoshita M,Field CM,Coughlin ML,Straight AF,Mitchison TJ.Self- and actin-templated assembly of mammalian septins.Dev Cell 2002;3:791-802.
    40.Field,C.M.et al.(1996)J.CellBiol.133,605-616
    41.Kinoshita,M.et al.(1997) Genes Dev.11,1535-1547
    42.Mendoza M,Hyman AA,Glotzer M.GTP binding induces filament assembly of a recombinant septin.Curr Bio12002;12:1858-1863.
    43.
    44.Nguyen TQ,Sawa H,Okano H,White JG.The C elegans septin genes,uric-59and unc-61,are required for normal postembryonic cytokinesis and morphogenesis but have no essential function in embryogenesis. J Cell Sci 2000;113:3825-3837.
    
    45. Neufeld TP, Rubin GM. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 1994; 77: 371-379.
    
    46. Adam JC, Pringle JR, Peifer M. Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization. Mol Biol Cell 2000; 11:3123-3135.
    
    47. Gladfelter AS, Pringle JR, Lew DJ: The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 2001, 4:681-689
    
    48. Frazier JA, Wong ML, Longtine MS, Pringle JR, Mann M, Mitchison TJ, Field C:Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J Cell Biol 1998, 143:737-749.
    
    49. Oegema K, Savoian MS, Mitchison TJ, Field CM: Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J Cell Biol 2000, 150:539-552.
    
    50. Kinoshita A, Noda M, Kinoshita M: Differential localization of septins in the mouse brain. J Comp Neurol 2000, 428:223-239.
    
    51. Elias T. Spiliotis, Makoto Kinoshita, W. James Nelson: A Mitotic Septin Scaffold Required for Mammalian Chromosome Congression and Segregation SCIENCE 2005,305:1781-1785
    
    52. Gladfelter AS, Pringle JR, Lew DJ: The septin cortex at the yeast mother-bud neck. Curr Opin Microbiol 2001, 4:681-689.
    
    53. Cid VJ, Jimenez J, MolinaM, Sanchez M, Nombela C, Thorner JW: Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology 2002, 148:2647-2659.
    
    54. Longtine MS, Bi E: Regulation of septin organization and function in yeast.Trends Cell Biol 2003, 13:403-409.
    
    55. Versele M, Thorner J: Some assembly required: yeast septins provide theinstructionmanual. Trends Cell Biol 2005,15:414-424.
    
    56. Irazoqui JE, Lew DJ. Polarity establishment in yeast. J Cell Sci 2004; 117:2169-2171.
    
    57. Faty M, Fink M, Barral Y. Septins: a ring to part mother and daughter. Curr Genet 2002; 41: 123-131.
    
    58. Nakatsuru S,Sudo K,NakmuraY: Molecular cloning of a novel human cDNA homologous to CDC10 in Saccharomyces crevisiae. Biochem Biophys Res Commun 1994 202: 82-87
    
    59. Toda S, Kajii Y, Sato M, Nishikawa T. Reciprocal expression of infant- and adult-preferring transcripts of CDCrel-1 septin gene in the rat neocortex. Biochem Biophys Res Commun 2000; 273: 723-728.
    
    60. Holger Kissel,1 Maria-Magdalena Georgescu. The Sept4 Septin Locus Is Required for Sperm Terminal Differentiation in Mice. Developmental Cell, Vol. 8,353-364, March, 2005
    
    61. Zhang, J., Kong, C, Xie, H., McPherson, P. S., Grinstein, S. and Trimble, W. S. (1999). Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr. Biol. 9, 1458-1467.
    
    62. Xue, J., Xin, W., Malladi, C. S., Kinoshita, M., Milburn, P. J., Lengyel, I., Rostas,J. A. P. and Robinson, P. J. (2000). Phosphorylation of a new brain-specific septin,G-septin, by a cGMP-dependent protein kinase. J. Biol. Chem. 275, 10047-10056.
    
    63. Hsu, S. C, Hazuka, C. D., Roth, R., Foletti, D. L., Heuser, J. and Scheller, R. H.(1998). Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111-1122.
    
    64.Beites C. L., Xie, H., Bowser, R. and Trimble, W. S. (1999). The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nature Neurosci. 2, 434-439.
    
    65. Caltagarone, J., Rhodes, J., Honer, W. G. and Bowser, R. (1998). Localization of a novel septin protein, hCDCrel-1, in neurons of human brain. NeuroReport 9,2907-2912.
    
    66. Megonigal MD, Rappaport EF, Jones DH, et al. t(11;22) (q23;q11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A 1998; 95: 6413-6418.
    
    67. Tatsumi K, Taki T, Taniwaki M, et al. The CDCREL1 gene fused to MLL in de novo acute myeloid leukemia with t(11;22)(q23;q11.2) and its frequent expression in myeloid leukemia cell lines. Genes Chromosomes Cancer 2001; 30: 230-235.
    
    68. Ono R, Taki T, Taketani T, et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. Cancer Res 2002; 62:333-337.
    
    69. Fu JF, Liang DC, Yang CP, Hsu JJ, Shih LY. Molecular analysis of t(X;11)(q24;q23) in an infant with AML-M4. Genes Chromosomes Cancer 2003;38: 253-259.
    
    70. Kim HJ, Ki CS, Park Q, et al. MLL/SEPTIN6 chimeric transcript from inv ins(X;11)(q24;q23q13) in acute monocytic leukemia: report of a case and review of the literature. Genes Chromosomes Cancer 2003; 38: 8-12.
    
    71. Slater DJ, Hilgenfeld E, Rappaport EF, et al. MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene 2002; 21: 4706-4714.
    
    72. Borkhardt A, Teigler-Schlegel A, Fuchs U, et al. An ins(X;11) (q24;q23) fuses the MLL and the Septin 6/KIAA0128 gene in an infant with AML-M2. Genes Chromosomes Cancer 2001; 32: 82-88.
    
    73. Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with at(11;17)(q23;q25).Proc Natl Acad Sci USA 1999; 96: 6428-6433.
    
    74. Taki T, Ohnishi H, Shinohara K, et al. AF17q25, a putative septin family gene,fuses the MLL gene in acute myeloid leukemia with t(11; 17) (q23;q25). Cancer Res 1999; 59: 4261-4265.
    75. Yamamoto K, Shibata F, Yamaguchi M, Miura O. Fusion of MLL and MSF in adult de novo acute myelomonocytic leukemia (M4) with t(11;17)(q23;q25). Int J Hematol 2002; 75: 503-507.
    
    76. Kojima K, Sakai I, Hasegawa A, et al. FLJ10849, a septin family gene, fuses MLL in a novel leukemia cell line CNLBC1 derived from chronic neutrophilic leukemia in transformation with t(4;11)(q21;q23). Leukemia 2004; 18: 998-1005
    
    77. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003; 4:99-110.
    
    78. Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001; 20: 5695-5707.
    
    79. Hsu K, Look AT. Turning on a dimer: new insights into MLL chimeras. Cancer Cell 2003; 4: 81-83.
    
    80. Sorensen AB, Lund AH, Ethelberg S, Copeland NG, Jenkins NA, Pedersen FS.Sintl, a common integration site in SL3-3-induced T-cell lymphomas, harbors a putative proto-oncogene with homology to the septin gene family. J Virol 2000;74:2161-2168.
    
    81. Sorensen AB, Warming S, Fuchtbauer EM, Pedersen FS. Alternative splicing,expression, and gene structure of the septin-like putative proto-oncogene Sintl.Gene 2002; 285: 79-89.
    
    82. Russell SE, McIlhatton MA, Burrows JF, et al. Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res 2000; 60: 4729-4734.
    
    83. Kalikin LM, Sims HL, Petty EM. Genomic and expression analyses of alternatively spliced transcripts of the MLL septinlike fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 2000; 63:165-172.
    
    84. Robertson C, Church SW, Nagar HA, Price J, Hall PA, Russell SE. Properties of SEPT9 isoforms and the requirement for GTP binding. J Pathol 2004; 203:519-527.
    
    85. Montagna C, Lyu MS, Hunter K, et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 2003; 63: 2179-2187.
    
    86. Burrows JF, Chanduloy S, Mcllhatton MA, et al. Altered expression of the septin gene, SEPT9, in ovarian neoplasia. J Pathol 2003; 201: 581-588.
    
    87. Sager R. Expression genetics in cancer: shifting the focus from DNA to RNA.Proc Natl Acad Sci U S A 1997; 94: 952-955.
    
    88. Kim DS, Hubbard SL, Peraud A, Salhia B, Sakai K, Rutka JT. Analysis of mammalian septin expression in human malignant brain tumours. Neoplasia 2004;6: 168-178.
    
    89. Kostic B, Shaw PH. Isolation and characterisation of sixteen novel p53 response genes. Oncogene 2000; 19: 3978-3987.
    
    90. Gadea G, Lapasset L, Gauthier-Rouviere C, Roux P. Regulation of Cdc42 mediated morphological effects: a novel function for p53. EMBO J 2002; 21: 2372-2382.
    
    91. Joberty G, Perlungher RR, Macara IG. The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. Mol Cell Biol 1999; 19: 6585-6597.
    
    92. Joberty G, Perlungher RR, Sheffield PJ, et al. Borg proteins control septin organization and are negatively regulated by Cdc42. Nature Cell Biol 2001; 3:861-866.
    
    93. Koshelev YA, Kiselev SL, Georgiev GP. Interaction of the S100A4 (Mts1) protein with septins Sept2, Sept6, and Sept7 in vitro. Dokl Biochem Biophys 2003;391: 195-197.
    
    94. Floyd S, De Camilli P. Endocytosis proteins and cancer: a potential link? Trends Cell Biol 1998; 8:299-301.
    
    95. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GCBIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nature Genet 1996;14: 69-77.
    
    96. De Camilli P, Thomas A, Cofiell R, et al. The synaptic vesicleassociated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer.J Exp Med 1993; 178: 2219-2223.
    
    97. Xiao GH, Shoarinejad F, Jin F, Golemis EA, Yeung RS. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem 1997; 272: 6097-6100.
    
    98. Lim DS, Kirsch DG, Canman CE, et al. ATM binds to betaadaptin in cytoplasmic vesicles. Proc Natl Acad Sci USA 1998; 95: 10 146-10 151
    
    99. Kinoshita A, Kinoshita M, Akiyama H, et al. Identification of septins in neurofibrillary tangles in Alzheimer's disease. Am J Pathol 1998; 153:1551-1560.
    
    100. Kinoshita A, Noda M, Kinoshita M. Differential localization of septins in the mouse brain. J Comp Neurol 2000; 428: 223-239.
    
    101. Sakai K, Kurimoto M, Tsugu A, Hubbard SL, Trimble WS, Rutka JT.Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol 2002; 57: 169-177.
    
    102. Cheon MS, Fountoulakis M, Dierssen M, Ferreres JC, Lubec G. Expression profiles of proteins in fetal brain with Down syndrome. J Neural Transm Suppl 2001; 61:311-319
    
    103. Ihara M, Tomimoto H, Kitayama H, et al. Association of the cytoskeletal GTP-binding protein Sept4/H5 with cytoplasmic inclusions found in Parkinson's disease and other synucleinopathies. J Biol Chem 2003; 278: 24 095-24 102
    
    104. Peng XR, Jia Z, Zhang Y, Ware J, Trimble WS. The septin CDCrel-1 is dispensable for normal development and neurotransmitter release. Mol Cell Biol 2002; 22: 378-387.
    
    105. Simantov R, Peng W. MDMA (Ecstasy) controls in concert a group of genes involved in GAB A neurotransmission. FEBS Lett 2004; 563: 3-6.
    
    106. Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function.Nature 2003; 422: 775-781.
    
    107. Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens.Science 2004;304:242-248.
    108.Smith AE,Helenius A.How viruses enter animal cells.Science 2004;304:237-242.
    109.Sibley LD.Intracellular parasite invasion strategies.Science 2004;304:248-253.
    110.Cossart P,Pizarro-Cerda J,Lecruit M.Invasion of mammalian cells by Listeria monocytogenes:functional mimicry to subvert cellular functions.Trends Biol Sci 2003;13:23-31.
    111.Tran van Nhieu Caron E,Hall A,Sansonetti PJ.IpaC induces actin polymerisation and filopodia formation during Shigella entry into epithelial cells.EMBO J 1999;18:3249-3262.
    112.Collins RF,Schreiber AD,Grinstein S,Trimble WS.Syntaxins 13 and 7 function at distinct steps during phagocytosis.J Immunol 2002;169:3250-3256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700