氧化应激性DNA损伤精子受精后受精卵修复与没食子儿茶素没食子酸酯()抗氧化保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     DNA双链断裂(DNA double-stranded breaks ,DSBs)发生后,哺乳动物细胞将启动一个复杂的蛋白网络对其进行监控及修复:包括细胞周期检验点、DNA损伤修复及凋亡。DNA损伤反应是高度保守的信号感应过程,大致可分为损伤感应、信号传递及信号效应3个部分。损伤感应分子3-磷脂酰肌醇激酶(Phosphoinositide 3-kinaserelated protein kinase,PI-3K)家族成员针对不同的损伤来源被激活后,迅速聚集到损伤位点,快速磷酸化下游的效应激酶,通过协同作用实现对DNA损伤的高度协调反应。H2AX作为PI-3K家族成员的下游分子,其第139位丝氨酸残基被快速磷酸化后形成γH2AX。后者被认为是DNA损伤修复标志物,而ATM所具有的可被DNA损伤相关的染色质修饰所激活的能力,使其成为PI-3K家族中促使H2AX磷酸化最匹配的激酶。同时,ATM也参与了细胞周期检验点的调控:激活的ATM磷酸化细胞周期检验点激酶Chk1或Chk2,激活的Chk1/Chk2进而顺序磷酸化不同的效应因子,并根据DNA的损伤类型,形成不同的信号通路激活细胞周期检验点(G1/S、S、G2/M),使细胞周期停滞,为DNA损伤修复提供时间。
     精液冷冻保存是辅助生殖技术(Assisted reproductive technology,ART)领域中的重要技术,其冻融过程产生过量的活性氧类物质(Reactive oxygen species,ROS)可致精子氧化应激性DNA损伤。ART应用又使DNA损伤精子受精发育成胚胎的机会增加,尤其是卵细胞浆内单精子注射技术(Intra-cytoplasmic sperm injection,ICSI),由于避开了自然受精过程中多种天然屏障对精子的筛选,增加了DNA损伤精子直接进入卵子的风险。DNA损伤精子仍可受精,但成熟精子丧失自我修复DNA损伤的能力,需依赖受精后受精卵内的修复。而目前关于氧化应激性DNA损伤精子受精后受精卵修复的研究十分有限,进行该方向的研究为完善DNA损伤精子受精后受精卵修复理论无疑具有重大意义。
     正是由于精子氧化应激性DNA损伤与ROS密切相关,在ART体系中添加抗氧化保护剂以降低ROS引发的氧化应激性损伤可能是提高ART治疗结局的有效途径之一。没食子儿茶素没食子酸酯(Epigallocatechin-3-gallate ,EGCG)因具有非常强的抗氧化活性,能够保护细胞和DNA免受损害而作为目前众多抗氧化保护剂中最理想的一种,被尝试添加到体外受精培养体系中,表现出促进胚胎发育的作用,但是其对冻融精子受精卵的保护机制尚不清楚。阐明EGCG对氧化应激性DNA损伤精子受精后受精卵的保护机制,不仅为研究冷冻精子氧化应激性DNA损伤防治措施提供理论依据,也为寻找降低DNA损伤精子遗传风险的策略方法提供了新思路。
     目的
     1.初步探讨氧化应激性DNA损伤精子受精后受精卵DNA损伤修复机制。
     2.初步探讨EGCG对氧化应激性DNA损伤精子受精后受精卵的保护机制。
     方法
     1.分别将昆明(KunMing,KM)小鼠精子放入新鲜精子获能液、加1mMH_2O_2的精子获能液中,5%CO_2、37℃培养箱孵育1.5小时左右,得到新鲜精子和氧化应激性DNA损伤精子,调整精子浓度为1-2.5×10~6个/ml,分别进行体外受精获得正常对照组及氧化应激性DNA损伤组受精卵。采用免疫荧光法检测正常对照组及氧化应激性DNA损伤组原核期胚胎中pSer1981-ATM、pSer345-Chk1及pThr68-Chk2焦点的形成并进行比较。
     2.依据受精液和胚胎培养液中是否添加EGCG,将氧化应激性DNA损伤组受精卵分两组:未添加组受精液和胚胎培养液中未添加EGCG;添加组受精液和胚胎培养液中均添加了17.5μg/ml EGCG。从受精后16.5小时至23.5小时,分别对未添加组及添加组的受精率、二细胞形成情况及四细胞形成情况进行观察,每小时观察1次,计算受精率、一细胞卵裂率及二细胞卵裂率并进行比较;选择未添加组及添加组上述各观察时间点的受精卵,免疫荧光法检测pSer1981-ATM焦点的形成并进行比较。
     结果
     1.免疫荧光法检测各组受精卵中pSer1981-ATM信号,发现正常对照组受精卵中pSer1981-ATM、pSer345-Chk1及pThr68-Chk2均无信号;氧化应激性DNA损伤组中可见较强的pSer1981-ATM荧光信号及pSer345-Chk1荧光信号,pThr68-Chk2则未见明显信号。
     2.未添加组的受精率、一细胞卵裂率及二细胞卵裂率分别为45.2%、100%及61.5%,添加组的受精率、一细胞卵裂率及二细胞卵裂率分别为44.5%、97.8%及71.3%,添加组与未添加组相比,受精率、一细胞卵裂率及二细胞卵裂率差别均无统计学意义(P>0.05)。从受精后16.5小时至受精后23.5小时,未添加组的一细胞卵裂率依次是21%、34%、68%、86%、89%、91%、96%、98%;添加组的一细胞卵裂率依次是32%、70%、83%、87%、89%、90%、95%、96%;对各个时间点添加组及未添加组的一细胞卵裂率进行比较发现,受精后17.5小时和受精后18.5小时(相当于第一次有丝分裂细胞周期的晚G2期)的一细胞卵裂率差别有统计学意义(P<0.05),其它时间点的一细胞卵裂率差别无统计学意义(P>0.05)。以受精后时间为自变量,一细胞卵裂率为因变量建立函数,以一细胞卵裂率为50%的时间点作为观测点,当一细胞胚胎卵裂率为50%时,未添加组为受精后18.28598小时,添加组为受精后17.10280小时,添加组比未添加组提前约1小时进入分裂。未添加组和添加组pSer1981-ATM荧光信号强度分别为0.008327±0.006603和0.0196±0.010347,差别有统计学意义(P<0.05)。
     结论
     1.氧化应激性DNA损伤精子受精后DNA损伤的修复依赖于卵母细胞中储存的mRNA和蛋白质,可能通过ATM启动了受精卵DNA损伤修复机制的同时,ATM还可能激活Chk1启动细胞周期检验点,使细胞分裂发生延迟,从而为修复赢得时间。
     2. EGCG主要作用于受精后第一个细胞周期,加快受精卵进入卵裂的速度、延长第一次卵裂的持续时间;EGCG可能促进了氧化应激性DNA损伤精子受精后受精卵内ATM介导的损伤修复。
Foreword
     Mammalian cell will initiate a complex protein’network in response to DNA double-stranded breaks (DSBs), which includes cell cycle checkpoint, DNA damage repair and apoptosis. DNA damage signal transduction pathway is a highly conserved one, which could be devided into three parts: sensors, transducers and effectors. Phosphoinositide 3-kinaserelated protein kinases (PI-3K) family are activated according to different DNA damage sources and quickly recruited to the damage site.It phosphorylates downstream kinases, which work cooperatively in order to carry out the concordant cellular responses to DNA damage, including H2AX, which is rapidly phosphorylated at Ser139 to formγH2AX once DSBs occurs and is characterized as the marker of DNA damage. Ataxia telangiectasia mutated (ATM) can be activated by the chromatin modification associated with DNA damage, making it the most match kinase for H2AX phosphorylation of PI-3K family. ATM also regulates cell cycle checkpoint and apoptosis: Activated ATM phosphorylates and activates cell cycle checkpoint kinases Chk1 and Chk2, mediates cascade reaction and amplifys damage signal.Chk1/Chk2 phosphorylates its effectors to activate cell cycle checkpoints (G1/S, S, and G2/M) by different signaling pathways according to different DNA sources, so as to stop the cell cycle and provide time for DNA repair.
     Semen cryopreservation is an very important technology in assisted reproductive technology (ART) field. But it could produces excessive reactive oxygen species (ROS) during frozen-thawed process and induces oxidative damge on sperm.With the application of ART, especially intra-cytoplasmic sperm injection(ICSI),which avoids multiple natural barriers for sperm screening, the opportunity raises for DNA-damge sperm to fertilize and develop into embryo. DNA-damage sperm still can fertilize, while it is unable to repair damaged DNA for mature sperm, and depends on the repair of zygotes after fertilization. However, the research on repair in zygote fertilized with oxidative stress-induced DNA-damage sperm is limited.
     Because of the association between oxidative stress-induced DNA-damage and ROS, it may be beneficial for ART outcomes by adding antioxidant into the ART system to reduce the DNA damage caused by ROS. Epigallocatechin-3-gallate (EGCG) is the best candidate due to its strongly anti-oxidation activity and protective effect on cell and DNA. It was added to the ART system and found it could promote embryo development, but the mechanism remains unknown.
     Objective
     1. To explore repair mechanism in zygote fertilized with oxidative stress-induced DNA-damage sperm.
     2. To explore protective mechanism of EGCG on zygote fertilized with oxidative stress-induced DNA-damage sperm.
     Methods
     1. KM mouse sperm was added to capacitation agent of fresh or 1mM H_2O_2 for capacity in 5%CO_2,37℃incubator for 1.5 hours,so as to get fresh and oxidative DNA-damage sperm for IVF, adjusting the concentration of sperm to 1-2.5×106/ml. It was devided into two groups: the control group without H_2O_2 in capacitation agent and the oxidative DNA -damage group with 1mM H_2O_2 in capacitation agent, pSer1981-ATM ,pSer345-Chk1 and pThr68-Chk2 signaling in zygotes of pronucleus stage was detected by immunofluorescence and analyzed.
     2. The zygotes fertilized with oxidative DNA-damage sperm were got from the first part and divided into two groups: the blank group without EGCG neither in insemination agent nor development agent; the experimental group with 17.5μg/ml EGCG both in insemination agent and development agent. Zogotes of above two groups were observed every one hour from 16.5 hours post-insemination(hpi) to 23.5 hpi and analyzed their fertilization rate,one- and two-cell cleavage rate. PSer1981-ATM signaling in zygotes of above the observation time between the blank group and the experimental group were detected by immunofluorescence and analyzed.
     Results
     1. PSer1981-ATM and pSer345-Chk1 signaling were found in zygote with treated group while no positive result was found in the control group. No pThr68-Chk2 signaling was found in neither the control group nor the oxidative DNA-damage group.
     2. The fertilization rate, the cleavage rate of one- and two-cell embryos was 44.5%、97.8% and 71.3% respectively of the experimental group, 45.2%、100% and 61.5% respectively of the blank group,there was no statistical significance for fertilization rate, one- and two-cell cleavage rate between them(P>0.05).The cleavage rate of one-cell embryos of the experimental group was 32%、70%、83%、87%、89%、90%、95%、96% respectively from 16.5 hpi to 23.5 hpi,while the cleavage rate of one-cell embryos of the blank group was 21%、34%、68%、86%、89%、91%、96%、98% respectively. The cleavage rate of one-cell embryos at the same observation time between the blank group and the experimental group was analyzed and found that there was statistical significance for them when at 17.5hpi and 18.5hpi(P<0.05),while there was no statistical significance at the other observation time (P>0.05).The zygotes in the experimental group entered M phase about one hour earlier when determined as the time at which 50% of the embyros had cleaved. PSer1981-ATM signaling was found in the experimental group and it was stronger than that in the blank group, fluorescence analysis showed the intensity was 0.0196±0.010347 and 0.008327±0.006603 for the experimental group and the blank group respectively,there was statistical significance(P<0.05).
     Conclusions
     1. It relied on the mRNA and proteins stored in oocytes for the repair of oxidative DNA-damage sperm post fertilization. It might be ATM that initiated the DNA damage repair mechanism in zygotes; meanwhile, ATM might activate Chk1, initiate the cell cycle checkpoint and delay cell division, so as to gain time for repair.
     2. It was possible that EGCG mediated the DNA damage repair mechanism by accelerating the speed for entering M phase and prolonging the duration of M phase; EGCG might promote the repair of zygote fertilized with oxidative DNA-damage sperm which mediated by ATM
引文
[1] Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247-254.
    [2] Sancar A, Lindsey-Boltz LA, Unsal-Ka?maz K,et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85.
    [3] Liu WF, Yu SS, Chen GJ,et al. DNA damage checkpoint, damage repair, and genome stability. Yi Chuan Xue Bao. 2006;33(5):381-390.
    [4] T. Stiff, M. O’Driscoll, N. Rief, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation, Cancer Res. 64.2004; 2390–2396.
    [5] I.M. Ward, J. Chen, Histone H2AX is phosphorylated in an ATRdependent manner in response to replicational stress, J. Biol. Chem.276 .2001;47759–47762.
    [6] Berkovich E, Monnat RJ Jr, Kastan MB. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 2007, 9:683-690.
    [7] Downs JA, Nussenzweig MC, Nussenzweig A. Chromatin dynamics and the preservation of genetic information. Nature 2007, 447:951-958.
    [8] Smerdon MJ, Tlsty TD, Lieberman MW. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin. Biochemistry 1978,17:2377-2386.
    [9] Bakkenist, C. J., and M. B. Kastan. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003.421:499–506
    [10] Zou, L., and S. J. Elledge. Sensing DNA damage through ATRIP recognition of replication protein A (RPA)-ssDNA complexes. Science ,2003.300:1542–1548
    [11] D.W. Chan, B.P. Chen, S. Prithivirajsingh,et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks, Genes Dev. 16 .2002;2333–2338
    [12] Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. 2001. 11:71–77
    [13] Pehrson JR, Fried VA. MacroH2A, a core histone containing a large nonhistone region. Science.1992, 257:1398-1400.
    [14] Burma S , Chen BP , Murphy M, et al. ATM phosphorylates histone,H2AX in response to DNA double-strand breaks . J Biol Chem,2001 , 276(45) : 42 462 - 42 467.
    [15] Zha S, Guo C, Boboila C,et al. ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature.2011,13;469(7329):250-254.
    [16] Zha S, Sekiguchi J, Brush JW, et al. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc Natl Acad Sci U S A. 2008;8;105(27):9302-9306
    [17] You Z, Bailis JM, Johnson SA, et al. Rapid activation of ATM on DNA flanking double-strand breaks. Nat Cell Biol, 2007;9(11):1311-1318
    [18] Guo JY, Yamada A, Kajino T, et al. Aven-Dependent Activation of ATM Following DNA Damage. Curr Biol, 2008;18(13):933-942
    [19] Chtterjee S,Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling,freezing and thawing.Mol Reprod Dev,2001,59:451-458
    [20] Zhiling Li, Qionglin Lin, Rongju Liu, et al..Protective effects of ascorbate and catalase on human spermatozoa during cryopreservation. J Androl;2009,Oct.15.
    [21] Moustafa MH, Sharma RK, Thornton J, et al. Relationship between ROS production,apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004.;19(1):129-138
    [22] Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006 ;16;250(1-2):66-69
    [23] Kemal Duru N, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000 ;74(6):1200-1207
    [24] Ozmen B, Koutlaki N, Youssry M, et al. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online, 2007;14(3):384-395
    [25] Hamatani T, Carter MG, Sharov AA,et al. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell, 2004;6:117-131
    [26] Brandriff B, Pedersen RA. Repair of the ultraviolet-irradiated male genome in fertilized mouse eggs. Science. 1981 .27;211(4489):1431-1433
    [27] Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod. 1996;2(1):46-51
    [28] Derijck A, van der Heijden G, Giele M, et al. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008.1;17(13):1922-1937
    [29] Schultz RM. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update, 2002, 8:323-331
    [30] Braude P, Bolton V, Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature, 1988, 332 (6163):459-461
    [31] Camous S, KopecnyV, Fléchon JE. Autoradiographic detection of the earliest stage of[3H]-uridineincorporationintothecow embryo. Biol Cell, 1986, 58(3):195-200
    [32] Marchetti F, Essers J, Kanaar R, et al. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A. 2007 ;104(45):17725-17729
    [33] Jaroudi S, Kakourou G, Cawood S, et al. Expression profiling of DNA repair genes in human oocytes and blastocysts using microarrays. Hum Reprod. 2009;24(10):2649-2655
    [34] Derijck AA, van der Heijden GW, Giele M, et al. gammaH2AX signalling during sperm chromatin remodelling in the mouse zygote. DNA Repair (Amst), 2006;5(8):959-971
    [35] Barton TS, Robaire B, Hales BF. DNA damage recognition in the rat zygote following chronic paternal cyclophosphamide exposure. Toxicol Sci, 2007;100(2):495-503
    [36] O.A. Sedelnikova, E.P. Rogakou, I.G. Panyutin, et al. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody, Radiat.Res. 158 (2002) 486–492.
    [37] Yukawa M, Oda S, Mitani H, et al. Deficiency in the response to DNA double-strand breaks in mouse early preimplantation embryos. Biochem Biophys Res Commun. 2007;358(2):578-584.
    [38] Matsuoka S, Huang M, Elledge SJ. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998;282(5395):1893-1897
    [39] Melchionna R, Chen XB, Blasina A,et al. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol. 2000;2(10):762-765
    [40] Sanchez Y, Wong C, Thoma RS, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997;277(5331):1497-1501
    [41] Liu Q, Guntuku S, Cui XS,et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14(12):1448-1459
    [42] Peng A, Lewellyn AL, Maller JL. Undamaged DNA transmits and enhances DNA damage checkpoint signals in early embryos. Mol Cell Biol, 2007;27:6852-6862.
    [43] Zheng P, Schramm RD, Latham KE. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biol Reprod, 2005, 72(6):1359-1369.
    [44] Chen P, Gatei M, O'Connell MJ,et al. Chk1 complements the G2/M checkpoint defect and radiosensitivity of ataxia-telangiectasia cells. Oncogene. 1999;18(1):249-256
    [45] Epel D. Protection of DNA during early development: adaptations and evolutionary consequences. Evol Dev. 2003;5(1):83-88
    [46] Guo Z, Kumagai A, Wang SX,et al. Requirement for ATR in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 2000, 14:2745-2756
    [47] Guo Z, Dunphy WG. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol Biol Cell 2000, 1:1535-1546
    [48] Takai H, Tominaga K, Motoyama N,et al, Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev. 2000;14(12):1439-1447.
    [49] Jack MT, Woo RA, Hirao A, Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc Natl Acad Sci U S A. 2002,99(15):9825-9829.
    [50] Finkielstein CV, Lewellyn AL, Maller JL. The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage. Proc Nat AcaSci USA 2001; 98:1006-1011
    [51] Wang ZG, Yu SD, Xu ZR. Improvement in bovine embryo production in vitro by treatmentwith green tea polyphenols during in vitro maturation of oocytes. Anim Reprod Sci.2007;100(1-2):22-31
    [52]唐华荣,温武军,杨桂文.EGCG抗炎及抗肿瘤活性的相关性,高校理科研究,2010;36(433):494
    [53] Qi X,Reactive oxygen species scavenging activities and inhibition on DNA oxidative damage of dimeric compounds from the oxidation of (-)-epigallocatechin-3-O-gallate. Fitoterapia. 2010;81(3):205-209
    [54] Aktas O, Prozorovski T, Smorodchenko A, et al. Green tea epigallocatechin-3- gallate mediates T cellular NF- kappa B inhibition and exerts neurop rotection in autoimmune encephalomyelitis.Immunol,2004;173 (9): 5794- 5800
    [55] Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells.Arch Biochem Biophys. 2000;376(2):338-346
    [56]廖系晗,金翠兰.茶多酚及其抗癌机理的研究进展.时珍国医国药2006;17(9):1783-1785
    [57] Thakur VS, Ruhul Amin AR, Paul RK, et al. p53-Dependent p21-mediated growth arrest pre-empts and protects HCT116 cells from PUMA-mediated apoptosis induced by EGCG. Cancer Lett. 2010;296(2):225-232
    [58] Wang ZG, Yu SD, Xu ZR. Effect of supplementation of green tea polyphenols on the developmental competence of bovine oocytes in vitro. Braz J Med Biol Res, 2007; 40(8):1079-1085
    [59] Tatemoto H,Ootaki K,Shigeta K,et al.Enhancement of developmental competence after in vitro fertilization of porcine oocytes by treatment with ascorbic acid 2-O-alpha-glucoside during in vitro maturation.Biol Reprod,2001,65(6):1800-1806
    [60] Elbling L, Herbacek I, Weiss RM, et al. Hydrogen peroxide mediates EGCG-inducedantioxidant protection in human keratinocytes. Free Radic Biol Med. 2010;49(9):1444-1452
    [61] Spinaci M,Volpe S,De Ambrogi M,et al. Effect of epigallocatechin -3-gallate(EGCG) on in vitro maturation and fertilization of porcine oocytes.Theriogenology.2008;69(7):877-885
    [62] Rao S D, Pagidas K. Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res. 2010;30(7):2519-2523
    [63] Tachibana H,Koga K, Fujimura Y,et al. A receptor for green tea polyphenol EGCG. Nat. Struct. Mol. Biol. 2004.11:380–381
    [64] He Z, Tang F, Ermakova S, et al. Fyn is a novel target of (?)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation. Mol. Carcinog. 2008.47:172–183
    [65] Aggarwal B B, Sethi G, Ahn KS, et al.Targeting signal transducer and activator of transcription for prevention and therapy of cancer: modern target but ancient solution. Ann. NY Acad. Sci. 2006.1091:151–169
    [66] Ishii T, Mori T, Tanaka T, et al. Covalent modification of proteins by green tea polyphenol (?)-epigallocatechin-3-gallate through autoxidation. Free Radic. Biol. Med. 2008.45:1384–1394
    [67] Nomura,M, Kaji,A, He,Z, et al, Inhibitory mechanisms of tea polyphenols on the ultraviolet B-activated phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem, 276:46624-46631.
    [68] Fernandez-Capetillo O, Chen HT, Celeste A, Ward I,et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 2002;4:993-997.
    [69] Meador JA, Zhao M, Su Y, et al. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents. Oncogene, 2008;27:5662-5671.
    [70] Yue YP, Zhu ZH, Yu DD, et al. Analysis of cell cycle’s correlation ofγ-H2AX. Chinese-German Journal of Clinical Oncology 2008;7(10):555–559.
    [71] Klammer H, Kadhim M, Iliakis G. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Res. 2010,1;70(21):8498-8506
    [1] Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247-254.
    [2] Sancar A, Lindsey-Boltz LA, Unsal-Ka?maz K,et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39-85.
    [3] Abraham RT, Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev, 2001, 15:2177-2196.
    [4] Bartek J, Lukas J, Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell, 2003, 3:421-429.
    [5] Harper JW, Elledge SJ, The DNA damage response: ten years after. Mol Cell, 2007, 28:739-745.
    [6] Kastan MB, Bartek J, Cell-cycle checkpoints and cancer. Nature, 2004, 432:316-323.
    [7] Shiloh Y, ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer,2003, 3:155-168.
    [8] Liu WF, Yu SS, Chen GJ, et al. DNA damage checkpoint, damage repair, and genome stability. Yi Chuan Xue Bao. 2006;33(5):381-390.
    [9] T. Stiff, M. O’Driscoll, N. Rief, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation, Cancer Res. 64.2004; 2390–2396.
    [10] I.M. Ward, J. Chen, Histone H2AX is phosphorylated in an ATR ependent manner in response to replicational stress, J. Biol. Chem.276 .2001;47759–47762.
    [11] Berkovich E, Monnat RJ Jr, Kastan MB, Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol, 2007, 9:683-690.
    [12] Downs JA, Nussenzweig MC, Nussenzweig A, Chromatin dynamics and the preservation of genetic information. Nature, 2007, 447:951-958.
    [13] Smerdon MJ, Tlsty TD, Lieberman MW, Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin. Biochemistry, 1978,17:2377-2386.
    [14] Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11- Rad50-Nbs1 complex. Science, 2005;308:551–554.
    [15] Paull TT, Lee JH. The Mre11/Rad50/Nbs1 complex and its role as a DNA-double strand break sensor for ATM. Cell Cycle, 2005;4:737–740.
    [16] Abraham RT, Tibbetts RS. Guiding ATM to broken DNA. Science 2005;308:510–511.
    [17] Downs JA, Cote J. Dynamics of chromatin during the repair of DNA double-strand breaks. Cell Cycle 2005;4:1373–1376.
    [18] Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks.Oncogene 2007;26:7749–7758.
    [19] Bakkenist, C. J., and M. B. Kastan. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003.421:499–506
    [20] Zou, L., and S. J. Elledge. Sensing DNA damage through ATRIP recognition of replicationprotein A (RPA)-ssDNA complexes. Science ,2003.300:1542–1548
    [21] Kumagai, A., J. Lee, H. Y. Yoo, W. G. Dunphy. TopBP1 activates the ATR-ATRIP complex. Cell ,2006.124:943–955
    [22] D.W. Chan, B.P. Chen, S. Prithivirajsingh,et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks, Genes Dev. 16 .2002;2333–2338
    [23] Zha S, Sekiguchi J, Brush JW, et al. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc Natl Acad Sci U S A. 2008;8;105(27):9302-9306
    [24] Schwarz JK, Lovly CM, Piwnica-Worms H, Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol Cancer Res, 2003, 1:598-609
    [25] Melchionna R, Chen XB, Blasina A, et al, Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol, 2000, 2:762-765.
    [26] Ahn JY, Schwarz JK, Piwnica-Worms H, et al, Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res ,2000, 60:5934-5936.
    [27] Lee CH, Chung JH, The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J Biol Chem ,2001, 276:30537-30541.
    [28] Zhao H, Piwnica-Worms H: ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 2001, 21:4129-4139.
    [29] Donzelli M, Draetta GF: Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 2003, 4:671-677.
    [30] Sanchez, Y., et al. Conservation of the Chk1 checkpoint pathway in mammals of DNA damage to Cdk regulation through Cdc25. Science, 1997, 277: 1497-501
    [31] Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science.1997;277(5331):1501-1505.
    [32] Furnari, B., et al., Cdc25 Mitotic Inducer Targeted by Chk1 DNA Damage Checkpoint Kinase. Science, 1997,277, 1495-1497
    [33] Ohi, R., and K. L. Gould. Regulating the onset of mitosis. Curr. Opin.Cell Biol. 1999. 11:267–273
    [34] Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer, 2009;100:1425-1433
    [35] Ouyang G, Yao L, Ruan K, et al. Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int, 2009;33:1237-1244
    [36] Parker LL, Piwnica-Worms H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science. 1992;257(5078):1955-1957.
    [37] Booher RN, Holman PS, Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem. 1997;272(35):22300-22306.
    [38] Liu F, Stanton JJ, Wu Z, et al, The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol Cell Biol. 1997 ;17(2):571-583.
    [39] Yarden RI, Pardo-Reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet. 2002;30(3):285-289.
    [40] Kyriakis JM, Avruch J, Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev, 2001, 81:807-869
    [41] Hirose Y, Katayama M, Stokoe D, et al, The p38 mitogen-activated protein kinase pathway links the DNA mismatch repair system to the G2 checkpoint and to resistance to chemotherapeutic DNA-methylating agents. Mol Cell Biol, 2003, 23:8306-8315
    [42] Manke IA, Nguyen A, Lim D, et al, MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell, 2005,17:37-48
    [43] Ando T, Kawabe T, Ohara H, et al. Involvement of the interaction between p21 and proliferating cell nuclear antigen for the maintenance of G2/M arrest after DNA damage. J Biol Chem. 2001;276(46):42971-42977.
    [44] Xiong Y, Zhang H, Beach D. D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell. 1992;71(3):505-514.
    [45] Harper JW, Adami GR, Wei N, et al. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;19;75(4):805-816.
    [46] Kawabe T, Suganuma M, Ando T, et al,. Cdc25C interacts with PCNA at G2/M transition. Oncogene. 2002;21(11):1717-1726.
    [47] Powell SN, DeFrank JS, Connell P, et al,. Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res. 1995;55(8):1643-1648.
    [48] Hermeking H, Lengauer C, Polyak K,et al, 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997, 1(1):3-11.
    [49] Chan TA, Hermeking H, Lengauer C,et al, 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature. 1999;401(6753):616-620.
    [50] Piwnica-Worms H. Cell cycle. Fools rush in. Nature. 1999;401(6753):535-537.
    [51] Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20(15):1803-1815.
    [52] DeSimone JN, Bengtsson U, Wang X, et al, Complexity of the mechanisms of initiation and maintenance of DNA damage-induced G2-phase arrest and subsequent G1-phase arrest: TP53-dependent and TP53-independent roles. Radiat Res. 2003;159(1):72-85.
    [53] Megumi Toyoshima,Analysis of p53 Dependent Damage Responsein Sperm-irradiated Mouse Embryos, Radiat. Res.2009,50, 11–17
    [54] McGarry TJ. Geminin deficiency causes a Chk1-dependent G2 arrest in Xenopus.Mol Biol Cell. 2002;13(10):3662-3671.
    [55] Takai1 H,Tominaga1 K,Motoyama1 N,et al.Aberrant cell cycle checkpoint function andearly embryonic death in Chk1(?)/(?) mice, Genes Dev. 2000, 14, 1439–1447
    [56] L(?)brich M, Jeggo PA. The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer. 2007;7(11):861-869.
    [57] Terzoudi, G. I., Manola, K. N., Pantelias, G. E. et al, Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells. Cancer Res. 2005, 65, 11292–11296
    [58] George Iliakis, Ya Wang, Jun Guan,et al, DNA damage checkpoint control in cells exposed to ionizing radiation, Oncogene , 2003,22, 5834–5847
    [59] Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 2002;4:993-997.
    [60] Meador JA, Zhao M, Su Y, Narayan G, et al. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents. Oncogene, 2008;27:5662-5671
    [61] Michalis Fragkos, Jaana Jurvansuu,Peter Beard, H2AX Is Required for Cell Cycle Arrest via the p53/p21 Pathway, MOLECULAR AND CELLULAR BIOLOGY, 2009, 10(29):2828–2840
    [62] Peng A, Lewellyn AL, Maller JL. Undamaged DNA transmits and enhances DNA damage checkpoint signals in early embryos. Mol Cell Biol, 2007;27:6852-6862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700