肌动蛋白网架体系在粘附培养哺乳动物细胞胞质分裂变形中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞质分裂中的细胞变形是一个由多种因素共同调节,复杂而又井然有序的力学变形过程。细胞的形态改变需要在时间和空间上调节多种生物大分子。细胞肌动蛋白网架体系做为细胞的主要支架,是驱动细胞变形的主要因素,研究胞质分裂过程中肌动蛋白网架体系在细胞变形中的作用,不仅可以在细胞形态变化-骨架装配变化-细胞力学特性变化之间建立起力学-生物学联系,进一步了解胞质分裂的主动变形及调控方式,还能够为与胞质分裂相关的疾病提供理论支持,为组织、器官再生提供细胞力学依据。
     本文以贴壁生长的正常大鼠肾上皮细胞(NRK)为研究对象,采用微管吸吮、局部生化试剂刺激、显微图像动态采集、分析和荧光染色等生物力学和生物学实验技术,研究了肌动蛋白网架体系在胞质分裂赤道板内陷发生前后的不同时期,细胞整体皮层和子细胞极区皮层的不同区域内对胞质分裂变形的作用。以细胞骨架对细胞力学特性的贡献为依据,对细胞骨架蛋白异常和相应细胞力学特性改变引起的胞质分裂变形进程缺陷、细胞形态改变、子细胞变形能力改变和分裂沟细胞间桥动态变形做出了相关研究和分析,探索哺乳动物细胞骨架在胞质分裂变形的作用机理。主要工作内容和结论如下:
     1.对正常和细胞骨架抑制剂作用下的NRK细胞的力学特性进行了测量和比较。实验中采用抑制肌动蛋白聚合的细胞松弛素D、抑制微管蛋白聚合的秋水仙素和肌球蛋白Ⅱ的ATP酶活性抑制剂blebbistatin分别处理细胞,应用微管吸吮技术和相关力学模型测定了不同处理组细胞的弹性模量和表面张力,并且分析了NRK细胞在准静态吸入负压作用下的变形。发现肌动蛋白对细胞的力学特性贡献最为明显,肌球蛋白Ⅱ的马达活性对细胞力学特性的贡献具有独立性,并且肌球蛋白Ⅱ与肌动蛋白的作用强弱是细胞力学特性的重要调节因素;
     2.通过生化抑制剂在胞质分裂变形的不同时期和区域作用,分析了胞质分裂过程中不同骨架蛋白对变形进程的影响。
     在分裂沟内陷发生前后两个不同时期,向细胞整体或单侧极区皮层施加细胞骨架蛋白抑制剂,分析肌动蛋白和与之作用的微管蛋白、肌球蛋白Ⅱ在细胞变形中的作用。实验表明不同区域的细胞骨架蛋白在不同变形阶段对胞质分裂变形进程影响有显著差异,并且肌动蛋白和肌球蛋白Ⅱ的相互作用可以调节肌动蛋白抑制剂对胞质分裂变形进程的抑制作用。另一方面,发现子细胞的高变形能力是肌动蛋白纤维与肌球蛋白Ⅱ的马达活性共同调节的,并且低水平的肌球蛋白Ⅱ马达活性有利于细胞变形;
     3.对单侧极区皮层骨架蛋白抑制剂作用下的细胞进行胞质分裂间桥变形和子细胞变形的分析。
     结合细胞间桥变细形态学参数及细胞表面张力的变化,对比分析了细胞间桥变形曲线,结果显示极区皮层肌动蛋白网络决定着细胞间桥变形的趋势,单侧子细胞的表面张力控制着细胞间桥变细的速度。在高变形能力子细胞的形态分析中发现,细胞间桥变形中D0.5的点可以描述子细胞变形的趋势,并且依据实验结果对间桥变细动力学进行改良。改良后的结果显示了在D05位置,细胞完成了对整体表面张力的调节。
     由此得出在细胞胞质分裂变形过程中,肌动蛋白网架体系中的肌动蛋白是细胞力学特性最主要决定因素,肌动蛋白和肌球蛋白Ⅱ的相互作用是细胞力学特性和变形的主要调节因素。在不同变形时期,肌动蛋白和肌球蛋白Ⅱ通过调节自身装配和相互之间的作用,控制着细胞不同区域的力学特性,协调整体皮层表面张力的改变,控制着胞质分裂中的变形步骤。
Cytokinesis of animal cells is a mechanical deformation process characterized by a complex coordinated sequence of cytoskeletal changes. The ability to change cellular shape requires that the distribution of different classes of molecules be regulated both spatially and temporally. The actin filament network contributes structure and support for the cells and is the major cytoskeletal system that drives cytokinesis. Analysis the roles of actin cytoskeletal network during cytokinesis not only establishes mechanical-biological relationship among cell shape, cytoskeletal organization and cellular mechanical properties which can help us understand the process and mechanism of active changing cellular shape, but also provide theoretical evidence for revealing the mystery of disease related cytokinesis failure and provide cell mechanical mechanism for replenishment of tissues and organs.
     In our study, micropipette aspiration technique, local cytoskeletal inhibitors application technique, micro-image dynamic collecting and analysis system, and immunofluorescence method were used to explore the effects of actin network in different phases and different regions during cytokinesis using normal rat kidney epithelial cells (NRK). The investigation analyzed on cells shape changes, defects of cytokinesis, deformability of daughter cells and furrow-thinning dynamics based on the cellular mechanical properpties. The main work and conclusions were as follows:
     1. Determined on the cellular mechanical properties of cells. Cells treated with cytochalasin D (inhibitor of actin polymerization), colchicine (inhibitor of microtubule polymerization) and blebbistatin (inhibitor of myosinⅡATPase activity). The difference of Elastic modulus and surface tension were tested with by micropipette aspiration technique and its relative theoretical model. The results indicated that disturbance of the process of assembling actin meshwork would cause most dramatic reduction of cellular mechanical. The activity of myosinⅡATPase performed an independent mechanism to influence the mechanical parameters without changing of cytoskeleton, and the interaction between actin and myosinⅡacted as an important regulator on cellular mechanical properties.
     2. Discussed the effects of cytoskeletal disturbing to the process of cell shape changes by releasing cytoskeletal inhibitors in different phases and regions during cytokinesis.
     Our study released cytoskeletal inhibitors to cells in two different phases during cytokinesis delimited by furrow ingression. In addition, cytoskeltal inhibitors were applied near the polar region of dividing cells. The results showed distinct roles of cytoskeleton in different phases during cytokinesis. Our experiment found that the interaction between actin and myosinⅡcould diluted the disrupt effects to cytokinesis arousing by abnormal assembling actin. On the other hand, actin-myosinⅡinteraction determined the higher level deformability of daughter cell, and lower activity of myosinⅡATPase facilitated this process.
     3. Investigating the dynamic of intercellular bridge and deformation of daughter cells by polar cortical treating with cytoskeletal inhibitors.
     Our results showed that locally released CD or colchicine at the polar region dramatically influenced the trajectories of intercellular bridge thinning. Disturbing single polar cortical actin induced transformation of the intercellular bridge thinning process, and polar cortical tension controlled deformation time of intercellular bridges.
     On the other hand, our study analyzed the surface area changes of higher level deformability daughter cells and their intercellular bridge shape. The results showed that bridge morphology parameters D0.5 acted as a dividing point to describe shape changes of daughter cells. Moreover, we adjusted furrow-thinning dynamical parameters based on our experiment. The results indicated that cells had regulated the balance of cortical tension before D0.5.
     Our study indicated that actin network controlled each step of cell shape changes duiring cytokinesis. Actin acted as the decisive factor in cell mechanical properties and cell shape changes. The interaction between actin and myosinⅡundertook the prominent regulator relying on dynamical organization. This interaction controlled mechanical properties of different cellular regions, regulated cortical tension, manipulated the process of cell shape changes.
引文
[1]Dey P. Aneuploidy and malignancy:An unsolved equation. J Clin Pathol [J]. 2004,57:1245-1249.
    [2]Giet R., Petretti C., Prigent C. Aurora kinases, aneuploidy and cancer, a coincidence or real link?. Trends Cell Biol [J].2005,15:241-250.
    [3]Cheung A., Dantzig J., Hollingworth S., ect. A small-molecule inhibitor of skeletal muscle myosin Ⅱ. Nat Cell Biol [J].2002,4:83-88.
    [4]Beltman J. B., Maree A., de Boer R. Analysing immune cell migration. Nature Reviews Immunology [J].2009,9:789-798.
    [5]翟中和王喜中,丁明孝.细胞生物学[M].北京:高等教育出版社,319-394.
    [6]Rappaport R. B. Cytokinesis in animal cells. International Review of Cytology [J]. 1971,31:169-213.
    [7]Effler J. C., Iglesias P. A., Robinson D. N. Regulating cell shape during cytokinesis [M]. Berlin:Springer Verlag,2006:204-221.
    [8]Gittes F., Mickey B., Nettelton J., ect. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations shape. J Cell Biol. [J].1993,120:923-934.
    [9]Ingber D. E. Cellular tensegrity:defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. [J].1993,104:613-627.
    [10]Wang N., Naruse K., Stamenovi D., etc. Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci U S A [J].2001,98:7765-7776.
    [11]Wang N., Stamenovic D. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am J Physiol Cell Physiol. [J].2000,279:188-194.
    [12]Svitkina T. M., Verkhovsky A. B., Borisy G. G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. [J].1996,135:991-997.
    [13]Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science [J].1993,260:1124-1130.
    [14]Chicurel M. E., Chen C. S., Ingber D.E.:Cellular control lies in the balance of forces. Current Opinion in Cell Biology [J].1998,10:232-239.
    [15]Robinson D., Spudich J. Towards a molecular understanding of cytokinesis. Trends Cell Biol [J].2000,10:228-237.
    [16]Reichl E., Effler J., Robinson D. The stress and strain of cytokinesis. Trends Cell Biol [J]. 2005,15:200-206.
    [17]Scholey J. M., Mogilner A. cell division. Nature [J].2003,422:746-752.
    [18]Basu R., Chang F. Shaping the actin cytoskeleton using microtubule tips. Curr Opin Cell Biol. [J].2007,19:88-94.
    [19]Holmes K. C., Popp D., Gebhard W., ect. Atomic model of the actin filament. Nature [J]. 1990,347:44-49.
    [20]Bowie J. U., Luthy R., Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science [J].1991,253:164-170.
    [21]Pollard T. D., Borisy G. G.:Cellular motility driven by assembly and disassembly of actin filaments. Cell [J].2003,112:435-465.
    [22]Rayment I., Rypniewski W., Schmidt-Base K., etc. Three-dimensional structure of myosin subfragment-1:a molecular motor. Science [J].1993,261:50-58.
    [23]Spudich J. The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology [J].2001,2:387-391.
    [24]Finer J., Simmons R., Spudich J. Single myosin molecule mechanics:piconewton forces and nanometre steps. Nature [J].1994,368:113-119.
    [25]Vale R. D., Spudich J., Griffis E. R. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J. Cell Biol. [J].2009,186:727-738.
    [26]Robinson D., Cavet G., Warrick H., etc. Quantitation of the distribution and flux of myosin-Ⅱ during cytokinesis. BMC Cell Biol. [J].2002,3:1-11.
    [27]Schroeder T. The contractile ring. Cell and Tissue Research [J].1970,109:431-449.
    [28]Rosenblatt J., Cramer L., Baum B., etc. Myosin Ⅱ-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell [J].2004,117:361-372.
    [29]Sabry J. H., Moores S. L., Ryan S., etc. Myosin heavy chain phosphorylation sites regulate myosin localization during cytokinesis in live cells. Am Soc Cell Biol. [J]. 1997,8:2605-2615.
    [30]Murphy C., Rock R., Spudich J. A myosin Ⅱ mutation uncouples ATPase activity from motility and shortens step size. Nature cell biology [J].2001,3:311-315.
    [31]Clarke M., Spudich J. Nonmuscle contractile proteins:the role of actin and myosin in cell motility and shape determination. Annual Review of Biochemistry [J].1977,46:797-822.
    [32]Pollard T. D. Mechanics of cytokinesis in eukaryotes. Current Opinion in Cell Biology [J]. 2010,22:50-56.
    [33]Kovar D. R., Pollard T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci U S A [J]. 2004,101:14725-14740.
    [34]Zumdieck A., Kruse K., Bringmann H., etc. Stress generation and filament turnover during actin ring constriction. Edited by:Public Library of Science; 2007. vol 2.]
    [35]Pelham R. J., Chang F. Actin dynamics in the contractile ring during cytokinesis in fission yeast. Nature [J].2002,419:82-86.
    [36]Gunsalus K. C., Bonaccorsi S., Williams E., etc. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. Journal of Cell Biology [J].1995,131(5):1243-1236.
    [37]Guha M., Zhou M., Wang Y. L. Cortical actin turnover during cytokinesis requires myosin II. Curr Biol. [J].2005,15:732-736.
    [38]Gardel M. L., Shin J. H., MacKintosh F. C., etc. Elastic behavior of cross-linked and bundled actin networks. Science [J].2004,304:1301-1305.
    [39]Girard K., Chaney C., Delannoy M., etc. Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. The EMBO Journal [J]. 2004,23:1536-1546.
    [40]Faix J., Weber I., Mintert U., etc. Recruitment of cortexillin into the cleavage furrow is controlled by Racl and IQGAP-related proteins. The EMBO Journal [J]. 2001,20:3705-3715.
    [41]Robinson D., Spudich J. Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. Journal of Cell Biology [J].2000,150:823-838.
    [42]Robinson D., Ocon S., Rock R., etc. Dynacortin is a novel actin bundling protein that localizes to dynamic actin structures. Journal of Biological Chemistry [J]. 2002,277:9088-9095.
    [43]Whitehead I. P., Zohn I. E., Der C.J. Rho GTPase-dependent transformation by G protein-coupled receptors. Oncogene [J].2001,20:1547-1555.
    [44]Aspenstrom P. The Rho GTPases have multiple effects on the actin cytoskeleton. Exp Cell Res [J].1999,246:20-25.
    [45]Bement W. M., Benink H. A., von Dassow G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol. [J].2005,170:91-101.
    [46]Piekny A. J., Glotzer M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol. [J].2008,18:30-36.
    [47]Beach J. R., Egelhoff T. T. Myosin Ⅱ recruitment during cytokinesis independent of centralspindlin-mediated phosphorylation. J Biol Chem [J].2009,284:27377-27383.
    [48]Hickson G. R., Echard A., O'Farrell P. H.:Rho-kinase controls cell shape changes during cytokinesis. Curr Biol. [J] 2006,16:359-370.
    [49]O'Connell C., Ahmed S. The small GTP-binding protein rho regulates cortical activities in cultured cells during division. Joural of Cell Biology [J].1999,144:305-313.
    [50]Zhang W., Robinson D. N. Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proc Natl Acad Sci U S A [J].2005,102:7186-7191.
    [51]Christine F. R. Cytokinesis in eukaryotes:a mechanistic comparison. Current Opinion in Cell Biology [J].1999,11:68-80.
    [52]Yoneda M., Dan K. Tension at the surface of the dividing sea-urchin egg. Journal of Experimental Biology [J].1972,57:575-587.
    [53]Neujahr R. Three-dimensional patterns and redistribution of myosin Ⅱ and actin in mitotic Dictyostelium cells. J Cell Biol. [J].1997,139:1793-1718/1794.
    [54]Entov V. M., Hinch E.J.:Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J. Non-Newtonian Fluid Mech. [J].1997,72:31-53.
    [55]Matzke R., Jacobson K., Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature cell biology [J].2001,3:607-610.
    [56]Tuxworth R., Cheetham J., Machesky L., etc. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. Journal of Cell Biology [J].1997,138:605-614.
    [57]Nagasaki A., Uyeda T. DWWA, a novel protein containing two WW domains and an IQ motif, is required for scission of the residual cytoplasmic bridge during cytokinesis in Dictyostelium. Molecular Biology of the Cell [J].2004,15:435-446.
    [58]Zang J., Cavet G, Sabry J., etc. On the role of myosin-Ⅱ in cytokinesis:division of Dictyostelium cells under adhesive and nonadhesive conditions. Molecular Biology of the Cell [J].1997,8:2617-2629.
    [59]Nagasaki A., de Hostos E., Uyeda T. Genetic and morphological evidence for two parallel pathways of cell-cycle-coupled cytokinesis in Dictyostelium. Journal of Cell Science [J]. 2002,115:2241-2251.
    [60]Thery M., Bornens M. Cell shape and cell division. Current Opinion in Cell Biology [J]. 2006,18:648-657.
    [61]Yoshigi M., Hoffman L. M., Jensen C. C.,etc. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. Journal of Cell Biology [J].2005,171(2):209-218.
    [62]Novak I. L., Slepchenko B. M., Mogilner A., etc. Cooperativity between cell contractility and adhesion. Physical review letters [J].2004,93(26):268109.
    [63]Palazzo A. F., Eng C. H., Schlaepfer D. D., etc. Localized stabilization of microtubules by integrin-and FAK-facilitated Rho signaling. Science [J].2004,330:836
    [64]DeMali K. A., Barlow C. A., Burridge K. Recruitment of the Arp2/3 complex to vinculin: coupling membrane protrusion to matrix adhesion. Journal of Cell Biology [J]. 2002,159(5):881-887.
    [65]Reilein A., Nelson W. J. APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol. [J].2005,7:463-473.
    [66]Weiner O. D., Neilsen P. O., Prestwich G. D., etc. A PtdInsP3-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol [J].2002,4:509-513.
    [67]Cramer L. P., Mitchison T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol Biol Cell [J]. 1997,8:109-119.
    [68]Kunda P., Baum B. The actin cytoskeleton in spindle assembly and positioning. Trends Cell Biol. [J].2009,19:174-179.
    [69]Kunda P., Pelling A. E., Liu T., etc. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol. [J].2008,18:91-101.
    [70]Thery M., Jimenez-Dalmaroni A., Racine V., etc. Experimental and theoretical study of mitotic spindle orientation. Nature [J].2007,447:493-496.
    [71]Toyoshima F., Nishida E. Spindle orientation in animal cell mitosis:roles of integrin in the control of spindle axis. J Cell Physiol. [J].2007,213:407-411.
    [72]Moore J. K., Li J., Cooper J.A. Dynactin function in mitotic spindle positioning. Traffic [J].2008,9:510-527.
    [73]Severson A. F., Bowerman B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J Cell Biol. [J].2003,161:21-25.
    [74]Suzuki K., Takahashi K. Reduced cell adhesion during mitosis by threonine phosphorylation of b1 integrin. J Cell Physiol. [J].2003,197:297-303.
    [75]Herreros L., Rodr guez-Fernandez J. L., Brown M. C., etc. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem. [J].2000,275:26436.
    [76]Hirota T., Morisaki T., Nishiyama Y., etc. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS 1 tumor suppressor. J Cell Biol. [J].2000,149:1073.
    [77]Pugacheva E. N., Golemis E. A. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. [J]. 2005,7:931-937.
    [78]Mitchison T. J.:Actin based motility on retraction fibers in mitotic PtK 2 cells. Cell Motil Cytoskeleton [J].1992,22:135-151.
    [79]Roux A., Cuvelier D., Nassoy P., etc. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J. [J].2005,24:1530-1537.
    [80]Ingber D. Tensegrity I. Cell structure and hierarchical systems biology. Joural of Cell Sicence [J].2003,116:1157-1173.
    [81]Zhang W., Lister J. Similarity solutions for capillary pinch-off in fluids of differing viscosity. Physical Review Letters [J].1999,83:1151-1154.
    [82]Simson R., Wallraff E., Faix J., etc. Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. Biophysical journal 1998,74:514-522.
    [83]Dai J., Ping H., Hochmuth R., etc. Myosin I contributes to the generation of resting cortical tension. Biophysical journal [J].1999,77:1168-1176.
    [84]Gerald N., Dai J. A role for Dictyostelium racE in cortical tension and cleavage furrow progression. Journal of Cell Biology [J].1998,141:483-492.
    [85]李晓娜.肌球蛋白Ⅱ缺失对粘附状态下哺乳动物细胞胞质分裂影响的研究[D].太原:太原理工大学,2009.
    [86]Hiramoto Y. Mechanical Properties of the Cortex before and during Cleavage a. Annals of the New York Academy of Sciences [J].1990,582:22-30.
    [87]Miyoshi H., Satoh S. K., Yamada E., etc. Temporal change in local forces and total force all over the surface of the sea urchin egg during cytokinesis. Cell Motil Cytoskeleton [J]. 2006,63:208-221.
    [88]Tsai M., Frank R., Waugh R. Passive mechanical behavior of human neutrophils:effect of cytochalasin B. Biophysical journal [J].1994,66:2166-2172.
    [89]Sellers J. Regulation of cytoplasmic and smooth muscle myosin. Current Opinion in Cell Biology [J].1991,3:98-104.
    [90]Wachsstock D., Schwartz W., Pollard T. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophysical journal [J]. 1993,65:205-214.
    [91]Wachsstock D., Schwarz W., Pollard T. Cross-linker dynamics determine the mechanical properties of actin gels. Biophysical journal [J].1994,66:801-809.
    [92]Xu J., Wirtz D., Pollard T. Dynamic cross-linking by a-actinin determines the mechanical properties of actin filament networks. Journal of Biological Chemistry [J]. 1998,273:9570-9576.
    [93]Sato M., Schwarz W., Pollard T. Dependence of the mechanical properties of actin/a-actinin gels on deformation rate. Nature [J].1987,325:828-830.
    [94]Feneberg W., Westphal M., Sackmann E. Dictyostelium cells' cytoplasm as an active viscoplastic body. European Biophysics Journal [J].2001,30:284-294.
    [95]Mitchison J.M., Swann M.M. The mechanical properties of the cell surface I. The cell elastimeter. Journal of Experimental Biology [J].1954,31:443-460.
    [96]Theret D., Levesque M., Sato M., etc. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. Journal of biomechanical engineering [J].1988,110:190-199.
    [97]张全有.正常及骨关节炎软骨细胞力学特性研究.太原:太原理工大学,2006.
    [98]Reichl E. M., Ren Y., Morphew M. K., etc. Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol. [J]. 2008,18:471-480.
    [99]Cole K. Surface forces of the Arbacia egg. Journal of Cellular and Comparative Physiology [J].1932,1:1-9.
    [100]Revenu C., Athman R., Robine, S., etc. The co-workers of actin filaments:from cell structures to signals. Nat Rev Mol Cell Biol [J].2004,5:635-646.
    [101]Chaudhuri O., Parekh S., and Fletcher, D. Reversible stress softening of actin networks. Nature [J].2007,445:295-298.
    [102]Svaldo L.T., Cavalleri O., Krol S., etc. Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol [J].2006,124,723-731.
    [103]Straight A. F., Field C. M. Microtubules, membranes and cytokinesis. Curr Biol [J]. 2000,10:R760-770.
    [104]Glotzer M. Cleavage furrow positioning. The journal of cell biology [J]. 2004,164:347-351.
    [105]Liang W., Licate L., Warrick H., etc. Differential localization in cells of myosin II heavy chain kinases during cytokinesis and polarized migration. BMC Cell Bio [J]. 2002,13:19.
    [106]Effler J.C., Kee Y.S., Berk J.M., etc. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr Biol [J].2006,16:1962-1967.
    [107]Yoshizaki H., Ohba Y., Parrini, M.C., etc. Cell type-specific regulation of RhoA activity during cytokinesis. J Biol Chem [J].2004,279:44756-44762.
    [108]Motegi F., Nakano K., Mabuchi, I. Molecular mechanism of myosin-Ⅱ assembly at the division site in Schizosaccharomyces pombe. J Cell Sci [J].2000,113:1813-1825.
    [109]Wang Y.L. The mechanism of cortical ingression during early cytokinesis:thinking beyond the contractile ring hypothesis. Trends Cell Biol [J].2005,15:581-588.
    [110]Fishkind D.J., Wang Y.L. Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol [J].1993,123:837-848.
    [111]李晓娜,安美文,王立,等.肌球蛋白Ⅱ缺失细胞胞质分裂机制研究.力学学报[J].2009,41(3):390-396.
    [112]Zheng F., Basciano C., Li J., Kuznetsov A.V. Fluid dynamics of cell cytokinesis— Numerical analysis of intracellular flow during cell division. International Communications in Heat and Mass Transfer [J].2007,34:1-7.
    [113]O'Connell C., Warner A., Wang Y. Distinct roles of the equatorial and polar cortices in the cleavage of adherent cells. Current Biology [J].2001,11:702-707.
    [114]Pujara P. A model for cell division. Journal of Biomechanics [J].1979,12:293-299.
    [115]Akkas N. On the biomechanics of cytokinesis in animal cells. Journal of Biomechanics [J].1980,13:977-988.
    [116]Greenspan H. On the dynamics of cell cleavage. J Theor Biol [J].1977,65:79-99.
    [117]Zinemanas D., Nir, A. On the viscous deformation of biological cells under anisotropic surface tension. Journal of Fluid Mechanics Digital Archive [J].1988,193:217-241.
    [118]Straight A., Limouze J. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Sicence [J].2003,299:1743-1747.
    [119]Ingber D. E. Tensegrity Ⅱ. How structural networks influence cellular information processing networks. J Cell Sci. [J].2003,116:1397.
    [120]Rosenblatt N., Hu S., Chen J., etc. Distending stress of the cytoskeleton is a key determinant of cell rheological behavior. Biochem Biophys Res Commun. [J].2004, 321:617-622.
    [121]Essig M., Friedlander G. Tubular shear stress and phenotype of renal proximal tubular cells. J Am Soc Nephrol. [J].2003,14:S33.
    [122]Sato M., Theret D., Wheeler L., etc. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. Journal of biomechanical engineering [J].1990,112:263-268.
    [123]徐晋斌,樊学军.微管吸吮和半无限体模型在鼠成骨细胞粘弹性研究中的应用.生物物理学报[J].1998,14:360-366.
    [124]Chien S., Sung K.L. Effect of colchicine on viscoelastic properties of neutrophils. Biophys J.[J].1984,46:383-386.
    [125]Ren Y., Effler J. C., Norstrom M., etc. Mechanosensing through Cooperative Interactions between Myosin II and the Actin Crosslinker Cortexillin I. Curr Biol [J]. 2009,19:1421-1428.
    [126]Francis J. A, Surya M. N., Robert K., etc. Global cytoskeletal control of mechanotransduction in kidney epithelial cells. Experimental Cell Research [J]. 2004,301:23-30.
    [127]Zhang Q., Wang X., Wei X., etc. Characterization of viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model. Osteoarthritis and Cartilage [J].2008,16:837-840.
    [128]牟娇,何作云,冯兵,等.细胞骨架对肥大心肌细胞生物力学特性的作用研究.中国微循环[J].2009,13:148-153.
    [129]Pollard T. D., Cooper J. A. Actin, a central player in cell shape and movement. Science [J] 2009,326:1208-1212.
    [130]Shannon K. B., Canman J. C., Ben M. C., etc. Taxol-stabilized microtubules can position the cytokinetic furrow in mammalian cells. Mol Biol Cell [J].2005,16:4423-4436.
    [131]Strickland L. I., Donnelly E. J., Burgess D.R. Induction of cytokinesis is independent of precisely regulated microtubule dynamics. Mol Biol Cell [J].2005,16:4485-4494.
    [132]Zhou M., Wang Y. L. Distinct pathways for the early recruitment of myosin Ⅱ and actin to the cytokinetic furrow. Mol Biol Cell [J].2008,19:318-326.
    [133]Hiramoto Y. Cell division without mitotic apparatus in sea urchin eggs. Exp Cell Res [J]. 1956,11:630-636.
    [134]Wang, L., An, M.W., Li X. N. The Cleavage Furrow Contractile Stress Analysis in Dividing NRK Cells.2009,2nd International Conference on Biomedical Engineering and Informatics.
    [135]Burton, K., and Taylor, D. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature [J].1997,385:450-454.
    [136]Robinson D. N., Spudich J. A. Mechanics and regulation of cytokinesis. Curr Opin Cell Biol. [J].2004,16:182-188.
    [137]Duan Y., Gotoh N., Yan Q., etc. Shear-induced reorganization of renal proximal tubule cell actin cytoskeleton and apical junctional complexes. Proc Natl Acad Sci U S A [J]. 2008,105:11418-11423.
    [138]Houchin T., Huang A., West E.R., etc. Spatially patterned gene expression for guided neurite extension. J Neurosci Res [J].2009,87:844-856.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700