几类细胞的生物力学实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞(cell)是生命的实体和生命的基本单位,几乎所有的有机体都是由细胞和细胞的产物所组成。对细胞力学的研究是近十几年来生物力学领域中迅速发展起来的一个前沿课题。众所周知,细胞的形态结构及其功能,细胞的生长、发育、成熟、癌变、增殖、衰老以及死亡,细胞的分化及其调控机理,都和力学有着密切的关系。高技术发展到今天,不但使人们可以看到微观层次的结构形态,而且可以在这一微观层次上操作、控制和测量材料变化过程。如,高倍光学显微镜和显微操作仪的应用,使人们抓住细胞,并测量细胞的物理特性,如红细胞、白细胞、内皮细胞变形的研究,生物大分子与细胞黏附力的研究,存在于细胞内、细胞之间的力学—生化耦合。
     细胞力学实验技术的发展推动了细胞力学的研究,同时也提出了许多新的问题。诸如,细胞实验装置的力学问题的理论分析,在不同实验条件下细胞力学模型的应用等。这些既有复杂又有相当具体的问题是生物力学工作者必须面对,并逐一加以解决的。作者对几类细胞的生物力学实验的几个方面问题做了一些理论和实验研究,取得了一些成果。如,微管吸吮技术和内含不可压缩流体弹性球壳模型在动物卵母细胞透明带杨氏模量研究中的应用等。具体的工作为如下几方面:
     1.从细胞的一种力学模型—液滴模型(droplet model)研究、说明了一类细胞在微管准静吸吮过程出现的失稳问题。采用一定的数—力学近似,导出了细胞准静吸吮过程中,失稳点和失稳临界吸附压强与细胞液滴模型参数、微管内半径的关系式。并与Derganic J等的严格数字计算解比较,在实际应用范围内是符合得相当好的。
     2.传统的、较为简单易行的底部附着拉伸法实验已广泛应用于力学刺激引发的细胞多方面响应研究,而目前对细胞在实验过程的应变张量缺乏定量的理论分析。我们根据细胞加载实验中,成骨类细胞黏附在基底(substrate)的几何形态特征,定量地分析了细胞应变张量与实验装置加载参数的关系,给出了细胞铺展面足够大时,细胞应变张量趋于均匀的极限值——特征张量。引入一个场变量来描述一般情况下细胞应变张量的非均匀性,并导出参数的变化范围与细胞形态几何参数的关系。专家评价:该研究填补了一项空白,理论分析是可靠的、可行的,对今后的这类实验有一定的指导意义。
     3.应变加载设备对细胞拉伸加载的同时,由于培养液的来回流动,细胞会受到流体剪切力的作用。这作用与细胞加载应变相比在不同的加载设备中是否可忽
Cells are the entities and the basic units of life, almost organic bodies are composed of cells and their matrix. Cellular mechanics is an important branch of biological mechanics and has developed rapidly in decades to be a front field of investigation. It is well known that cellular configuration, function, cellular growth, cellular maturity, cacinoma, cellular proliferation, decrepitude, as well as death and diferentiation, are associated with mechanics. Nowaday advanced technologies enable people not only to observate the cellular conformation in microcosmic level but also to manipulate, control and meassure their material change process. For example, with use of microscope and micro-manipulating device people can get hold of cells and measure their physical traits. Such as the metabolic study of red cells, leukocytes endothelial cells, study of adhesive force between biological big molecules and cells, and mechano-chemical coupling that exist commonly inside or between cells.The improvement of experimental techniques promotes cellular biomechanics development. On the other espect, it brings about new problems. For instance, the mechanical analysis of some question occurred in experiment; the application of cellular mechanical models in special experimental technique. Such problems are complex or practical, which we biomechanists have to face and endevour to settle one by one. Author has studied some problems in biomechanical experiments for some kinds of cells, and achieved some outcomes. This dissertation introduce concrete theoritical and experimental work on cellular mechanics in follows:1 .It is generally realized phenomenon in suction experiment of some kind of cells that if the aspiration pressure is larger than a certain threshold, cell flows continuously into the pipette. The point of the threshold aspiration pressure at which the cell can still be held in a stable equilibrium is called the critical point of aspiration. Here we represent a theoretical analysis of the equilibrium behavior and stability of cell by liquid drop model. In the method of analysis, the areal change due to a small movement AL of the portion of the membrane in pipette is given to the first approximation.The threshold pressure and the critical point are shown as simple formulae of the model parameters and inner relative radius of pipette . The results derived from formulas are consistent with rigorous ones by numerical computation in the approximate range.2.Traditional substrate attached cell loading experiments have been applied broadly to
    studies of cellular response to mechanical stimulation in many aspects. Wheras analysis on strain of the cells in such experiment has not been in satisfaction. Based on the morphological character of osteoblast-like cells spreading on substrate in tensile loading experiments, the uniformity of cellular strain tensor is discussed with cellular solid model and droplet model. Characteristic strain tensors of cells are presented for uniaxial or biaxial tensile loading, which are the limit ones when cells flatten enough. A field variable is inducted to describe the variation of strain tensor in normal case, and its deviation can be scaled by a geometrical parameter of cells. This article provides a quantitative strain description in tensile loading experiments for osteoblasts as well as other cells. Experts comment on our study: a study to fill up a blankness in cellular biomechanics; the theoretic analysis is leliable, practical and also instructional to such experiments.3. In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. The flowing conditions of culture fluid in loading systems has been little known, so people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. This is a problem need to be solved in such experiments. Based on the working principle and circle loading parameters, we simplify Navier-Stokes formula to describe the flow of culture fluid on substrates of uniaxial/biaxial flat tensile loading systems and four point bending system. With approximative formula, the distributions of velocity field and shear flow to cells are gained. Results show: shear flows are zero in the middle of substrate for all systems, and they get larger proportionally to distance from middle and elongation magnitude; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al.with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. But they could not provide the wallshear flow in quantity. We estimate the average magnitude of shear stress to cells in their device, and the results are consistant with other experiments'datas about shear flow. Our study makes it possible to differentiate the stimulation of strain to cell proliferation and that of shear flow or the anabolic effect of this two mechanical operation in loading experiments with the devices mentioned above.4.1n suction experiment of baffalo ovum in vitro cultured using micropipette with its
    inner diameter varring from the double thikness of zona pellucida to one third of baffalo ovum diameter, elastic shell model with incompressible liquid inside is adopted to study the mechanical properties of their zona pellucida. Through mechanical analysis, a formula was derived to calculate the Young's modulus of Zona Pellucida from quasi-static measurements. At temperature of 24°C~26°C, 20 mature but with no polocyte cells were tested. The mean Young's modulus value E is 2.2x104 Pa, with the deviation within 30%. The study will provide a effective method for gaining the E of zona pellucida of oocytes in animals, approaching biological function in mechanical aspect, variation of physical or chemical trait in their process.5. Using Flexercell-4000T? Unit, the effects of cyclic mechanical stretch on human adenocarcinoma cell line A549 are studied for time within 4h. The results showed that short time mechanical stimulation could enhance the proliferation rate of A549 cells that subjected to 20% elongation of biaxial stretch at frequency 30 cycles/min. The proliferation responding ratio M(%) vary with the loading time: M(%)=18% for 0.5 h, M(%)=22% for lh and M(%)=5% for 4h. There seems to be a peak of M(%) at cycle number about 1800 cycles. This feature is similar to the human bone derived cells. Further experiment demonstrates that intermittent loading is an effective way to result in high proliferation of the A549 cells for long time. On contrary, prior studies confirmed that continuous loading for long time restrict A549 cells'proliferation.
引文
1.鲁润龙,顾月华。细胞生物学。中国科技大学出版社,合肥(1989)
    2. Norris, C H. The tension at the surface, and other physical properties of the nucleated erythrocyte. J. Cell comp. Physiol., 14(1939): 117-133.
    3. Cole K S. Surface forces of the arbacia egg. J. Cell Comp. Physiol., 1(1932): 1-9.
    4. Mitchsion J M, Swann M M. The mechanical properties of the red cell surface: I. The cell elastimeter. J. Exp. Bio., 31(1954): 443-460.
    5. Rand R P, Burton A C. Mechanical Properties of red cell membrane: I. Membrane stiffness and intracellular pressure. Biophysical J., 4(1964): 115-135.
    6. Wangh R, Evan E A. Thermoelasticity of red blood cell membrane. Biophysical J., 26(1979): 115-132.
    7. Evans E, Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet asperation. Biophysical J., 56(1989): 151-160.
    8. Yeung A, Evans E. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipet. Biophysical J., 56(1989): 139-149.
    9. Sato M, Levesque M J, Nerem R M. An application of the micropipet technique to the measurement of the mechanical properties of cultrured bovine aortic endothelial cells. ASME J. Biomech. Engng., 109(1987): 27-34.
    10. Sato M, et al. Application of the micropipet technique to the measurement of the cultured porcine aortic endothelial cell viscoelastic properties. ASME J. Biomech. Engng., 112(1990): 263
    11. Usami S, Wung S-L, et al. Locomotion forces generated by a polymorphonuclear leukocyte. Biophys. J.,63(1992): 1663-1666.
    12. Skierczynski B A, Usami S, Chien S, Skalak R. Active motion of polymorphonuclear leukocytes in response to chemoattractant in a micropipette. ASME J. Biomech. Engng., 115(1993): 503.
    13. Hochmuth R M. Measuring the mechanical properties of individual human blood cells. ASME. J. Biomech. Engng., 115(1993): 515.
    14. Frank R S, Tsai M A. The behavier of human neutrophils during flow through capillary pores. ASME of J. Biomech. Engng., 112(1990): 277.
    15. Peterson N O, McConnauchey W B, Elson E L. Dependence of locally measured cellular deformability on position on the cell temperature and cytochalasin B. Proc. Of the National Academy of Science, USA, 79(82); 5327-5331.
    16. Zahalak G I, McConnaughey W B, Elson E L. Determination of cellular mechanical properties by cell poking, with an application to leukocytes. ASME of J. Biomech. Engng., 112,(1990): 283.
    17. Daily B, Elson E L, Zahalak G I. Cell poking: determination of the elastic area comressibility modulus of the red cell membrane. Biophys. J., 45(1984): 671.
    18. Tran-Son-Tay R, Sutera S P, Rao P R. Determination of RBC membrane viscosity from rheoscopic observations of tank-treading motion. Biophys. J., 45(1984): 65-72.
    19. Sutera S P, Mueller E R, Zahalak G I. Extensional recovery of an intact erythrocyte from a tank-treading motion. ASME of J. Biomech. Engng., 112,(1990): 250.
    20. Tran-Son-Tay R, Beaty B B, Coffey B E. Effects of cell lysis on the rtheological behaviour of red blood cell suspension. ASME of J. Biomech. Engng., 112(1990): 527.
    21. Tran-Son-Tay R, Beaty B B, Huchmuth R M. Mechanically driven, acoustically trecked, translating-ball rheometer for small opaque samples. Rev. Sci. Instrum., 59(8)(1988): 1399-1404.
    22. Skalak R, Cheng D, Zhu C. Passive deformations and active motion of leukocytes. ASME of J. Biomech. Engng., 112(1990): 295.
    23. Simon S I, Schmid-Schonbein G W, Kinematics of cytoplasmic deformation in neutrophils during active motion. ASME of J. Biomech. Engng., 112(1990): 283.
    24. Evans E A, Skalak R. Mechanical and Thermodynamics of Biomembrane, CRC Press, Boca Raten, Fla.(1990).
    25.何作云,王瑞兴等。临床细胞流变学[M]。重庆大学出版社,1997。111—125。
    26. Ando J, Oiitsuka A, Katayama Y. Intercellular calcium response to directly applied mechanical shearing force in cultured vascular endothelial cells[J]. Biorheology, 1994, 31(1): 57-68.
    27.Koutsouris D. Determination of erythrocyte transit time through micropores[J]. Biorheology, 1988,25:763-772.
    28.0wan I, Burr D B, Turner C H, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain[J]. Am. J. Physiol. 1997,273:C810-C815.
    29. Jones D B, Nolte H, Scholubbers J G, et al. Biomechanical signal transduction of mechanical strain in osteoblast-like cells[J]. Biomaterials, 1991,12:101-110.
    30. Brigton C T, Strafford B, Gross S B, et al. The proliferative and synthetic response of isolated calvarial bone of rats to cyclic biaxial mechanical strain[J]. The Journal Bone and Joint Surgery, 1991, 73A:320-331.
    31. Buckley M J, Banes A J, Jordan R D, et al. The effects of mechanical strain on osteoblasts in vitro[J]. J. Oral Maxillofac Surg., 1990,48:276-282.
    32. Gilbert J A, Weinhold P S, Banes A J, et al. Strain profiles for circular call culture plates containing flexible surfaces employed to mechanically deform cells in vitro[J]. J.Biomechanics, 1994,27:1169-1177.
    33. Fx-4000T? Flexercell Tension Plus V4.0 Users Manual[M]. Publication by Flexcell International Corporation. U.S.A.
    34.Ning Wang, Butter J P. Ingber D E. Mechanotransduction across the cell surface and through the cytoskeleton[J]. Science, 1993,260(21): 1124-1127.
    35.Fung Y C, Liu S Q. Elementary mechanics of endothelium of blood vessel., ASME of J. Biomech. Engng. 115(1993): 1-12.
    36.Nollert M U, Diamond S L, McIntire L Y. Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism. Biotech. And Bioeng., 38,(1991):588-602.
    37.Pappenheimer J R. Passage of molecules through capillary walls. Physiological Review, 33(1953):387-423.
    38.Bagge U, Skalak R, Attefors R. Granulocyte rheology. Advances in Microcirculation.7(1977): 29-48.
    39.Evans and Kukan B. Passive material behaviour of granulocyte based on the large
     deformation and recovery after deformation tests. Blood. 64(1984): 1028-1035)
    40. Needham D, Hochmuth R M. Rapid flow of passive neutrophils into a 4μm pipet and measurement of cytoplasmic viscosity. ASME of J. Biomech. Engng., 112(1990): 269-276.
    41. Dong C, Skalak R, Sung K-L P, Schmid-schonbein G W, Chien S. Passive deformation analysis of human leukocytes. ASME of J. Biomech. Engng., 110(1988): 27-36.
    42.冯元桢。生物力学。科学出版社。北京(1983)。
    43. Cheng L Y. Deformation analysis in cell and developing biology. Part Ⅰ formal methodology. ASME of J. Biomech. Engng., 109(1980): 10.
    44. Cheng L Y. Deformation analysis in cell and developing biology. Part Ⅱ Mechanical experiments on cells. ASME of J. Biomech. Engng., 100(1987): 18.
    45. Dong C R, Skalak R, Sung K-L P, Cytoplasmic rheology of passive neutrophils. Biorheology, 28(1991): 557-567.
    46. Schmid-Schonbein G W, Skalak R. Continuum mechanical model of leukocytes during protoped formation. ASME J. Biomech. Engng., 106(1984): 10-18.
    47. Oster G F, Perelson A S. Cell spreading and motility: a model lamellipod. J. Math, Biol., 21 (1985): 383-388.
    48. Skalak R, Zhu C, Thermodynamics and mechanics of cell activation. Biomechanics of active movement and deformation of cells. Akkas, N(ed.) NATO ASI series, H42, Springer-verlag,(1990) 155-183.
    49. Zhu C, Skalak R. A continuum model of protrusion of pseudopod, Biophys. J., 54(1988): 1115-1137.
    50. Zhu C, Skalak R, Schmid-Schonbein G W, One-dimensional steady continuum model of retraction of pseudopod in leukocytes. ASME of J. Biomech. Engng., 112(1989): 69-77.
    51.樊学军。细胞力学[J]。力学进展。1995,25(2)197-208。
    52.张西正,匡震邦,蔡绍皙等。细胞力学实验技术研究[J]。实验力学,2001,16(1):66-76。
    53. Needham D, Hochmuth RM. A sensitive measure of surface stress in the resting neutrophils[J]. Biophys, 1992; 61: 1664.
    54. Dong C, Skalak R. Leukocytes deformability: finite element modeling of large viscoelastic deformation[J]. Theor Biol, 1992; 158: 173.
    55. Thoumine O, Cardoso O. Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study[J]. Eur Biophys, 1999; 28: 222.
    56. Derganic J, Bozic B, Sventina S, et al. Stability Analysis of micropipette Aspiration of Neutrophils[J]. Biophys, 2000; 79: 153.
    57. Hiramoto Y. Mechanical properties of sea urchin eggs. I. Surface force and elastic modulus of the cell membrane[J]. Exp. CellRes.,1963; 32: 59.
    58. Xu JB, Fan XJ, Zhang HSH, et al. Application of micropipette aspiration and half-space model in the study on viscoelastisity of rat osteoblast[J]. Acta Biophysica Sinica,1998;14(2):360(徐晋斌,樊学军,张火圣等。微管吸吮和半无限体模型在鼠成骨细胞粘弹性研究中的应用[J]。生物物理学,1998;14(2):360
    59.北京农业大学主编。细胞生物学[M]。北京:中国农业出版社,2000年(2版)。
    60. Funahashi H, Ekwall H, Kikuchi K, et al. Transmission electron microscopy studies of the zona reaction in pig oocytes fertilized in vivo and in vitro[J]. Reproduction, 2001; 122: 443-452.
    61. Funahashi H, Ekwall H, Heriberto R M. Zona reaction porcine oocytes fertilized in vivo and in vitro as seen with scanning electron microscopy[J]. Biology of reproduction: 2001; 1437-1442.
    62. Lanyon, L. Functional strain as a determinant for bone remodeling[J]. Calcified Tissue International, 1984, 36: 556-561.
    63. Claes, L., Augat, P., Suger, G.. The effect of axial dynamization to the bone healing under various fracture conditions[M]. Book of Abstracts, BIOMECHANICA, 1997, 4[14] Brighton, C. T., Stratford. B., Gross. S. B., et al.
    64. Li, G., Simpson, A. H., Kenwright, J., et al. Assessment of cell proliferation in regenerating bone during distraction osteogenesis at different distraction rates[J]. Journal of Orthopaedic Research, 1997, 15: 765-772.
    65. Meyer, U., Meyer, T., Schlegel, W., et al. Tissue differentiation and cytokine synthesis during strain-related bone formation in distraction osteogenesis[J]. British Journal of Oral and Maxillofacial Surgery, 2001, 39: 22-29.
    66. Burr, D. B., Milgrom, C., Fyhrie, D., et al. In vivo measurement of human tibial strains during vigorous activity[J]. Bone, 1996, 18: 405-410.
    67. Dumbleton, J. H. and Block, J. Mechanical properties of tissues. In: Thomas, C. C., Ed. An introduction to orthopedic materials. IL: Springfied; 1975: 106-131.
    68. Murray, D. W., Rushton, N. The effect of strain on bone cell prostaglandin E2 release: A new experimental method[J]. Calcif Tissues Int, 1990, 47: 35-39.
    69. O' Connor, J., Lanyon, L. E., McFie, H. F. The influence of strain rate on adaptive bone remodeling[J]. Biomech., 1982, 15: 70-78.
    70. Fermor, B., Gundle, R., Evans, M., et al. Primary human osteoblast proliferation and protaglandin E2 release in response to mechanical strain in vitro[J]. Bone, 1998, 22: 637-643.
    71. Kaspar, D., Seidle, W., Neidlinger-Wilke, C., et al. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain[J]. Journal of Biomechanics, 2002, 35: 873-880.
    72. Weibaum, S. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses[J]. Biomechanics, 1994, 27: 339-391.
    73.王红兵,黄岂平,王远亮等。机械刺激对成骨细胞黏附、铺展、粘弹性的影响[J]。第六届全国生物力学学术会议论文专专集;107-108。
    74. Frost, H. M., Perspective: Bone's mechanical usage windows[J]. Journal of Bone and Mineral Resarch, 1992, 19: 257-271.
    75. Buckley, M. J., Banes, A. J., Levin, L. G., et al. Osteoblasts increase their rate of division and align in response to cylic mechanical tension in vitro[J]. Journal of Bone and Mineral Research, 1988, 4: 225-236.
    76. Stanford, C. M., Morcuende, J. A., Brand, R. A.. Proliferative and pheuotypic responses of bone-like cells to mechanical deformation[J]. Journal of Orthopaedic Reseach, 1995, 36: 567-571.
    77. Rubin, C., Turner, A. S., Mallinckrodt, C., et al. Site-specific increase in bone density stimulated noninvasively by extremely low magnitude thirty hertz mechanical stimulation[J]. In Proceedings of 43rd Annual Meeting, Orthopaedic Research Society, February 9-13, 1997, San Francisco, CA, U. S. A(Abstract).
    78. Rawlinson, S. C. E, Mosley, J. R., Suswillo, R. F. L., et al. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain[J]. Journal of Bone and Mineral Reseach, 1995, 10(8): 1225-1232.
    79. Brighton, C. T., Rush, J., Fisher, S., et al. The Biochemical Pathway Mediating the Proliferative Response of Bone Cells to a Mechanical Stimulus[J]. Journal of Bone and joint Surgerys, 1996, 78-A(9): 1337-1347.
    80. You, J., Yellowley, C. E., Donahue, H. J.. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow[J]. Journal of Biomechanical Engineering, 2000, 122: 387-393.
    81. Brown, T. D., Bottlang, M., Pedersen, D. R., et al. Loading paradigmas-intentional and unintentional for cell culture mechaniostimulus[J]. American Journal of Medical Science, 1998, 316(30): 162-168.
    82. Hillam, R. A., Mosley, J. M., Skerry, T. M. Regional differences in bone strain[J]. Bone Miner, 1994, 25(suppl 1): 32.
    83. Birch, M. A., Ginty, A. F., Walsh, C. A., et al. PCR detection of cytokines in normal human and pagetic osteoblast-like cells[J]. J Bone Miner Res, 1993, 8: 1155.
    84.饶寒敏,徐荣辉,朱雅萍,柴本甫。成骨样细胞体外培养的实验研究。中华医学杂志[J],1996,76(4):301~305。
    85. Sato M, Ohshima N, Nerem RM. Viscoelastic properties of cultured porcine aortic Endothelial cells exposed to shear stress[J]. Biomechanics, 1996, 24(4): 461~467.
    86. Sato M, Levesque MJ, Nerem RM. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress[J]. Arteriosclerosis, 1987, 7(3): 276~287.
    87.张西正,匡震邦,蔡绍皙,王远亮,徐世容,黄岂平。Wistar大鼠成骨细胞粘弹性与相对增殖指数关系的实验研究[J]。中国生物医学工程学报,2001,20(4): 305~309。
    88.张毅奕,陶祖莱。载荷诱导骨生长的力学细胞生物学机制[J]。力学进展,2000,30(3):433~442。
    89. Albert J. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cell in vitro[J]. J. Cell Sci. 1985, 75:35.
    90. Sumpio BE, Banes AJ. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture[J]. J Surg Res, 1988, 44: 696.
    91. Carl T. The proliferative and synthetic response of isolated calvarial bone of rates to cyclic biaxial mechanical strain[J]. J bone and Joint Surg, 1991, 173: A331.
    92. Hung CT. A method for inducing equi-biaxial and uniform strains in elastomeric membrane used as cell substrates[J]. J Biomech, 1994, 27(2): 227.
    93. Soma S. Enhancement by conditioned medium of stretched ealvarial bone cells of the osteoclast-like cell formation induced by ponathyroid hormone in mouse bone marrow cultures[J]. Arech Oral Biol, 1997, 42(3): 205.
    94. Owan L, Burr DB, Tumer CH, et al. Asystem to study the anabolic effects of fluid flow and mechanical stretch in osteoblasts[J]. J Bone Miner Res, 199611(Suppl): 265.
    95. Zhang H J, Cai SHX, Lu X, et al. Effects of mechanical strain on proliferation of pulmonary epithelial cells and reorganization of tntegrins[J]. Acta Biochimica et Biophysica Sinica, 2002, 34(6):748.(张惠静,蔡绍皙,卢晓等。机械拉伸下人肺上皮细胞增殖及整联蛋白再分布[J]。生物化学与生物物理学报,2002,34(6):748.
    96. Riley, D.J., D. E. Rannels, R. B. Low, et al. Effect of physical forces on lung structure, function, and metabolism [J]. Am. Rev. Respir. Dis., 1990, 142; 910-914.
    97. Anderson, J. E., E. Yen, R. S. Carvalho, and J. E. Scott. Measurement of strain in cultured bone fetal muscle and hung cells. In Vitro Cell. Dev. Biol. Anim. 29: 183-186, 1993.
    98. Wirtz, H. R. W., and L., G. Dobbs. Calcium mobilization and exocytosis after one mechanical strain of lung epithelial cells. Science 250: 1266-1269, 1990
    99. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. MacKenna F. J. Villarreal, and A. D. McCulloch. An equibiaxial strain system for cultured cells. Am. J. Physiol. 271 (Cell Physiol. 40 C1400-C1408, 1996.
    100.Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation - induced injury of alveolar epithelial cells in vitro Am. J. Physiol. 275(Lung Cell. Mol. Physiol. 19): L1173-L1I81,1998.
    101.Gilbert, J. A., P. S. Weinhold, A. J. Banes, G. W. Link, and G L., Jones. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J. Biomech. 27:1169-1177,1994
    102.Bishop, J. E., J. J. Mitchell, P. M. Absher, L. Baldor, H. A. Geller, J. Woodcock-Mitchell, M. J. Hamblin, P. Vacek, and R. B. Low. Cyclic mechanical deformation stimulates human lung flbroblast proliferation and autocrine growth factor activity. Am. J. Respir. Cell Mol. Biol. 9:126=133, 1993.
    103. Winston, F.K.,E. J. Macarak, S. F.Gorften, and L. E Thibault. A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67:397-405, 1989.
    104.Simpson, L. L., A. K. Tanswell, and M. G Joneja. Epithelial cell differentiation in organotypic cultures of fetal rat lung. Am. J. Anat. 172:31-40,1985.
    105.Liu, M., S. J. M. Skinner J. Xu, R. N. N. Han, A. K. Tanswell, and M. Post. Stimulation of fetal rat lung cell proliferation in vitro by mechanical strain. Am. J. Physiol. 263(Lung Cell. Mol. Physiol. 7): L376-L383,1992.
    106.Liu, M., J. Xu, P. Souza, B. Tanswell, A. K. Tanswell, and M Post. The effect of mechanical strain on fetal rat lung cell proliferation: comparison of two-and three dimensional culture systems. In Vitro Cel. Dev. Biol. Anim. 31:858-866, 1995
    107.Smith, B. T., and M. Post. Tissue interactions. In: The Lung:Scientific Foundations, edited by R.GCrystal and J. B. West. New York: Raven, 1991, p.671-676.
    108.Liu, M., S. Montazeri, T. Jedlovsky, R. Van Wert, J. Zhang R.K. Li, and J. Yan. Bio-Stretch, a computerized cell-strain apparatus for three-dimensional organotypic cultures. In Vitro Cell. Dev. Biol. Anim. 35:87-93,1999
    109.Tran-Son-Tay, R. Techniques for studying the effects of physical forces on mammalian cells and measuring cell mechanical properties. In: Physical Forces and the
     Mammalian Cell, edied by J. A. Frangos. San Diego, CA:Academic, 1993,p. 1-60
    110.Waters, C. M. Flow-induced modulation of the permeability of endothelial cells cultured on microcarrier beads. J. Cell Physiol 168:403-411,1996
    111.Waters, C. M., M. R. Glucksberg, N. DePaola, J. Chang and J. B. Grotberg. Shear stress alters pleural mesothelial cell permeability in culture. J. Appl. Physiol. 81:448-458.1996.
    112.Gorfien, S. F., P. S. Howard, J. C. Myers, and E. J. Macarak. Cyclic biaxial strain of pulmonary artery endothelial cells causes an increase in cell layer-associated fibronectin. Am. J. Respir. Cell Mol. Biol. 3:421-429, 1990.
    113.Moore, J. E. J., E. Burki, A. Suciu, S. Zhao, M. Burnier, H. R. Burnner, and J. J. Meister. A device for subjecting vacular endothelial cells to both fluid shear stress and circumferential cyclic stetch. Ann. Biomed Eng. 22:416-422, 1994.
    114.Harding, R. Fetal breathing movements. In: The Lung: Scientific Foundations, edited by R. G Crystal and J. B. West. New York: Raven, 1991,p. 1655-1664.
    115.Xu, J., M. Liu, A. K. Tanswell, and M. Post. Mesenchymal determination of mechanical strain-induced fetal lung cell proliferation. Am. J. Physiol. 275(Lung Cell. Mol. Physiol. 19): L545-L550. 1998
    116.Leslie, C. C, K. McCormick-Shannon, R. J. Mason, and J. M. Shannon. Proliferation of rat alveolar epithelia cell low density primary culture. Am. J. Respir. Cell Mol. Biol.64-72,1993.
    117.Tanswell, A.K., P. J. Byrne, R. N. N. Han, J. Edelson, and V. K. M. Han. Limited division of low-density adult rat type Ⅱ peneumocytes in serum-free culture. Am. J. Physiol. 260(Lung Cell. Mol. Physiol. 4): L395-L402, 1991.
    118.Pasternack, M. J., X. Liu, R. A. Goodman, and D. E. Rannels. Regulated stimulation of epithelial cell DNA synthesis by fibroblast-derived mediators. Am. J. Physiol. 272(Lung Cell. Mol. Physiol. 16): L619-L630, 1997.
    119.Scott, J. E., S. Y. Yang, E. Stanik, and J. E. Anderson. Influence of strain on [3H] thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am. J. Respir. Cell Mol. Biol, 8:258-265,1993.
    120.Chess, P. R., L. Toia, and J. N. Finkelstein. The effect of mechanical strain on
     pulmonary epithelial cell proliferation and signaling (Abstract). Am. J. Respir. Crit. Care Med. 155: A610, 1997.
    121. Lieber, M., B. Smith, A. Szakal, et al. A continuous tumor-cell line from a human lung carcinoma with properties of type Ⅱ alveolar epithelial cells[J]. Int. J. Cancer, 1976, 17: 62-70.
    122. Baggiolini, M., B. Dewald, and B. Moser. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines[J]. Adv. Immunol., 1994, 55: 97-177.
    123. Kwon, O. J., B. T. Au, P. D. Collins, et al. Tumor necrosis factor-induced interleukin-8 expression in culture human airway epithelial cells[J]. Am. J. Physiol. 1994, 267(Lung Cell. Physiol. 11): L398-L405.
    124. Standiford, T. J., S. L. Kunkel, M. A. Basha, et al. Interleukin-8 gene expression by a pulmonary epithelial cell line: a model for cytokine networks in the lung[J]. J. Clin. Invest. , 1990, 86: 1945-1953.
    125. Vlahakis N E, Schroeder M A, Limper A H, et al. Stretch induces cytokine release by alveolar epithelial cells in vitro[J]. Am J Physiol, 1999, 277(1): L167-L173.
    126. Chess P R, Toia L, Finkelstein J N. Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells[J]. Am J Physiol, 2000, 279(1): L43-L51.
    127. Robling, A. G., Burr, D. B., Turner, C. H. Partitioning a daily mechanical stimulus into discrete loading bouts enhances improves the osteogenic response to loading[J]. Journal of Bone and Mineral Research, 2000, 15(8): 1596-1602.
    128. Teng Wei Zhong, Wu Wen Zhou. Study on fluid shear flow on osteoblast-like cells in their loading experiments[J]. Conference Abstracts. Sino-American Workshop on Biomedical Engineering (Shanghai) and Second China-Oversea Joint Workshop on Biomechanics, 2004, 29.
    129. Prandtl, L., and O. G. Tietjens. Applied Hydro-and Aeromechanics. New York: McGraw-Hill, 1934.
    130. Reich, K. M. and Frangos, J. A. Effect of flow on prostaglandin E_2 and inosital triphosphate levels in osteoblasts. Am J Physiol, 1991, 261: C428-C432.
    131.张西正,康少华,匡震邦,等。单向循环拉伸应变作用下成骨细胞动力学响应研究。中华创伤杂志,2002,17(4):219-221。
    132.Seth W. Donahue, Henry J. Donahua, Christopher R. Jacobs. Osteoblastic cells have refractory periods for fluid-flow-induded intracellular calcium oscillation for short bouts of flow and display multiple low-magnitude oscillations during long-term flow. J. Biomech.,2003,36:35-41.
    133.J. L. Williams, J. P. Iannotti, A. Ham, et al. Effects of fluid shear stress on bone cells[J]. Biorheology, 1994,31 (2): 163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700