二烯丙基三硫对脂多糖诱导急性肺损伤小鼠的防治作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:急性肺损伤(acute lung injury,ALI)和急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)是指心源性以外各种肺内外致病因素(严重感染、创伤、休克等)导致的急性、进行性、顽固性呼吸衰竭。失控性炎症反应引发多器官功能障碍综合症(multiple organ dysfunction syndrome,MODS)的理论强调了ALI/ARDS的本质是全身炎症反应综合征(systemic inflammatory response syndrome,SIRS)和MODS的肺部表现。ALI和ARDS是性质相同但程度不同的连续病理生理过程,ALI是ARDS的早期阶段,严重的ALI被定义为ARDS。ALI/ARDS发病急,病情凶险,尽管机械通气等治疗方法的综合应用,但至今无特效的治疗方法,病死率仍高达40~60%。
     脓毒症(sepsis),特别是革兰氏阴性杆菌内毒素是导致ALI/ARDS最常见的原因。脂多糖(lipopolysaccharide,LPS)是内毒素的主要成份,是动物ALI/ARDS模型最常用的致伤剂。因此,注射LPS不仅可成功复制ALI/ARDS动物模型,而且可以很好地模拟临床严重感染引发的ALI/ARDS。LPS主要通过激活多种炎性细胞或效应细胞(中性粒细胞、巨噬细胞等),诱生大量细胞因子和炎症介质(如TNF-α、IL-1β、IL-6、PAF等)的失控性释放,从而引起肺泡毛细血管内皮和肺泡上皮损伤,肺微血管通透性增高,肺水肿及透明膜形成。因此参与炎症反应的炎性细胞,炎性细胞释放的细胞因子、炎症介质及相应的信号转导在ALI/ARDS的发生、发展中起关键作用,是形成ALI/ARDS的病理生理学基础。二烯丙基三硫(diallyl trisulfide,DATS)是大蒜提取物的主要成分。大蒜为百合科葱属植物生蒜(Allium satirum. L)的鳞茎,其中DATS和二烯丙基二硫化物(diallyl disulfide,DADS)在大蒜提取物中含量最高,是大蒜提取物的主要有效活性成分。现代医学证实:大蒜提取物具有广谱抗菌消炎作用,对于细菌及深部真菌感染均有一定的治疗效果。新近德国慕尼黑大学药物研究中心Keiss等报道,大蒜提取物可抑制LPS诱导的人全血细胞核
Objective: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) has been defined as acute, progressive, stubborn respiratory failure with refractory hypoxemia induced by different non-cardiogenic predisposing factors, such as sepsis, trauma and shock. These are most likely to result in multiple organ dysfunction syndrome (MODS). ALI/ARDS has been considered as pulmonary component of systemic inflammatory response syndrome (SIRS) and MODS based on the theory that MODS is induced by excessive inflammation. The pathophysiological pathogenesis of ALI and ARDS is similar, but ARDS is the severe endpoint of ALI. No specific therapy can cure ALI/ARDS, although mechanical ventilation and other methods have been conducted. The desease is devastating in clinic patients and the reported mortality for the dissease ranges from 40% to 60%.
     Sepsis, especially endotoxin released by Gram-negative bacteria, is the main cause of ALI/ARDS. Lipopololysaccharide (LPS), the main outer membrane component of endotoxin of Gram-negative bacteria, is the most common reagent to duplicate ALI/ARDS model which is similar to ALI/ARDS patients induced by severe infection in clinic. Inflammation and related effector cells, such as neutrophil and macrophage is actived by stimulating with LPS. Uncontrolled release of multiple inflammatory mediators and cytokines including TNF-α, IL-1β, IL-6, PAF have been considered to contribute to the injury of microvascular endothelium and alveolar epithelium. As a result, vascular permeability increases which results in the formation of pulmonary edema, hyaline membrane and interstitial fibrosis. Therefore inflammation and related effector cells, inflammatory
引文
1 毛宝龄, 钱桂生, 陈正堂. 急性呼吸窘迫综合征. 北京. 人民卫生出版社. 2002
    2 钱桂生. 急性肺损伤和急性呼吸窘迫综合征研究现状与展望. 解放军医学杂志, 2003, 28(2): 97~101
    3 Bernard GR, Artigas A, Brigham KL, et al. and the consensus committee. The American2 European Consensus Conference on ARDS, definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med, 1994, 149(3Pt1): 818~824
    4 Weinacker AB, Vaszar LT. Acute respiratory distress, syndrome: physiology and new management strategies. Annu Rev Med, 2001, 52: 221~237
    5 Tasaka S, Hasegawa N, Ishizaka A. Pharmacology of acute lung injury. Pulm Pharmacol Ther, 2002, 15(2): 83~95
    6 Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis. J Pathol, 2000, 190(2): 117~125
    7 Bhatia M, Neoptolemos JP, Slavin J. Inflammatory mediators as therapeutic targets in acute pancreatitis. Curr Opin Investig Drugs, 2001, 2(4): 496~501
    8 Bhatia M. Novel therapeutic targets for acute pancreatitis and associated multiple organ dysfunction syndromn. Curr Drug Targets Inflamm Allergy. 2002, 1(4): 343~351
    9 顾银娜, 黄蕴慧, 李新岗. 大蒜有效成分的提取及药理作用. 南京军医学院学报, 2000, 22(4): 249~250
    10 刘永忠, 龚千锋, 魏学鑫. 大蒜挥发油主要化学成分的药理作用研究进展. 江西中医学院学报, 1998, 10(1):44~45
    11 兰泓, 吕有勇. 大蒜素对人胃癌细胞BGC823 cyclin D1和p27Kip1表达的影响. 癌症, 2003, 22(12):1268~1271
    12 李拴位. 大蒜素治疗胃肠道恶性肿瘤的研究进展. 解放军药学学报, 2003, 19(5): 400~401
    13 管军, 杨兴易, 赵良, 等. 大蒜素注射液预防真菌性呼吸机相关肺炎的体会及意义. 中国急救医学, 2003, 23(10): 717~718
    14 Block E. The chemistry of garlic and onions. Sci Am, 1985, 252(3): 114~119
    15 Calvo-Gomez O, Morales-Lopez J, Lopez MG. Solid-phase microextraction-gas chromatographic-mass spectrometric analysis of garlic oil obtained by hydrodistillation. J Chromatogr A, 2004, 14, 1036(1): 91~93
    16 Morris CR, Chen SC, Zhou L, Schopfer LM, Ding X, Mirvish SS. Inhibition by Allyl Sulfides and Phenethyl Isothiocyanate of Methyl-n-pentylnitrosamine Depentylation by Rat Esophageal Microsomes, Human and Rat CYP2E1, and Rat CYP2A3. Nutr Cancer, 2004,48(1): 54~63
    17 Xiao D, Choi S, Johnson DE, Vogel VG, et al. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004, 23(33): 5594~5606
    18 Wu CC, Lii CK, Tsai SJ, Sheen LY. Diallyl trisulfide modulates cell viability and the antioxidation and detoxification systems of rat primary hepatocytes. J Nutr, 2004, 134(4): 724~728
    19 Keiss HP, Dirsch VM, Hartung T, et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-κB activity. J Nutr, 2003, 133(7): 2171~2175
    20 侯一峰, 周艳春, 周永双. 全身炎性反应综合征-急性肺损伤大鼠模型的研究. 中国实验动物学报, 2003, 11(3): 147~150
    21 Ghosh S, Latinmer RD, Gray BM, et al. Endotoxin-induced organ injury. Crit Care Med, 1993, 21(12): 19s ~24s
    22 Dcikey BF, Thrall RS, McCormick JR. Olieic aicd induced lung injury in the rat. Am J Pathol, 1981, 103(3): 376~383
    23 Syrbu S, Thrall RS, Smilowitz HM. Sequential appearance of inflammatory mediators in tat bronchialveolar lavage fluid after oleic acid-induce lung injury. Exp Lung Res, 1996,22(1): 33~49.
    24 古国贤, 郭先健, 毛宝龄, 等.犬注射油酸后的综合实验观察. 中华结核和呼吸系疾病杂志, 1985,8: 1~6
    25 陈正堂, 毛宝龄, 郭先健, 等. 犬骨髓型呼吸窘迫综合征模型及其病理观察. 中华病理学杂志, 1988, 17(3): 18~21
    26 Windsor ACJ, Mullen PG, Fowler AA. Acute ling injury: what have we learned from animal models? Am J Med Sci, 1993, 306(2): 111~116
    27 Rosenthal C, Caronia C, Quinn C, et al. A comparison among animal models of acute lung injury. Crit Care Med, 1998,26(5): 912~916
    28 Villar J, Ribeiro SP, Mullen JBM, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med, 1994, 22(6): 914~920.
    29 盛志勇, 胡森. 多器官功能障碍综合征. 北京: 科学出版社, 1999, 185~205
    30 Garrison RN, Spain DA, Wilson MA, etal. Microvascular chandes explain the “two hit” theory of multiple organ failure. Ann Surgery, 1998, 227(6):
    851~860
    31 张青, 毛宝龄, 钱桂生, 等. 油酸和内毒素两次打击大鼠急性肺损模型研究. 第三军医大学学报, 2000, 22(6): 603~604
    32 王翔, 吴泽志 蔡绍皙, 等. 内毒素直接损伤血管内皮细胞的细胞生物力学机理. 医用生物力学, 2000, 15(2): p95
    33 Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating levels of tumor necrosis factor after endotoxin administration. N Engl J Med, 1988, 318(23): 1481~1486
    34 Marques LJ, Zheng L, Poulakis N, et al. Pentoxifylline inhibits TNF-α production from human alveolar macrophages. Am J Respir Crit Care Med, 1999, 159(2): 508~511
    35 Gosset P, Wallaert B, Tonnel AB, et al. Thiol regulation of the production of TNF-α, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J, 1999, 14(1): 98~105
    36 Wang F, Wang LY, Wright D, et al. Redox imbalance differentially inhibits lipopolysaccharide-induced macrophage activation in the mouse liver. Innfect Immunity, 1999, 67(10): 5409~5416
    37 Hyers TM, Tricomi SM, Dettenmeier PA, et al. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Respir Dis, 1991, 144(2): 268~271
    38 Siler TM, Swierkosz JE, Hyers TM, et al. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome. Exp Lung Res. 1989, 15(6): 881~894
    39 Meduri GU, Kohler G, Headley S, et al. Inflammatory cytokines in the BAL of patients with ARDS, Persistent elevation over time predicts poor outcome. Chest, 1995, 108(5): 1303~1314
    40 Goodman RB, Strieter RM, Martin DP, et al. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1996, 154(3pt1): 602~611
    41 刘大为. 危重病医学.第一版. 北京: 中国协和医科大学出版社. 2000: 146~147
    42 邱海波, 陈德昌. 急性呼吸窘迫综合症与肿瘤坏死因子. 国外医学呼吸系统分册, 1995, 15(4): 183~186
    43 孙中吉, 卢青. 急性呼吸窘迫综合症发病中的细胞因子和炎症介质. 中国危重病急救医学, 2003, 15(3): 186~189
    44 崔社怀, 郭先健, 钱桂生. 肺泡表面张力与肿瘤坏死因子在急性低氧油酸性肺损伤时的变化. 中国危重病急救医学, 2000, 12(1): 3~6
    45 姚逸. 大蒜的开发利用研究情况. 基层中药杂志, 2000, 14(6):47~48
    46 Dausch JG, Nixon DW. Garlic: a review of its relationship to malignant disease. Prev Med, 1990, 19(3): 346~361
    47 Agarwal KC. Therapeutic actions of garlic constituents. Med Res Rev, 1996, 16(1): 111~124
    48 Adetumbi MA, Lau BH. Allium sativum (garlic)--a natural antibiotic. Med Hypotheses, 1983, 12(3): 227~237
    49 Amagase H, Petesch BL, Matsuura H, et al. Intake of garlic and its bioactive components. J Nutr, 2001, 131(3s): 955S~962S
    50 沈联慈, 潘炯光, 徐植灵. 大蒜挥发油的化学成分与质量研究. 中草药, 1993, 24(2): 66~68
    51 Arnault I, Christides JP, Mandon N, et al. High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and UV detection. J Chromatogr, 2003, 991(1): 69~75
    52 Rybak ME, Calvey EM, Harnly JM. Quantitative determination of allicin in garlic: supercritical fluid extraction and standard addition of alliin. J Agric Food Chem, 2004, 52(4): 682~687
    53 Harris JC, Cottrell SL, Plummer S, et al. Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol, 2001,57(3): 282~286
    54 Hassan HT. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk Res, 2004, 28(7): 667~671
    55 Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin Investig Drugs, 2004, 13(10): 1327~1338
    56 Davis SR. An overview of the antifungal properties of allicin and its breakdown products--the possibility of a safe and effective antifungal prophylactic. Mycoses, 2005, 48(2): 95~100
    57 Tattelman E. Health effects of garlic. Am Fam Physician, 2005, 72(1): 103~106
    58 Xiao D, Herman-Antosiewicz A, Antosiewicz J, et al. Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene, 2005, 24(41): 6256~6268
    59 Herman-Antosiewicz A, Singh SV. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J BiolChem, 2005, 280(31): 28519~28528
    60 Xiao D, Singh SV. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis, 2006, 27(3): 533~540
    61 Chan KC, Hsu CC, Yin MC. Protective effect of three diallyl sulphides against glucose-induced erythrocyte and platelet oxidation, and ADP-induced platelet aggregation. Thromb Res, 2002, 108(5-6): 317~322
    62 Yu FL, Bender W, Fang Q, et al. Prevention of chemical carcinogen DNA binding and inhibition of nuclear RNA polymerase activity by organosulfur compounds as the possible mechanisms for their anticancer initiation and proliferation effects. Cancer Detect Prev, 2003,27(5): 370~379
    63 Liu ZF, Fang F, Dong YS, et al. Experimental study on the prevention and treatment of murine cytomegalovirus hepatitis by using allitridin. Antiviral Res, 2004, 61(2): 125~128
    64 Kim JW, Kim YS, Kyung KH. Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts. J Food Prot, 2004, 67(3): 499~504
    65 Wu CC, Lii CK, Tsai SJ, et al. Diallyl trisulfide modulates cell viability and the antioxidation and detoxification systems of rat primary hepatocytes. J Nutr, 2004, 134(4): 724~728
    66 Salman H, Bergman M, Bessler H, et al. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. Int J Immunopharmacol, 1999, 21(9): 589~597
    67 Hodge G, Hodge S, Han P. Allium sativum (garlic) sup-presses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry, 2002,48(4): 209~215
    68 Ghazanfari T, Hassan ZM, Ebtekar M, et al. Garlic induces a shift in cytokine pattern in Leishmania majorinfected BALB/c mice. Scand J Immunol, 2000, 52(5): 491~495
    69 Kyo E, Uda N, Kasuga S, et al. Immunomodulatory effects of aged garlic extract. J Nutr, 2001, 131(3s): 1075S~1079S
    70 Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-κB activation. J Nutr, 2001, 131(3s): 1020S~1026S
    71 Ho SE, Ide N, Lau BH. S-allyl cysteine reduces oxidant load in cells involved in the atherogenic process. Phytomedicine, 2001, 8(1): 39~46
    72 Waxman AB, Mahboubi K, Knickelbein RG, et al. Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. Am J Respir Cell Mol Biol, 2003, 29(4): 513~522
    73 Ward NS, Waxman AB, Homer RJ, et al. Interleukin-6-induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol, 2000, 22(5): 535~542
    74 李德懿, 焦炳华, 朱玉平, 等. 大蒜及双氧水降解内毒素的作用机理研究. 中华口腔医学杂志, 2000, 35(5): 333~335
    1 Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol, 2005, 288(1): L3~ L15
    2 Perkins GD, Chatterjie S, McAuley DF, et al. Role of nonbronchoscopic lavage for investigating alveolar inflammation and permeability in acute respiratory distress syndrome. Crit Care Med, 2006, 34(1): 57~64
    3 Wright MM, Powell CS, Jackson RM. Effects of intratracheal tumor necrosis factor-alpha plasmid vector on lipopolysaccharide lethality and lung injury in mice. Exp Lung Res, 2004, 30(8): 653~671
    4 Di Filippo A, Rinaldi S, Pascente C, et al. Blunted inflammatory response to lipopolysaccharide endotracheal instillation due to thermal preconditioning. Minerva Anestesiol, 2005, 71(10): 601~607
    5 Marques LJ, Zheng L, Poulakis N, et al. Pentoxifylline inhibits TNF-α production from human alveolar macrophages. Am J Respir Crit Care Med, 1999, 159(2): 508~511
    6 Matute-Bello G, Liles WC, Radella F 2nd, et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1997, 156(6): 1969~1977
    7 Goodman ER, Stricker P, Velavivius M, et al. Role of granulocyte-macrophage colony-stimulating factor and its receptor in thegenesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg, 1999, 134(10): 1049~1054
    8 Dunican AL, Leuenroth SJ, Grutkoski P, et al. TNF alpha-induced suppression of PMN apoptosis is mediated through interleukin-8 production. Shock, 2000, 14(3): 284~288
    9 Hubbard AK, Giardian C. Regulation of ICAM-1 expression in mouse alveolar macrophages. Inflammation, 2000, 24(2): 115~125
    10 钱桂生. 急性肺损伤和急性呼吸窘迫综合征研究现状与展望. 解放军医学杂志, 2003, 28(2): 97~101
    11 毛宝龄. 巨噬细胞与全身炎症反应综合症的研究现状与展望. 解放军医学杂志, 1997, 22(1): 3~4
    12 Lohmann-Matthes M-L, Steinmüller C, Franke-Ullmann G. Pulmonary macrophages. Eur Respir J, 1994, 7: 1678~1689
    13 Donnelly SC, Bucala R, Metz CN, et al. Macrophage migration inhibitory facor and acute lung injury. Chest, 1999, 116(1 Supple): 111~114
    14 黄杨,梁继河,贾斌,等. 白介素-10 和一氧化氮对内毒素诱导肺泡巨噬细胞核因子-κB 活化及肿瘤坏死因子释放的调节. 中国危重病急救医学, 2001, 13 (5): 284~286
    15 Lomas-Neira J, Chung CS, Perl M, et al. Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. Am J Physiol Lung Cell Mol Physiol, 2006, 290(1): L51~58
    16 Wizemann TM, Laskin DL. Enhanced phagocytosis, chemotaxis, and production of reactive oxygen intermediates by interstitial macrophages following acute endotoxemia. Am J Respir Cell Mol Biol, 1994, 11(3): 358~365
    17 Johansson A, Lundborg M, Skold CM, et al. Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages. Am J Respir Cell Mol Biol, 1997, 16(5): 582~588
    18 Dethloff LA, Lehnert BE. Pulmonary interstitial macrophages: isolation and flow cytometric comparisons with alveolar macrophages and bloodmonocytes. J Leukoc Biol, 1988, 43(1): 80~90
    19 Franke-Ullmann G, Pf?rtner C, Walter P, et al. Characterization of murine lung interstitial macrophages in comparison with alveolar macrophages in vitro. J Immunol, 1996, 157(7): 3097~3104
    20 吕长俊, 李明娥, 刘俊英, 等. 大鼠肺间质巨噬细胞的分离及有关特征. 滨州医学院学报, 1998, 21(1): 1~4
    21 李胜亮,陈正堂,金敬顺. 肺血管内巨噬细胞的分离、培养及鉴定。中华病理学杂志, 1998, 27(1): 66~67
    22 Warner AE, Brain JD. The cell biology and pathogenic role of pulmonary intravascular macrophages. Am J Physiol, 1990, 258(2 pt 1): L1~L12
    23 李胜亮, 陈正堂, 毛宝龄. 肺血管内巨噬细胞与急性肺损伤. 国外医学呼吸系统分册, 1996, 16(4): 198~201
    24 Lang A, Lahav M, Sakhnini E, et al. Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clin Nutr, 2004,23(5): 1199~208
    25 Feng ZH, Zhang GM, Hao TL, et al. Effect of diallyl trisulfide on the activation of T cell and macrophage-mediated cytotoxicity. J Tongji Med Univ, 1994, 14(3): 142~147
    26 Fong Y, Tracey KJ, Mokdawer LL, et al. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 beta and interleukin 6 appearance during lethal bacteremia. J Exp Med, 1989, 170(5): 1627~1633
    27 Nishimoto N, Ito A, Ono M, et al. IL-6 inhibits the proliferation jof fibroblastic synovial cells from rheumatoid arthritis patients in the presence of soluble IL-6 receptor. Int Immunol, 2000, 12(2): 187~193
    28 Martinez C, Delgado M, Pozo D, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide modulate endotoxin-induced IL-6 production by murine peritoneal macrophages. J Leukoc Biol, 1998, 63(5): 591~601
    29 Basak C, Pathak SK, Bhattacharyya A, et al. NF-kappa B-and C/EBP beta-driven interleukin-1beta gene expression and PAK1-mediated caspase1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide (LPS)-stimulated macrophages. J Biol Chem, 2005, 280(6): 4279~4288
    30 Dahle MK, Overland G, Myhre AE, et al. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun, 2004, 72(10): 5704~5711
    31 Xie J, Qian J, Wang S, et al. Novel and detrimental effects of lipopolysaccharide on in vitro generation of immature dendritic cells: involvement of mitogen-activated protein kinase p38. J Immunol, 2003, 171(9): 4792~4800
    32 Murphey ED, Traber DL. Pretreatment with tumor necrosis factor-alpha attenuates arterial hypotension and mortality induced by endotoxin in pigs. Crit Care Med, 2000, 28(6): 2015~2021
    33 Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-alpha and interleukin-1 beta synergistically depress human myocardial function. Crit Care Med, 1999, 27(7): 1309~1318
    34 Amiot F, Fitting C, Tracey KJ, et al. Lipopolysaccharide-induced cytokine cascade and lethality in LT alpha PTNF alpha-deficient mice. Mol Med, 1997, 3(12): 864~875
    35 Wu HG, Zhou LB, Pan YY, et al. Study of the mechanisms of acupuncture and moxibustion treatment for ulcerative colitis rats in view of the gene expression of cytokines. World J Gastroenterol, 1999, 5(6): 515~517
    36 Waxman AB, Mahboubi K, Knickelbein RG, et al. Interleukin-11 and interleukin-6 protect cultured human endothelial cells from H2O2-induced cell death. Am J Respir Cell Mol Biol, 2003, 29(4): 513~522
    37 Ward NS, Waxman AB, Homer RJ, et al. Interleukin-6-induced protection in hyperoxic acute lung injury. Am J Respir Cell Mol Biol, 2000, 22(5): 535~542.
    1 Balibrea JL, Arias-Diaz J. Acute respiratory distress syndrome in the septic surgical patient. World J Surg, 2003, 27(12): 1275~1284
    2 Christman JW, Sadikot RT, Blackwell TS. The role of nuclear factor-kappa B in pulmonary diseases. Chest, 2000, 117(5): 1482~1487
    3 Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest, 2006, 86(1): 9~22
    4 Da Silva Correia J, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem, 2002, 277(3): 1845~1854
    5 Anderson KV. Toll signaling pathways in the innate immune response. Curr Opin Immunol, 2000, 12(1): 13~19
    6 O’Neill LA, Greene C. Signal transduction pathways activated by the IL-1receptor family: ancient signaling machinery in mammals, insects, and plants. J Leukoc Biol, 1998, 63(6): 650~657
    7 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol, 2000, 18: 621~663
    8 Ulmer AJ, Rietschel E Th, Zahringer U. Lipopolysaccharide: structure, bioactive, receptors and signal transduction. Trends in Glycoscience and Glycotechnology, 2002, 14(76): 53~66
    9 Goldring CE, Reveneau S, Pinard D, et al. Hyporesponsiveness to lipopolysaccharide alters the composition of NF-κB binding to the regulatory regions of inducible nitric oxide synthase gene. Eur J Immunol, 1998, 28(9): 2960~2970
    10 Barnes PJ, Adcock IM. NF-κB: a pivotal role on asthma and a new target for therapy. Trends Pharmacol Sci, 1997, 18(2): 46~50
    11 Zhang G, Ghosh S. Toll-like receptor-mediated NF-kappa B activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest, 2001, 107(1): 13~19
    12 Emery JG, Ohlstein EH, Jaye M. Therapeutic modulation of transcription factor activity. Trends Pharmacol Sci, 2001, 22(5): 233~240
    13 张秋金, 沈洪, 张维, 等. 纳洛酮与甲基泼尼松龙联用对急性肺损伤大鼠肺组织核转录因子-κB 表达的影响. 中国危重病急救医学, 2005, 17(6): 370~372
    14 刘牧林, 刘瑞林, 马良龙. 核转录因子-κB 在大鼠急性胰腺炎发病机制中的作用研究. 中国危重病急救医学, 2005, 17(7): 434~435
    15 Abraham E. NF-kappa B activation. Crit Care Med, 2000, 28(4Suppl): N100~N104
    16 Ndengele MM, Muscoli C, Wang ZQ, et al. Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock, 2005, 23(2): 186~193
    17 Downey JS, Han J. Cellular activation mechanism in septic shock. Front Biosci, 1998, 3: d468~d476
    18 Huxford T, Huang DB, Maiek S, et al. The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell, 1998, 95(6): 759~770
    19 Jacobs MD, Harrison SC. Structure of an IκBα/ NF-κB complex. Cell, 1998, 95(6): 749~758
    20 Chen F, Castranova V, Shi X.New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol,2001,159(2):387~397
    21 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol, 2000, 18: 621~663
    22 Baeuerle PA. IκB-NF-κB structures: at the interface of inflammation control. Cell, 1998, 95(6): 729~731
    23 Bruck R, Aeed H, Brazovsky E, et al. Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice. Liver Int, 2005, 25(3): 613~21
    24 Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett, 2004, 215(2): 129~140
    25 Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci, 2004, 1030: 434~441
    26 Ide N, Lau BH. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J Nutr, 2001,131(3s): 1020S~1026S
    27 Borek C. Antioxidant health effects of aged garlic extract. J Nutr, 2001, 131(3s): 1010S~1015S
    28 Geng Z, Rong Y, Lau BH. S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med, 1997, 23(2): 345~350
    29 Keiss HP, Dirsch VM, Hartung T, et al. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-kappaB activity. J Nutr, 2003, 133(7): 2171~2175
    30 Kim KM, Chun SB, Koo MS, et al. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med, 2001, 30(7): 747~756
    1 Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol, 2002,283(2): G256~G265
    2 Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol, 1996, 60(1): 8~26
    3 Chang L, Karin M. Mammalian MAP Kinase signaling cascades. Nature, 2001, 410(6824): 37~40
    4 Chen Z, Gibson TB, Robinson F, et al. MAP Kinase. Chem Rev, 2001, 101(8): 2449~2476
    5 张宇, 蒋建新, 王正国. 丝裂原活化蛋白激酶信号转导通路与脓毒症研究进展. 免疫学杂志, 2002, 18(3): 160~163
    6 Ono K, Han J. The p38 signal transduction pathway: activation and function. Cellular Signalling, 2000, 12(1): 1~13
    7 Harper SJ, LoGrasso P. Signalling for survival and death in neurons: The role of sress-avtivated kinases, JNK and p38. Cell Signal, 2001, 13(5): 299~310
    8 van den Blink B, Juffermans NP, ten HT, et al. p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vitro. J Immunol, 2001, 166(1): 582~587
    9 Adams JL, Badger AM, Kumar S, et al. p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem, 2001, 38:1~60
    10 Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265(5173): 808~811
    11 李立斌. MAPK 通路与危重病. 国外医学, 生理、病理科学与临床分册, 2003, 23(2): 204~207
    12 姚琳, 余书勤, 张锡然. 内毒素诱导 p38 MAPK 信号转导作用的研究进展通路对炎症反应的调控. 中国病理生理杂志, 2004, 20(12): 2357~2362
    13 Dahle MK, Overland G, Myhre AE, et al. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun, 2004, 72(10): 5704~5711
    14 Yoshinari D, Takeyoshi I, Koibuchi Y, et al. Effects of a dual inhibitor of tumor necrosis factor-alpha and interleukin-1 on lipopolysaccharide-induced lung injury in rats: involvement of the p38 mitogen-activated protein kinase pathway. Crit Care Med, 2001, 29(3): 628~634
    15 陈旭林, 夏照帆, 韦多. p38 丝裂原活化蛋白激酶信号转导通路在严重烧伤大鼠急性肺损伤中的作用. 中华外科杂志, 2004, 42(7): 388~389
    16 Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathway block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopoysaccharideand interferon gamma. J Infect Dis, 1999, 179(4): 939~944
    17 Jiang Y, Liu AH, Huang QB, et al. p38 MAPK Signal in Necessary for TNF-α Gene Expression in RAW Cells. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 1999, 31(1): 9~15
    18 姜勇, 刘爱华, 张琳, 等. 脂多糖对 p38 的激活及其在诱导 TNF-α 基因表达中的作用. 中华医学杂志, 1999, 79(5): 360~365
    19 Xiao D, Choi S, Johnson DE, et al. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene, 2004, 23(33): 5594~5606
    20 Chen C, Pung D, Leong V, et al. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med, 2004, 37(10): 1578~1590
    21 Knowles LM, Milner JA. Diallyl disulfide induces ERK phosphorylation and alters gene expression profiles in human colon tumor cells. J Nutr, 2003, 133(9): 2901~2906
    22 Filomeni G, Aquilano K, Rotilio G, et al. Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res. 2003, 63(18): 5940~5949
    23 Wen J, Zhang Y, Chen X, et al. Enhancement of diallyl disulfide-induced apoptosis by inhibitors of MAPKs in human HepG2 hepatoma cells. Biochem Pharmacol, 2004, 68(2): 323~331
    24 Kim KM, Chun SB, Koo MS, et al. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radic Biol Med, 2001, 30(7): 747~756
    25 Guyton KZ, Liu Y, Gorospe M, et al. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem, 1996, 271(8): 4138~4142
    26 Wang XT, Martinadale JL, Liu YS, et al. The cellular response to oxidativestress: influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem J, 1998, 333(Pt 2): 291~300
    27 Kamata H, Hirata H. Redox regulation of cellular signaling. Cell Signal, 1999, 11(1): 1~14
    28 Haddad JJ, Land SC. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. Br J Pharmacol, 2002, 135(2): 520~536
    29 Wilhelm H, Bender K, Knebel A, et al. The level of intracellular glutathione is a key regulator for the induction of stress-activated signal transduction pathways including Jun N-terminal protein kinases and p38 kinase by alkylating agents. Mol Cell Biol, 1997, 17(8): 4792~4800
    30 Utsugi M, Dobashi K, Koga Y, et al. Glutathione redox regulates lipopolysaccharide-induced IL-12 production through p38 mitogen-activated protein kinase activation in human monocytes: role of glutathione redox in IFN-gamma priming of IL-12 production. J Leukoc Biol, 2002, 71(2): 339~347
    31 Haddad JJ. The involvement of L-gamma-glutamyl-L-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production. Biochem Pharmacol, 2002, 63(2): 305~320
    32 Rojanasakul Y, Ye J, Chen F, et al. Dependence of NF-kappa B activation and free radical generation on silica-induced TNF-alpha production in macrophages. Mol Cell Biochem, 1999, 200(1-2): 119~125
    33 Shi L, Kishore R, McMullen M, et al. Chronic ethanol increases lipopolysaccharide-stimulated Egr-1 expression in RAW 264.7 macrophages: contribution to enhanced tumor necrosis factor alpha production. J Biol Chem, 2002, 277(17): 14777~14785
    34 Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry, 1998, 37(16): 5633~5642
    35 Lee SR, Kwon KS, Kim SR, et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem, 1998, 273(25): 15366~15372
    36 Amagase H.Clarifying the real bioactive constituents of garlic. J Nutr, 2006,136(3 Suppl): 716S~725S
    37 Borek C. Antioxidant health effects of aged garlic extract. J Nutr, 2001, 131(3S): 1010S~1015S.
    38 Ichikawa M, Yoshida J, Ide N, et al. Tetrahydro-beta-carboline derivatives in aged garlic extract show antioxidant properties. J Nutr, 2006, 136(3 Suppl): 726S~731S
    39 Borek C. Aging and antioxidants. Fruits and vegetables are powerful armor. Adv Nurse Pract, 2006, 14(2): 35~38
    40 Horie T, Murayama T, Mishima T, et al. Protection of liver microsomal membranes from lipid peroxidation by garlic extract. Planta Med, 1989, 55(6): 506~508
    41 Rivlin RS, Budoff M, Amagase H. Significance of garlic and its constituents in cancer and cardiovascular disease. J Nutr, 2006, 136(3): v
    42 Takasu J, Uykimpang R, Sunga MA, Amagase H, Niihara Y.Aged garlic extract is a potential therapy for sickle-cell anemia. J Nutr, 2006,136(3 Suppl): 803S~805S
    43 Velmurugan B, Nagini S.Combination chemoprevention of experimental gastric carcinogenesis by s-allylcysteine and lycopene: modulatory effects on glutathione redox cycle antioxidants. J Med Food, 2005,8(4): 494~501
    44 Mousa AS, Mousa SA. Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: role of nitric oxide and p53. Nutr Cancer, 2005, 53(1): 104~110
    45 Omurtag GZ, Guranlioglu FD, Sehirli O, et al. Protective effect of aqueous garlic extract against naphthalene-induced oxidative stress in mice. J Pharm Pharmacol, 2005, 57(5): 623~630
    46 Wu CC, Lii CK, Tsai SJ, et al. Diallyl trisulfide modulates cell viability and the ntioxidation and detoxification systems of rat primary hepatocytes. JNutr, 2004, 134(4): 724~728
    47 Jeon YJ, Kim YK, Lee SM, et al. Radicicol suppresses expression of inducible nitric-oxide synthase by blocking p38 kinase and nuclear factor-κB/Rel in lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther, 2000, 294(2), 548~554
    48 Rovine BH, Wilmer WA, Danne M, et al. The mitogen-activated protein kinase p38 is necessary for interleukin-1 beta-induced monocyte chenoattractant protein 1 expression by human mesangial cells. Cytokine, 1999, 11(2): 118~126
    49 Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO J, 1997, 16(7): 1620~1627
    50 Beyaert R, Cuenda A, Vanden Berghe W, et al. The p38/ ERK mitogen activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 1996, 15(8): 1914~1923
    1 钱桂生. 急性肺损伤和急性呼吸窘迫综合征研究现状与展望. 解放军医学杂志, 2003, 28(2): 97~101
    2 Bernard GR, Artigas A, Brigham KL, et al. and the consensus committee. The American2 European Consensus Conference on ARDS, definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med, 1994, 149(3Pt1): 818~824
    3 Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis therapies in sepsis. Chest, 1992, 101(6): 1644~1655
    4 Weinacker AB, Vaszar LT. Acute respiratory distress, syndrome: physiology and new management strategies. Annu Rev Med, 2001, 52: 221~237
    5 Tasaka S, Hasegawa N, Ishizaka A. Pharmacology of acute lung injury. Pulm Pharmacol Ther, 2002, 12: 83~95
    6 Bhatia M, Brady M, Shokuhi S, et al. Inflammatory mediators in acute pancreatitis. J Pathol, 2000, 190(2): 117~125
    7 Bhatia M, Neoptolemos JP, Slavin J. Inflammatory mediators as therapeutic targets in acute pancreatitis. Curr Opin Investig Drugs, 2001, 2(4): 496~501
    8 Bhatia M. Novel therapeutic targets for acute pancreatitis and associated multiple organ dysfunction syndromn. Curr Drug Targets Inflamm Allergy, 2002, 1(4): 343~351
    9 Donnelly SC, Haslett C. Cellular mechanisms of acute lung injury:implications for future treatment in the adult respiratory distress syndrome. Thorax, 1992, 47(4): 260~263
    10 Abraham E, Kaneko DJ, Shenkar R. Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation. Am J Physiol. 1999, 276(1Pt1): L1~8
    11 冯英凯,杨庆华. 效应细胞与内毒素肺损伤. 国外医学呼吸系统分册, 2004, (24)2: 80~82
    12 周向东, 杨肇亨, 洪新. 急性肺损伤时中性粒细胞自身特性的改变及其意义. 中国危重病急救医学, 1996, 8(4): 203~205
    13 Haslett G, Warthen GS, Giclas PC, et al. The pulmonary vascular sequestration of neutrophils in endotoxemia is initiated by an effect of endotoxin on the neutrophil in the rabbit. Am Rev Respir Dis. 1987, 136(1): 9~18
    14 Savill J, Fadok V, Henson P, et al. Phagocyte recognition of cells undergoing apoptosis. Immunol Today. 1993, 14(3): 131~136
    15 Matute-Bello G, Liles WC, Radella F 2nd, et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1997, 156(6): 1969~1977
    16 Lesur O, Kokis A, Hermans C, et al. Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival. Crit Care Med, 2000, 28(12): 3814~3822
    17 Andonegui G, Trevani AS, Lopez DH, et al. Inhibition of human neutrophil apoptosis by platelets. J Immunol, 1997,158(7): 3372~3377
    18 Matute-Bello G, Liles WC, Radella F 2nd, et al. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1997, 156(6): 1969~1977
    19 Goodman ER, Stricker P, Velavivius M, et al. Role of granulocyte-macrophage colony-stimulating factor and its receptor in the genesis of acute respiratory distress syndrome through an effect on neutrophil apoptosis. Arch Surg, 1999, 134(10): 1049~1054
    20 Nolan B, Duffy A, Paquin L, et al. Mitogen-activated protein kinases signal inhibition of apoptosis in lipopolysaccharide-stimulated neutrophils. Surgery, 1999, 126(2): 406~412
    21 Sweeney JF, Nguyen PK, Omann GM, et al. Lipopolysaccharide protects polymorphonuclear leukocytes from apoptosis via tyrosine phosphorylation-dependent signal transduction pathways. J Surg Res, 1998, 74(1): 64~70
    22 Dunican AL, Leuenroth SJ, Grutkoski P, et al. TNF alpha-induced suppression of PMN apoptosis is mediated through interleukin-8 production. Shock, 2000, 14(3): 284~288
    23 Hubbard AK, Giardian C. Regulation of ICAM-1 expression in mouse alveolar macrophages. Inflammation, 2000, 24(2): 115~125
    24 陈正堂. 急性呼吸窘迫综合征发病机制及诊治进展. 中国急救医学, 1999, 19(4): 255~257
    25 Donnelly SC, Haslett C, Reid PT, et al. Regulatory role for macrophage migration facor in acute distress syndrome. Nat Med, 1997, 3(3): 320~323
    26 Donnelly SC, Bucala R, Metz CN, et al. Macrophage migration inhibitory facor and acute lung injury. Chest, 1999, 116(1 Supple): 111~114
    27 Johansson A, Lundborg M, Skold CM, et al. Functional, morphological, and phenotypical differences between rat alveolar and interstitial macrophages. Am J Respir Cell Mol Biol, 1997, 16(5): 582~588
    28 黄杨,梁继河,贾斌,等. 白介素-10 和一氧化氮对内毒素诱导肺泡巨噬细胞核因子-κB 活化及肿瘤坏死因子释放的调节. 中国危重病急救医学, 2001, 13 (5): 284~286
    29 Kitsmura Y, Hashimoto S, Mizuta N, et al. Fas/Fasl-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med, 2001, 163 (3Pt1): 762~769
    30 王翔, 吴泽志 蔡绍皙, 等. 内毒素直接损伤血管内皮细胞的细胞生物力学机理. 医用生物力学, 2000, 15(2): p95
    31 Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science, 1998, 281(5381): 1305~1308
    32 Greene K E, Caldwell E, Wright Jr, et al. Serial changes in surfacant-associated protions in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med, 1999, 160(6): 1843~1850
    33 黎檀实, 尹明, 冯丽洁. 急性肺损伤中肺泡Ⅱ型细胞凋亡机制的研究. 现状中国危重病急救医学, 2002, 14(3): 185~187
    34 Fehrenbach H, Kasper M, Koslowski R, et al. Alveolar epithelial type Ⅱcell apoptosis in vivo during resolution of kerationcyte growth factor-induced hyprplasia in the rat. Histochem Cell Biol, 2000, 114(1), 49~61
    35 杨毅, 邱海波, 周韶霞, 等. 核因子NF-κB在小鼠急性肺损伤中的作用及治疗干预研究. 中华急救医学, 2003, 23(): 63~66
    36 尹文, 杨剑虹, 虎晓岷, 等. 内毒素诱导肺泡巨噬细胞NF-κB信号通路的变化. 解放军医学杂志, 2003, 28(8): 719~720
    37 朱桂军, 胡振杰, 于占彪, 等. 大蒜素对脂多糖致急性肺损伤小鼠防治作用的实验研究. 中国急救医学, 2005, 25(10): 736~738
    38 杨剑虹, 尹文, 袁静, 等. 多黏菌素 B 对内毒素诱导的肺泡巨噬细胞中NF-κB 活化的影响. 细胞与分子免疫学杂志, 2003, 19(3): 235~238
    39 Cong B, Li SJ, Yao YX, et al. Effect of cholecystokinin octapeptide on tumor necrosis factor α transcription and nuclear factor-κB activity induced by lipopolysaccharide in rat pulmonary interstitial macrophages. World J Gastroenterol, 2002, 8(4): 718~723
    40 Hyers TM, Tricomi SM, Dettenmeier PA, et al. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Respir Dis, 1991, 144(2): 268~271
    41 Siler TM, Swierkosz JE, Hyers TM, et al. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome. Exp Lung Res. 1989, 15(6): 881~894
    42 Meduri GU, Kohler G, Headley S, et al. Inflammatory cytokines in the BAL of patients with ARDS, Persistent elevation over time predicts poor outcome. Chest, 1995, 108(5): 1303~1314
    43 Goodman RB, Strieter RM, Martin DP, et al. Inflammatory cytokines inpatients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1996, 154(3pt1): 602~611
    44 刘大为. 危重病医学.第一版. 北京: 中国协和医科大学出版社. 2000: 146~147
    45 邱海波, 陈德昌. 急性呼吸窘迫综合症与肿瘤坏死因子. 国外医学呼吸系统分册, 1995, 15(4): 183~186
    46 孙中吉, 卢青. 急性呼吸窘迫综合症发病中的细胞因子和炎症介质. 中国危重病急救医学, 2003, 15(3): 186~189
    47 崔社怀, 郭先健, 钱桂生. 肺泡表面张力与肿瘤坏死因子在急性低氧油酸性肺损伤时的变化. 中国危重病急救医学, 2000, 12(1): 3~6
    48 张青, 李琦, 毛宝龄, 等. 油酸-内毒素致伤大鼠肺组织 TNF-α、IL-1β、IL-6 和 IL-4、IL-10、IL-13 的 mRNA 表达. 解放军医学杂志, 2004, 29(9): 795~797
    49 倪志宇, 李淑瑾, 丛斌, 等. CCK-8 抑制 LPS 诱导的大鼠肺间质巨噬细胞 TLR4 及 IL-1β 的表达. 基础医学与临床, 2005, 25(2): 137~140
    50 萧正伦, 黄海鹭, 徐远达, 等. 低剂量内毒素对低血容量性休克兔前炎症细胞因子的影响. 中国危重病急救医学, 2000, 12(6): 346~349
    51 Matsukawa A, Yoshimura T, Miyamoto K, et al. Analysis of the inflammatory cytokinenetwork among TNF alpha, IL-1 beta, IL-1 receptor antagonist, and IL-8 in LPS-induced rabbit arthritis. Lab Invest, 1997, 76(5): 629~638
    52 孙卫民, 王慧琴. 细胞因子研究方法学. 第一版. 北京: 人民卫生出版社. 1999, 374~377
    53 杨东亮. 危重症与 TNF-α、IL-6、IL-8 和 IL-10. 医师进修杂志(外科版), 2004, 27(22): 54~57
    54 肖莉. 细胞因子对感染性休克作用的新进展. 国外医学, 生理、病理科学与临床分册, 2003, 23(1): 100~102
    55 Meng AH, Ling YL, Zhang XP, et al. Anti-inflammatory effect of cholecystokinin and its signal transduction mechanism in endotoxic shock rat. World J Gastroenterol, 2002, 8(4): 712~717
    56 Svoboda P, Kantorva L, Ochmann J, et al. Dynamics of interleukin 1, 2and 6 and tumor necrosis factor alpha in multiple trauma patients. Trauma, 1994, 36(3): 336-340 57 张青, 徐剑钺, 毛宝龄, 等. 内毒素致大鼠肺组织 TNF-α、IL-6 的mRNA 表达及 NF- IL-6 活化研究. 中国危重病急救医学, 2001, 13 (9): 523~526
    58 Leser HG, Gross C, Scheibenbogen C, et al. Elevation of serum interleukin-6 concentration precedes acute phase response and reflects severity in acute pancreatitis. Gastroenterology, 1991, 101(3): 782~785
    59 Remick DG, Bolgos GR, Siddiqui J, et al. Six at six: interleukin-6 measured 6 h after the initiation of sepsis predicts mortality over 3 days. Shock, 2002, 17(6): 463~467
    60 Hivani N, Antonicalli F, Strieter RM, et al. The regulation of interleukin-8 by hypoxia in human macrophages –A potential role in the pathogenesis of the acute respiratory distress syndrome (ARDS). Mol Mel, 2001,7(10): 685~697
    61 Mukaide N, Matsumoto T, Yokoi K, et al. Inhibition of neutrophil mediated acute inflammation injury by an antibody against interleukin 8 (IL-8). Inflamm Res, 1998, 47 Suppl 3: 151~157
    62 Schutte H, Lohmeyer J, Rosseau S, et al. Brochoalveolar and systemic cytok ine protein in patients with ARDS, severe pneumonia and cardiogeic pulmonary edema. Eur Respir J, 1996, 9(9): 1858~1867
    63 Matsukawa A, Yoshimura T, Maeda T, et al. Neutrophil accumulation and activation by homologous IL-8 induces destruction of cartilage and production of IL-1 and IL-1 receptor antagonist in vivo. J Immunol, 1995, 154(10): 5418~5425
    64 Kurdowska A, Noble JM, Grant LS, et al. Anti-interleukin-8 autantibodies in patients at risk for acute respiratory distress syndrome. Crit care Med, 2002, 30(10): 2335~2337
    65 Vander PT, Jansen PM, Montegut WJ, et al. Effects of IL-10 on systemic inflammatory responses during sublethal primate endotoxemia. J Immunol, 1997, 158(4): 1971~1975
    66 Wang R, Fang Q, Zhang L, et al. CD28 ligation prevents bacterial toxin-induced septic shock in mice by inducing IL-10 expression. J Immunol, 1997, 158(6): 2856~2861
    67 Hess PJ, Seeger JM, Huber TS, et al. Exogenously administered interleukin-10 decreases pulmonary neutrophil infiltration in a tumor necrosis factor-dependent murine model of acute visceral ischemia. J Vasc Surg. 1997, 26(1): 113~118
    68 Engles RE, Huber TS, Zander DS, et al. Exogenous human recombinant interleukin-10 attenuates hindlimb ischemia reperfusion injury. J Surg Res. 1997, 69(2): 425~428
    69 李琦, 钱桂生, 张青, 等. 内毒素致伤大鼠白介素 10 表达及肺组织激活蛋白 1 活性的变化. 中国危重病急救医学, 2002, 14(5): 279~281
    70 邱海波, 周韶, 陈德昌. 白介素 10 对肺泡巨噬细胞致炎效应的调节作用. 中国危重病急救医学, 2000, 12(6): 353~355
    71 Taniguchi T, Koido Y, Aiboshi J, et al. Change in the ratio of interleukin-6 to interleukin-10 predicts a poor outcome in patients with systemic inflammatory respone syndrome. Crit Care Med, 1999, 27(7): 1262 ~1264
    72 William YP, Richard BG, Kenneth PS, et al. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med, 2001,164(10Pt1): 1896~1903
    73 Lo CJ, Fu M, Cryer HG. Interleukin 10 inhibits alveolar macrophage production of inflammatory mediators involved in adult respiratory distress syndrome. J Surg Res, 1998, 79(2): 179~184
    74 郭振辉, 洪新, 毛宝龄, 等. 核因子-κB 活性在脓毒症急性肺损伤发病中的作用. 中国危重病急救医学. 2000, 12 (6): 334~337
    75 Lo CJ, Fu M, Cryer HG. Interleukin 10 inhibits alveolar macrophage production of inflammatory mediators involved in adult respiratory distress syndrome. J Surg Res, 1998, 79(2): 179~184
    76 Donnelly SC, Strieter RM, Reid PT, et al. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with theadult respiratory distress syndrome. Ann Intern Med, 1996, 125(3): 191~196
    77 Prescott SM, Zimmerman GA, Stafforini DM, et al. Platelet-activating factor and related lipid mediators. Annu Rev Biochem. 2000, 69: 419~445
    78 Adams DH, Nash GB. Disturbance of leucocyte circulation and adhesion to the endothelium as factors in circulatory pathway. Br J Anaesth, 1996, 77(1): 17~31
    79 Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1(CD54)gene expression. J Leukoc Biol, 1999, 66(6): 876~888
    80 Giannoudis PV, Smith RM, Banks RE, et al. Stimulation of inflammatory markers after blunt trauma. Br J Surg, 1998, 85(7): 986~990
    81 Takano H, Yanagisawa R, Ichinose T. et al. Diesel exhaust particles enhance lung injury related to bacterial endotoxin through expression of proinflammatory cytokines, chemokines, and intercellular adhesion molecule-1. Am J Respir Crit Care Med, 2002, 165(9): 1329~1335
    82 Muller AM, Cronen C, Muller KM, et al. Heterogeneous expression of cell adhesion molecules by endothelial cells in ARDS. J Pathol, 2002, 198(2): 270~275
    83 Sato N, Suzuki Y, Nishio K, et al. Roles of ICAM-1 for abnormal leukocyte recruitment in the microcirculation of bleomycin-induced fibrotic lung injury. Am J Respir Crit Care Med, 2000, 161(5): 1681~1688
    84 Bhatia M, Hofbauer B, Lee HS, et al. The effects of neutrophil depletion on a completely noninvasive model of acute panereatitis-associated lung injury. Int J Pancreatol, 1998, 24(2): 77~83
    85 Frossard JL, Saluja A, Bhagat L, et al. The role of intereellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology, 1999, 116(3): 694~701
    86 Trapnell BC, Whitsett JA. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol, 2002, 64: 775~802
    87 Perry SE, Mostafa SM, Wenstone R. et al. Low plasma granulocyte-macrophage colony stimulating factor is an indicator of poor prognosis in sepsis. Intensive Care Med, 2002, 28(7): 981~984
    88 Presneill JJ, Harris T, Stewart AG, et al. A randomized phase II trial granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am J Respir Crit Care Med, 2002, 166(2): 138~143
    89 Leon-Ponte M, Kirchhof MG, Sun T, et al. Polycationic lipids inhibit the pro-inflammatory response to LPS. Immunol Lett, 2005, 96(1): 73~83
    90 王祥瑞. 杭燕南. 急性肺损伤—基础与临床. 第一版. 北京: 中国协和医科大学出版社. 2005: 23
    91 White M K, Baireddy V, Strayer DS. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp Cell Res 2001, 263(2): 183~192
    92 Croston GE, Cao Z, Goeddel DV. NF-kappa B activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J Bio Chem 1995,270(28): 16514~16517
    93 Baeuerle PA. IkappaB-NF-kappaB structures: at the interface of inflammation control. Cell, 1998, 95(6): 729~731
    94 Abraham E. NF-kappaB activation. Crit Care Med, 2000, 28(4 Suppl): N100~N104
    95 Tasaka S, Ishizaka A, Yamada W, et al. Effect of CD14 blockade endotoxin-induced acute lung injury in mice. Am Respir Cell Mol Bio, 2003, 29(2): 252~258
    96 Akashi S, Shimazu R, Ogata H, et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol, 2000, 164(7): 3471~3475
    97 Hatada EN, Krappmann D, Scheidereit C. NF-kappa B and the innate immune response. Curr Opin Immunol, 2000, 12(1): 52~58
    98 郭振辉, 洪新, 毛宝龄, 等. 核因子-κB 活化在急性肺损伤发病中的作用. 中华急诊医学杂志, 2003, 12(9) :597~599
    99 Blackwell TS, Holden EP, Blackwell TR, et al. Cytokin-induced neutrophil chemoattractant mediates neutrophilic alveolitis in rats: assosiated with neclear factor B activation. Am J Cell Mol Biol, 1994, 11(4): 464~472
    100Wally KR, McDonald TE, Higashimoto Y, et al. Modulation of proinflammaty cytokines by nitric oxide in murine acute lung injury. Am J Respir Crit Care Med, 1999, 160(2): 698~704
    101Schwartz MD, Moore EE, Moore FA. Nuclear factor-κB is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med, 1996, 24(8): 1285~1292
    102Parsey MV, Kaneko D, Shenkar R, et al. Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1 beta. Clin Immunol, 1999, 91(2): 219~225
    103蒋叶. 核因子-κB 信号通路在内毒素致急性肺损伤中的作用. 中国急救医学. 2004, 24(12): 902~904
    104Ndengele MM, Muscoli C, Wang ZQ, et al. Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock. 2005, 23(2): 186~193
    105张秋金, 沈洪, 张维, 李银平, 等. 纳洛酮与甲基泼尼松龙联用对急性肺损伤大鼠肺组织核转录因子-κB 表达的影响.中国危重病急救医学, 2005, 17(6): 370~372
    106Chang L, Karin M. Mammalian MAP Kinase signaling cascades. Nature, 2001, 410(6824): 37~40
    107Chen Z, Gibson TB, Robinsonf, et al. MAP Kinases. Chem Rev, 2001, 101(8): 2449~2476
    108Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 1994, 265(5173): 808~811
    109Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal, 2000, 12(1): 1~13
    110Harper SJ, LoGrasso P. Signalling for survival and death in neurones: Therole of stress-activated kinases, JNK and p38. Cell Signal, 2001, 13(5): 299~310
    111Van den Blink B, Juffermans NP, ten Hove T, et al. p38 mitogen activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vitro. J Immunol, 2001, 166(1): 582~587
    112李立斌. MAPK 通路与危重病. 国外医学, 生理、病理科学与临床分册, 2003, 23(2): 204~207
    113刘海霞, 何建, 霍正禄, 等. 大鼠创伤失血性休克复合内毒素打击模型中 p38 丝裂原活化蛋白激酶磷酸化水平的改变. 中国急救医学, 2004, 24: 32~34
    114Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38MAPK pathway. Crit Care Med, 2000, 28(4 Suppl): N67~N77
    115Blinman TA, Gukovsky I, Mouria M, et al. Activation of pancreatic acinar cells on isolation from tissue: cytokine upregulation via p38 MAP kinase. Am J Physiol Cell Physiol, 2000, 279(6): C1993~C2003
    116Yoshinari D, Takeyoshi I, Koibuchi Y, et al. Effects of a dual inhibitor of tumor necrosis factor-alpha and interleukin-1 on lipopolysaccharide-induced lung injury in rats: involvement of the p38 mitogen-activated protein kinase pathway. Crit Care Med, 2001, 29(3): 628~634
    117陈旭林, 夏照帆, 韦多, 等. p38 丝裂原活化蛋白激酶信号转导通路在严重烧伤大鼠急性肺损伤中的作用. 中华外科杂志, 2004, 42(7): 388~390
    118Chen P, Li J, Barnes J, et al. Restraint of proinflammatory cytokine biosynthesis by mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J Immunol, 2002, 169(11): 6408~6416
    119Song GY, Chung CS, Jarrar D, et al. Evolution of an immune suppressive macrophage phenotype as a product of p38 MAPK activation in polymicrobial sepsis. Shock, 2001, 15(1): 42~48
    120Devaraj S, Venugopal SK, Singh U, et al. Hyperglycemia inducesmonocytic release of interleukin-6 via induction of protein kinase c-alpha and -beta. Diabetes, 2005; 54(1): 85~91
    121Van der Bruggen T, Nijenhuis S, van Raaij E, et al. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ ERK1-ERK2 pathway. Infect Immun, 1999, 67(8): 3824~3829
    122王勇, 彭代智, 黄文华, 等. 严重烫伤小鼠巨噬细胞内 IL-10 mRNA、AP-1 的变化及与 ERK 信号途径的关系. 第三军医大学学报, 2001, 23(6): 702~704
    123Jiang JX, Zhang Y, Ji SH, et al. Kinetics of mitogen-activated protein kinase family in lipopolysaccharide-stimulated mouse Kupffer cells and their role in cytokine production. Shock, 2002, 18(4): 336~341
    124Ma W, Lim W, Gee K, et al. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem, 2001, 276(17): 13664~13674
    125Yaffe MB, Xu J, Burke PA, et al. Priming of the neutrophil respiratory burst is species dependent and involves MAP kinase activation. Surgery, 1999, 126(2): 248~254
    126Aoshiba K, Yasui S, Hayashi M, et al. Role of p38-mitogen-activated protein kinase in spontaneous apoptosis of human neutrophils. J Immunol, 1999, 162(3): 1692~1700
    127Bernard S, Moulin P, Lagrost L, et al. Association between plasma HDL-cholesterol concentration and Taq1B CETP gene polymorphism in non-insulin-dependent diabetes mellitus. J Lipid Res. 1998, 39(1): 59~65
    128Durlach A, Clavel C, Girard-Globa A, et al. Sex-dependent association of a genetic polymorphism of cholesteryl ester transfer protein with high-density lipoprotein cholesterol and macrovascular pathology in type II diabetic patients. J Clin Endocrinol Med, 1999, 84(10): 3656~3659
    129Rosengart MR, Arbabi S, Nathens A, et al. Mitogen-activated protein kinases in the intensive care unit: prognostic potential. Ann Surg. 2003,237(1): 94~100.
    130Fijen JW, Zijlstra JG, Doer P, et al. Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin Exp Immunol, 2001, 124(1): 16~20
    131Branger J, Van den Blink B, Weijer S, et al. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol, 2002, 168(8): 4070~4077

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700