MEKK1分子水平和高表达细胞模型的建立及应用非那吲哚里西丁类生物碱CAT的抗肿瘤作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Establishment and Application of Enzyme-linked Immunosorbent Assay (ELISA) Method and Overexpression Cell Line for MEKK1 Studies on Antitumor Activity of a New Phenanthroindolizidine Alkaloid and Its Mechanisms of Action
  • 作者:丁岩
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:2005
  • 导师:陈晓光
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2005-04-01
摘要
细胞内蛋白激酶是控制细胞增殖、分化或凋亡的重要调控因子之一。蛋白激酶可以将细胞表面信号传导入细胞核内,引起基因表达改变。在已知的信号传导通路中,MAPK(mitogen-activated protein kinase,丝裂原激活的蛋白激酶)信号转导通路是近年来研究的一个热点。MAPK通路原件进化上高度保守,每个组件均由三个胞浆激酶构成:MAPKKK(mitogen-activated protein kinase kinase kinase,丝裂原激活的蛋白激酶的激酶的激酶),MAPKK(mitogen-activated protein kinase kinase,丝裂原激活的蛋白激酶的激酶),MAPK。目前普遍被接受的MAPK信号转导通路的模式途径是:Raf-MEK1/2-ERK通路,MEKK1-MEK4/7-JNK通路和TAK-MEK3/6-P38通路。人MEKK1蛋白的分子量为196kDa,由1495个氨基酸组成,是一个重要的MAPKKK蛋白激酶。本论文通过将人MEKK1基因转染入小鼠黑色素瘤细胞B16,经过筛选鉴定,建立了稳定高表达MEKK1的小鼠黑色素瘤细胞株M1B16。研究发现MEKK1基因可以抑制B16细胞的生长。与对照细胞相比,M1B16细胞在体外软琼脂集落形成的能力降低,体内在C57/BL6小鼠致瘤性降低,在Balb/c裸鼠肿瘤生长抑制。MEKK1基因使B16细胞形态变长,体内外生长均呈现类成纤维细胞形态;MEKK1可以使B16细胞粘附能力减弱,细胞内Calpain-1酶活性降低;使B16细胞体外侵袭运动能力增强,体内转移活性增加。这与多数关于MEKK1基因功能的报道一致。采用MTT法,就常见抗肿瘤药物对M1B16的作用进行了初步观察,结果表明与对照细胞B16和PB16相比,Taxotere和Taxol对M1B16的IC_(50)增加了约10倍,PD153035的IC_(50)提高了约20倍。这一结果提示本高表达细胞模型可能用于筛选针对微管和EGFR-MEKK1-MEK4/7-JNK通路的特异性抑制剂。总之,本文成功地建立了稳定高表达MEKK1的小鼠黑色素瘤细胞株M1B16,研究表明该细胞株可以作为细胞水平的药物筛选模型用于筛选针对MEKK1特异性的抑制剂。
     MEKK1作为三激酶通路的上游激酶在细胞的生长、增殖、运动、迁移以及机体的应激过程中发挥重要作用,但是国内外尚未见有对肿瘤细胞中MEKK1表达水平的报道。为了快速测定细胞中MEKK1的表达,本研究建立了一套直接竞争ELISA方法,可以快速测定细胞样品中MEKK1的表达水平,其灵敏度为0.17ng/mL,检测范围为0.1-10000ng/mL。方法学实验表明本方法稳定可靠,变异系数的范围在2.81到10.12之间,回收率在89.23%与109.32%之间。本方法在标准样品浓度在1.7×10~(-4)和10μg/mL之间时线性关系良好,相关系数R~2为0.9937。总之,所有检测数据显示本方法重复性好、灵敏度高,是一种定量检测细胞样品中MEKK1表达水平的可靠方法。可以用于研究细胞中MEKK1的表达,快速筛选作用于MEKK1的药物。利用已建立的ELISA方法对常见细胞株中MEKK1的表达水平进行了检测。结果表明,人胰腺癌细胞(PC-3)和人胚胎脐静脉内皮细胞(ECV304)中MEKK1的表达明显高于其它细胞株,从另一个角度说明MEKK1在调节胰腺癌细胞生长、分化、增殖以及血管生成方面的重要作用。
     本实验室对从传统有毒草药萝摩科娃儿藤和三分丹中分离到的十余种抗肿瘤成分进行了大量的初筛和复筛,从中发现CAT在体内外均具有较强的抗肿瘤活性,且具有良好的量效关系。本文深入探讨了化合物CAT的体外抗肿瘤作用及其作用机制。
     MTT法发现CAT可抑制多种体外培养的肿瘤细胞的生长,在体外的半数抑制浓度IC_(50)范围在0.044~0.286μmol/L。SRB法观察了CAT对这些肿瘤细胞生长的影响,结果表明CAT可不同程度地抑制这些细胞的生长,半数抑制浓度GI_(50)范围在0.023~0.103μmol/L,完全抑制浓度TGI范围在0.079~0.390μmol/L。细胞生长曲线和集落形成实验表明,CAT可剂量依赖性地抑制人肝癌细胞Bel7402和人结肠癌细胞HCT-8的生长和集落形成能力。流式细胞分析表明,CAT使Bel7402细胞阻断于Gl和S期。Western Blot分析表明CAT处理Bel7402细胞12h,可使P53蛋白表达量增加,处理Bel7402细胞24h可使P16、P21和CyclinA蛋白的表达量明显升高。将CAT与DNA Topo I及pBR322 DNA在体外共同孵育可观察到对酶活性的抑制作用,结果表明CAT可明显抑制DNA Topo I的解旋活性,使超螺旋型DNA的量明显增加,同时加入CAT的DNA条带位移明显滞后。这一结果提示,CAT可能通过嵌入DNA,抑制DNA解聚及断裂DNA重新连接而发挥作用。
     CAT作用小鼠黑色素瘤B16-BL6细胞15h,使B16-BL6细胞侵袭穿过重组基底膜的能力明显下降,0.02、0.04和0.08μmol/L CAT使B16-BL6细胞的侵袭能力分别降低57%、75%和86%(P<0.01)。经不同浓度CAT作用2h后,B16-BL6细胞与基底膜成分的粘附受到不同程度的抑制,并呈一定的剂量依赖关系。用底物酶谱法观察CAT对人肉瘤细胞HT-1080分泌基质金属蛋白酶能力的影响,结果表明不同浓度CAT作用24h,可以剂量依赖性地抑制MMP-2的分泌。以上结果均表明CAT在体外可有效作用于肿瘤细胞侵袭转移的各环节,阻断侵袭转移的发生。
     CAT对人胚胎脐静脉血管内皮细胞ECV304的增殖具有明显的抑制作用,MTT试验测得其半数抑制浓度IC_(50)为0.088μmol/L,SRB试验测得其半数抑制浓度GI_(50)为0.10μmol/L,完全抑制浓度TGI为0.22μmol/L。采用fibronectin作趋化剂,观察了CAT对ECV304细胞迁移能力的影响。结果表明,0.02、0.04和0.08μmol/L CAT可明显抑制ECV304细胞的迁移,对ECV304细胞的趋化性运动能力的抑制率分别为55%、65%和82%(P<0.01)。用底物酶谱法观察CAT对ECV304细胞分泌基质金属蛋白酶能力的影响,结果表明不同浓度CAT作用24h,可以剂量依赖性地抑制MMP-2和MMP-9的分泌。CAT在体外表现出较强的抑制血管生成的作用,明显抑制ECV304细胞在Matrigel基质上形成的管腔结构。0.02、0.04和0.08μmol/L CAT处理ECV304细胞24h,可使其在Matrigel基质上形成管腔结构的能力分别降低至对照组的81.8%、54.6%和16.1%。另外CAT还可抑制KDR及MMP-9基因的表达。CAT对血管生成的抑制作用可能是其体内抑制肿瘤生长和侵袭转移的一个重要原因。
     综上所述,CAT在体外可广泛抑制不同组织来源的肿瘤细胞的生长,其作用机理可能与CAT嵌入DNA,抑制DNA Topo I的解旋活性,使细胞内与细胞周期调控相关的蛋白P53、P21、P16和CyclinA表达增加,细胞停滞于Gl和S期有关。同时CAT在体外还表现出较强的抗转移和抗血管生成作用。因此,CAT很可能成为一个新型具有自主知识产权,作用机制独特的潜在抗肿瘤药物。
MEKKl is a 196-kDa serine-threonine kinase activated in response to a variety of stimuli, including EGF, lysophosphatidic acid, osmotic stress, UV light, and microtubule toxins. In this study, a subline of B16 mouse melanoma cells harboring MEKKl genes (M1B16) was established, and the expression of MEKKl could decrease the colony formation and tumor formation abilities of mouse melanoma B16 cells. The adherence ability and the Calpain-1 activity were also decreased in M1B16 cells referring to control cell lines. The motility and invasive ability were enhanced by the expression of MEKKl in vitro and in vivo. The morphology of B16 melanoma cells harboring MEKKl showed the dendrite outgrowth. All of these data indicate that M1B16 may be a suitable cell model to screen MEKK1 inhibitor for cancer metastasis therapy.
     MEKK1 is an important kinase in MAPK signaling pathway. Upon activating, MEKK1 participates in the regulation of the JNK and ERK pathways and is involved in the activation of NF-κB. In addition, MEKK1 is activated in response to changes in cell shape and the microtubule cytoskeleton. MEKK1 senses microtubule integrity, protects cells from committing to apoptosis, and contributes to the migration of fibroblasts and epithelial cells. In this study, a direct competitive ELISA to quantify total MEKK1 in human cell lines was developed. The procedure showed a high sensitivity (detection limit: 0.17 ng/mL), good precision (coefficient of variation≤10.12) and acceptable linearity with a large range of MEKK1 concentrations (0.1-10000 ng/mL). In a pilot study, this assay was used to quantify MEKK1 in different cell lines. In cancer cells, the range of MEKK1 is 0.02-85 ng/mg protein and its concentration was higher in pancreas cancer and umbilical vein cells than that in others. And this high expression of MEKK1 in these two cell lines indicates that MEKK1 may be a potential target in interfering with pancreas cancer and angiogenesis.
     Phenanthroindolizidine alkaloids are found primarily in the genera Cynanchum, Pergularia, and Tylophora of the Asclepiadaceae, but have also been reported from Hypoestes verticillaris (Acanthaceae), Cryptocarya phyllostemmon (Lauraceae), Ficus hispida and F. septica (Moraceae). It is a small group of alkaloids known for its profound cytotoxic activity. It has been shown that the toxicity of phenanthroindolizidine alkaloids is due to inhibition of protein and nucleic acid synthesis. In this paper, the anti-tumor activities of a new phenanthroindolizidine alkaloid (CAT) against cancer cells in vitro were investigated to provide the molecular mechanism for CAT in the treatment of hepatoma.
     Effects of CAT on the growth of different cancer cell lines were assayed by MTT and SRB assay. MTT test showed that the IC_(50) of CAT to cancer cells were in the range of 0.044~0.286μmol/L. Human hepatoma cell (Bel7402) was the most sensitive to CAT with the IC_(50) of 0.044μmol/L. GI_(50) evaluated by SRB assay was 0.023~0.103μmol/L. TGI evaluated by SRB assay was 0.079~0.390μmol/L. The inhibition of CAT on growth of Bel7402 and HCT-8 cells was in a dose-dependent manner, and the colony formation ability of Bel7402 and HCT-8 cells was inhibited by CAT (P<0.05) significantly, too. To investigate the nature of growth inhibition caused by CAT, flow cytometric analysis was performed. The cells treated with increasing concentrations of CAT showed progressive accumulations in the G1 phase and S phase of the cell cycle. Topoisomerase I activity was measured by DNA relaxation assay. CAT inhibited Topoisomerase I activity in a dose-dependent manner. Western Blotting analysis was performed to observe the expression of P53, P21, P16, and CyclinA proteins. P53, P21, P16 and CyclinA protein expression were increased in a dose-dependent manner.
     After treated with CAT for 2h, the adhesive ability of Bl6-BL6 cells with basement membarane components (Matrigel) was markedly reduced in a dose-dependent manner. 0.02, 0.04 and 0.08μmol/L CAT inhibited significantly the migration of Bl6-BL6 cells with the inhibition rate of 57%, 75%and 86%(P<0.001), respectively. Secretion and activation of MMP-2 in serum-free culture medium of HT-1080 cells treated by CAT for 24h were suppressed by a dose-dependent mode. These results implied that CAT decreased degradation of basement membrane and invasive potentials by inhibiting the adhesion, migration and invasion ability of tumor cells and suppressing the secretion and activation of MMP-2.
     The anti-proliferation effect of CAT on human umbilical vein endothelial cell (ECV304) was demonstrated by SRB assay with GI_(50) of 0.10μmol/L and with TGI of 0.22μmol/L. MTT test showed that the IC_(50) of CAT to ECV304 was 0.088μmol/L. The chemotaxis mobility of ECV304 cells induced by fibronectin (FN) was significantly restrained by CAT at the different concentrations, the inhibitory rate of 0.02, 0.04 and 0.08μmol/L CAT on migration potential was 55%, 65%and 82%, respectively. Three-dimension in vitro angiogenesis system showed that CAT inhibited tube formation of ECV304 cells seeded on Matrigel, the multicellular capillary-like structure formation was suppressed to 81.8%, 54.6%and 16.1%of untreated control by 0.02, 0.04 and 0.08μmol/L CAT, respectively. With RT-PCR analysis, KDR and MMP-9 gene expression of ECV304 cells were inhibited by CAT treatment. CAT inhibited angiogenesis by suppressing endothelial cells proliferation, migration and KDR gene expression.
     In summary, it was found that CAT inhibited growth of various cancer cells in vitro, the metastasis of Bl6-BL6 cells in vitro and the angiogenesis process. CAT could induce progressive accumulations of Bel7402 cells at the Gl phase and S phase. This blockade was related to the Topoisomerase I inhibition by CAT. The changes of P53, P21, P16, and CyclinA protein expression levels may play a major role in the cell cycle arrest triggered by CAT. Inhibition of CAT on MMP secretion may play a key role in suppression both on tumor growth and on metastasis. The effects of CAT on angiogenesis were associated with inhibition of expression of KDR genes. The results reported herein may suggest potential clinical application of CAT against cancer, especially for those refractory to current chemotherapy.
引文
[1] 曾益新(2003)肿瘤学,人民卫生出版社。
    [2] L.Chang, M.Karin, Mammalian MAP kinase signalling cascades, Nature 410(2001) 37-40.
    [3] D.R.Alessi and others, PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo, J.Biol.Chem. 270(1995) 27489-27494.
    [4] D.T.Dudley and others, A synthetic inhibitor of the mitogen-activated protein kinase cascade, Proc.Natl.Acad.Sci.U.S.A 92 (1995) 7686-7689.
    [5] J.V.Duncia and others, MEK inhibitors: the chemistry and biological activity of U0126, its analogs, and cyclization products, Bioorg.Med.Chem.Lett. 8(1998) 2839-2844.
    [6] M.F.Favata and others, Identification of a novel inhibitor of mitogen-activated protein kinase kinase, J.Biol.Chem. 273 (1998) 18623-18632.[7] 韩锐(2005)抗癌药物研究与实验技术,北京医科大学中国协和医科大学联合出版社。
    [8] T.Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J.lmmunol.Methods 65 (1983) 55-63.
    [9] A.H.Van Hattum and others, Novel camptothecin derivative BNP1350 in experimental human ovarian cancer: determination of efficacy and possible mechanisms of resistance, Int.J.Cancer 100 (2002) 22-29.
    [10] L.Zhang and others, A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure, EMBO J. 22 (2003) 4443-4454.
    [11] M.J.Hendrix and others, A simple quantitative assay for studying the invasive potential of high and low human metastatic variants, Cancer Lett. 38 (1987) 137-147.
    [12] C.Heussen, E.B.Dowdle, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates, Anal.Biochem. 102 (1980) 196-202.
    [13] L.A.Repesh, A new in vitro assay for quantitating tumor cell invasion, Invasion Metastasis 9 (1989) 192-208.
    [14] A.Albini and others, A rapid in vitro assay for quantitating the invasive potential of tumor cells, Cancer Res. 47 (1987) 3239-3245.
    [15] S.Mittoo, L.E.Sundstrom, M.Bradley, Synthesis and evaluation of fluorescent probes for the detection of calpain activity, Anal.Biochem. 319 (2003) 234-238.
    [16] Y.Huang, K.K.Wang, The calpain family and human disease, Trends Mol.Med. 7 (2001) 355-362.
    [17] M.Pfaff, X.Du, M.H.Ginsberg, Calpain cleavage of integrin beta cytoplasmic domains, FEBS Lett. 460 (1999) 17-22.
    [18] L.C.Cantley and others, Oncogenes and signal transduction, Cell 64 (1991) 281-302.
    [19] C.S.Hill, R.Treisman, Transcriptional regulation by extracellular signals: mechanisms and specificity, Cell 80 (1995) 199-211.
    [20] C.L.Jones, M.A.Kane, Oncogenic signaling, Curr.Opin.Oncol. 8 (1996) 54-59.
    [21] R.R.Reed, G protein diversity and the regulation of signaling pathways, New Biol. 2 (1990) 957-960.
    [22] C.A.Lange-Carter and others, A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf, Science 260 (1993) 315-319.
    [23] S.Xu and others, MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase, Proc.Natl.Acad.Sci.U.S.A 92 (1995) 6808-6812.
    [24] M.Yan, D.J.Templeton, Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase, J.Biol.Chem. 269 (1994) 19067-19073.
    [25] A.M.Gardner and others, MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity, Mol.Biol.Cell 5 (1994) 193-201.
    [26] H.Ellinger-Ziegelbauer and others, Direct activation of the stress-activated protein kinase (SAPK) and extracellular signal-regulated protein kinase (ERK) pathways by an inducible mitogen-activated protein Kinase/ERK kinase kinase 3 (MEKK) derivative, J.Biol.Chem. 272 (1997) 2668-2674.
    [27] Y.Xia and others, JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension, Genes Dev. 12 (1998) 3369-3381.
    [28] N.J.Avdi and others, Tumor necrosis factor-alpha activation of the c-Jun N-terminal kinase pathway in human neutrophils, Integrin involvement in a pathway leading from cytoplasmic tyrosine kinases apoptosis, J.Biol.Chem. 276 (2001) 2189-2199.
    [29] C.Widmann and others, MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis, Mol.Cell Biol. 18 (1998) 2416-2429.
    [30] S.Gibson, C.Widmann, G.L.Johnson, Differential involvement of MEK kinase 1 (MEKK1) in the induction of apoptosis in response to microtubule-targeted drugs versus DNA damaging agents, J.Biol.Chem. 274 (1999) 10916-10922.
    [31] J.C.Deak and others, Fas-induced proteolytic activation and intracellular redistribution of the stress-signaling kinase MEKK1, Proc.Natl.Acad.Sci.U.S.A 95 (1998) 5595-5600.
    [32] M.H.Cardone and others, The regulation of anoikis: MEKK-1 activation requires cleavage by caspases, Cell 90 (1997) 315-323.
    [33] T.Yujiri and others, MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation, Proc.Natl.Acad.Sci.U.S.A %20;97 (2000) 7272-7277.
    [34] L.B.Christerson, C.A.Vanderbilt, M.H.Cobb, MEKK1 interacts with alpha-actinin and localizes to stress fibers and focal adhesions, Cell Motil.Cytoskeleton 43 (1999) 186-198.
    [35] T.Yujiri and others, MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton, J.Biol.Chem. 274 (1999) 12605-12610.
    [36] T.Yujiri and others, Role of MEKK1 in cell survival and activation of JNK and ERK pathways defined by targeted gene disruption, Science 282 (1998) 1911-1914.
    [37] K.M.Yamada, S.Miyamoto, Integrin transmembrane signaling and cytoskeletal control, Curr.Opin.Cell Biol. 7(1995)681-689.
    [38] K.Bialkowska and others, Evidence that beta3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active, J.Cell Biol. 151 (2000) 685-696.
    [39] A.Huttenlocher and others, Regulation of cell migration by the calcium-dependent protease calpain, J.Biol.Chem. 272 (1997) 32719-32722.
    [40] S.P.Palecek and others, Physical and biochemical regulation of integrin release during rear detachment of migrating cells, J.Cell Sci. 111 (Pt 7) (1998) 929-940.
    [41] B.D.Cuevas and others, MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts, EMBOJ. 22 (2003) 3346-3355.
    [42] A.Glading, D.A.Lauffenburger, A.Wells, Cutting to the chase: calpain proteases in cell motility, Trends Cell Biol. 12 (2002) 46-54.
    [43] V.Petit, J.P.Thiery, Focal adhesions: structure and dynamics, Biol.Cell 92 (2000) 477-494.
    [1] Madhani HD, Styles CA, Fink GR. Cell 1997;91:673-84.
    [2] Gustin MC, Albertyn J, Alexander M, Davenport K. Microbiol Mol Biol Rev 1998;62:1264-300.
    [3] Daum G, Eisenmann-Tappe Ⅰ, Fries H-W, Troppmair J, Rapp UR.Trends Biochem Sci 1994;19:474-80.
    [4] Hagemann C, Rapp UR. Exp Cell Res 1999;253:34-46.
    [5] Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. Science 1993;260:315-9.
    [6] Xu S, Robbins DJ, Christerson LB, English JM, Vanderbildt CA, Cobb MH. Proc Natl Acad Sci USA 1996;93:5291-5.
    [7] Blank JL, Gerwins P, Elliott EM, Sather S, Johnson GL. J Biol Chem 1996;271:5361-8.
    [8] Gerwins P, Blank JL, Johnson GL. J Biol Chem 1997;272:8288-95.
    [9] Pawson T. Nature 1995;373:573-80.
    [10] Russell M, Lange-Carter CA, Johnson GL. J Biol Chem 1995;270:11757-60.
    [11] Xu S, Robbins D, Frost J, Dang A, Lange-Carter C. Proc Natl Acad Sci USA 1995;92:6808-12.
    [12] Yan M, Templeton DJ. J Biol Chem 1994;269:19067-73.
    [13] Gardner AM, Vaillancourt RR, Lange-Carter CA, Johnson GL. Mol Biol Cell 1994; 5: 193-201.
    [14] Ellinger-Ziegelbauer H, Brown K, Kelly K, Siebenlist U. J Biol Chem 1997; 272: 2668-74.
    [15] Xia Y, Wu Z, Su B, Murray B, Karin M. Genes Dev 1998; 12: 3369-81.
    [16] Ichijo H. Oncogene 1999; 18: 6087-93.
    [17] Collins LR, Minden A, Karin M, Brown JH. J Biol Chem 1996; 271: 17349-53.
    [18] English J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S, Cobb MH. Exp Cell Res 1999; 253: 255-70.
    [19] Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ. Nature 1994; 372: 798-800.
    [20] Minden A, Lin A, McMahon M, Lange-Carter C, Derijard B, Davis RJ, Johnson GL, Karin M. Science 1994; 266: 1719-22.
    [21] Takekawa M, Posas F, Saito H. EMBO J 1997; 16: 4973-82.
    [22] Deacon K, Blank JL. J Biol Chem 1999; 274: 16604-10.
    [23] Deacon K, Blank JL. J Biol Chem 1997; 272: 14489-96.
    [24] Chao T-H, Hayashi M, Tapping RI, Kato Y, Lee J-D. J Biol Chem 1999; 274: 36035-8.
    [25] Sun W, Kesavan K, Schaefer BC, Garrington TP, Ware M, Johnson NL, Gelfand EW, Johnson GL. J Biol Chem 2001; 276: 5093-100.
    [26] Kato Y, Tapping RI, Huang S, Watson MH, Ulevitch RJ, Lee J-D. Nature 1998; 395: 713-6.
    [27] English JM, Vanderbildt CA, Xu S, Marcus S, Cobb MH. J Biol Chem 1995; 270: 28897-902.
    [28] Chan-Hui P-Y, Weaver R. Biochem J 1998; 336: 599-609.
    [29] Christerson LB, Vanderbildt CA, Cobb MH. Cell Motil Cytoskeleton 1999; 43: 186-98.
    [30] Yujiri T, Ware M, Widman C, Oyer R, Russell D, Chan E, Zaitsu Y, Clarke P, Tyler K, Oka Y, Fanger GR, Henson P, Johnson GL. Proc Natl Acad Sci 2000; 97: 7272-7.
    [31] Xia Y, Makris C, Su B, Li E, Yang J, Nemerow GR, Karin M. Proc Natl Acad Sci 2000; 97: 5243-8.
    [32] Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL. J Biol Chem 1999; 274: 12605-10.
    [33] Yujiri T, Sather S, Fanger GR, Johnson GL. Science 1998; 282: 1911-4.
    [34] Minamino T, Yujiri T, Papst PJ, Chan ED, Johnson GL, Terada N. Proc Natl Acad Sci 1999; 96: 15127-32.
    [35] Avdi NJ, Nick JA, Whitlock BB, Billstrom MA, Henson PM, Johnson GL, Worthen GS. J Biol Chem 2001; 276: 2189-99.
    [36] Widman C, Gerwins P, Johnson NL, Jarpe MB, Johnson GL. Mol Cell Biol 1998; 18: 2416-29.
    [37] Cardone MH, Salvesen GS, Widman C, Johnson G, Frisch SM. Cell 1997; 90: 315-23.
    [38] Deak JC, Cross JV, Lewis M, Qian Y, Parrott LA, Distelhorst CW, Templeton DJ. Proc Natl Acad Sci USA 1998; 95: 5595-600.
    [39] Gibson S, Widman C, Johnson GL. J Biol Chem 1999; 274: 10916-22.
    [40] Schlesinger TK, Fanger GR, Yujiri T, Johnson GL. Front Biosci 1998; 3: 1181-6.
    [41] Frisch SM, Vuori K, Kelaita D, Sicks S. J Biol Chem 1996; 135: 1377-82.
    [42] Shiah SG, Chuang SE, Kuo ML. Mol Pharmacol 2001; 59: 254-62.
    [43] Gebauer G, Mirakhur B, Nguyen Q, Shore SK, Simpkins H, Dhanasekaran N. Int J Oncol 2000; 16: 321-5.
    [44] Kopp E, Medzhitov R, Carothers J, Xiao C, Douglas I, Janeway CA, Ghosh S. Genes Dev 1999; 13: 2059-71.
    [45] Baud V, Liu Z-G, Bennett B, Suzuki N, Xia Y, Karin M. Genes Dev 1999; 13: 1297-308.
    [46] Winston BW, Lange-Carter CA, Gardner AM, Johnson GL, Riches DWH. Proc Natl Acad Sci USA 1995; 92: 1614-8.
    [47] Meyer CF, Wang X, Chang C, Templeton D, Tan T-H. J Biol Chem 1996; 271: 8971-6.
    [48] Hirano M, Osada S-I, Aoki T, Hirai S-I, Hosaka M, lnoue J-I, Ohno S. J Biol Chem 1996; 271: 13234-8.
    [49] Fanger GR, Gerwins P, Widman C, Jarpe MB, Johnson GL. Curr Opin Genet Dev 1997; 7: 67-74.
    [50] Liu Z-G, Hsu H, Goeddel DV, Karin M. Cell 1996; 87: 565-76.
    [51] Mercurio F, Manning AM. Curr Opin Cell Biol 1999; 11: 226-32.
    [52] Nemoto S, DiDonato JA, Lin A. Mol Cell Biol 1998; 18: 7336-43.
    [53] Lee FS, Hagler J, Chen ZJ, Maniatis T. Cell 1997; 88: 213-22.
    [54] Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, Okumura K. Proc Natl Acad Sci USA 1998; 95: 3537-42.
    [55] Lee FS, Peters RT, Dang LC, Maniatis T. Proc Natl Acad Sci USA 1998; 95: 9319-24.
    [56] Tuosto L, Costanzo A, Guido F, Marinari B, Vossio S, Moretti F, Levrero M, Piccolella E. Eur J Immunol 2000; 30: 2445-54.
    [57] Yin M-J, Christerson LB, Yamamoto Y, Kwak Y-T, Xu S, Mercurio F, Barbosa M, Cobb MH, Gaynor RB. Cell 1998; 93: 875-84.
    [58] Yuasa T, Ohno S, Kehrl JH, Kyriakis JM. J Biol Chem 1998; 273: 22681-92.
    [59] Shi C-S, Kehrl JH. J Biol Chem 1997; 272: 32102-7.
    [60] Nakano K, Yamauchi J, Nakagawa K, Itoh H, Kitamura N. J Biol Chem 2000; 275: 20533-9.
    [61] Wang D, Richmond A. J Biol Chem 2001; 276: 3650-9.
    [62] Zhao Q, Lee FS. J Biol Chem 1999; 274: 8355-8.
    [63] Zhu J, Shibasaki F, Price R, Guillemot J-C, Yano T, (?) V, Wagner G, Ferrara P, McKeon F. Cell 1998; 93: 851-61.
    [64] Hong S-H, Privalsky ML. Mol Cell Biol 2000; 20: 6612-25.
    [65] Schuringa J-J, Jonk LJC, Dokter WHA, Vellenga E, Kruijer W. Biochem J 2000; 347: 89-96.
    [66] Brown JD, DiChiara MR, Anderson KR, Gimbrone MA, Topper JN. J Biol Chem 1999; 274: 8797-805.
    [67] Dennler S, Prunier C, Ferrand N, Gauthier J-M, Atfi A. J Biol Chem 2000; 275: 28858-65.
    [68] Wong C, Rougier-Chapman EM, Frederick JP, Datto MB, Liberati NT, Li J-M, Wang X-F. Mol Cell Biol 1999; 19: 1821-30.
    [69] Schaefer BC, Ware MF, Marrack P, Fanger GR, Kappler JW, Johnson GL, Monks CRF. Immunity 1999; 11: 411-21.
    [70] Garrington TP, Ishizuka T, Papst PJ, Chayama K, Webb S, Yujiri T, Sun W, Sather S, Russell DM, Gibson SB, Keller G, Gelfand EW, Johnson GL. EMBOJ 2000; 19: 5387-95.
    [71] Sun W, Vincent S, Settleman J, Johnson GL. J Biol Chem 2000; 275: 24421-8.
    [72] Ellinger-Ziegelbauer H, Kelly K, Siebenlist U. Mol Cell Biol 1999; 19: 3857-68.
    [73] Lavoie JN, L'Allemain G, Brunet A, (?) R, Pouyssegur J. J Biol Chem 1996; 271: 20608-16.
    [74] Yang J, Boerm M, McCarty M, Bucana C, Fidler IJ, Zhuang Y, Su B. Nat Genet 2000; 24: 309-13.
    [1] B.A.Kenny and others, The application of high-throughput screening to novel lead discovery, Prog.Drug Res 51 (1998) 245-269.
    [2] S.A.Sundberg, High-throughput and ultra-high-throughput screening: solutionand cell-based approaches, Curr.Opin.Biotechnol. 11 (2000) 47-53.
    [3] Sambrook,J. (2002)分子克隆实验指南,科学出版社。
    [4] Frederick M and Ausubel (1992) Current protocols in cell biology. John Wiley & Sons, Inc.
    [5] J.R.Davie and others, Organization of chromatin in cancer cells: role of signalling pathways, Biochem.Celi Biol 77 (1999) 265-275.
    [6] M.Nishio and others, Tyrosine kinase-dependent modulation by interferon-alpha of the ATP-sensitive K+ current in rabbit ventricular myocytes, FEBS Lett. 445 (1999) 87-91.
    [7] M.A.Krasilnikov, Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation, Biochemistry (Mosc.) 65 (2000) 59-67.
    [8] I.B.Weinstein and others, The role of protein kinase C in signal transduction, growth control and lipid metabolism, Adv.Exp.Med Biol 400A (1997) 313-321.
    [9] C.Almoguera and others, Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes, Cell 53 (1988) 549-554.
    [10] T.Hirano and others, Dominant negative MEKKI inhibits survival of pancreatic cancer cells, Oncogene 21 (2002) 5923-5928.
    [11] N.Ferrara, K.Alitalo, Clinical applications of angiogenic growth factors and their inhibitors, Nat.Med 5 (1999) 1359-1364.
    [12] P.Carmeliet and others, Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188, Nat.Med 5 (1999) 495-502.
    [13] J.Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat.Med 1(1995)27-31.
    [14] D.Hanahan, J.Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis, Cell 86 (1996) 353-364.
    [15] L.Novotny, A.Vachalkova, D.Biggs, Ursolic acid: an anti-tumorigenic and chemopreventive activity. Minireview, Neoplasma 48 (2001) 241-246.
    [16] D.S.Kim, J.M.Pezzuto, E.Pisha, Synthesis of betulinic acid derivatives with activity against human melanoma, Bioorg.Med.Chem.Lett. 8(1998) 1707-1712.
    [17] F.Lauthier and others, Ursolic acid triggers calcium-dependent apoptosis in human Daudi cells, Anticancer Drugs 11 (2000) 737-745.
    [18] T.Yujiri and others, MEK kinase 1(MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton, J.Biol.Chem. 274 (1999) 12605-12610.
    [19] Y.Xia and others, MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinflammatory stimuli and growth factor-induced cell migration, Proc.Natl.Acad.Sci.U.S.A 97 (2000) 5243-5248.
    [20] T.Yujiri and others, MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-kappa B activation, Proc.Natl.Acad.Sci.U.S.A %20; 97 (2000) 7272-7277.
    [21] C.Widmann and others, MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis, Mol.Cell Biol. 18 (1998) 2416-2429.
    [22] A.M.Gardner and others, MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-aetivated protein kinase: analysis of phosphopeptides and regulation of activity, Mol.Biol.Cell 5 (1994) 193-201.
    [23] S.Xu and others, MEKK1 phosphorylates MEK1 and MEK2 but does not cause activation of mitogen-activated protein kinase, Proc.Natl.Acad.Sci.U.S.A 92 (1995) 6808-6812.
    [24] B.D.Cuevas and others, MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts, EMBO J. 22 (2003) 3346-3355.
    [25] L.B.Christerson, C.A.Vanderbilt, M.H.Cobb, MEKK1 interacts with alpha-actinin and localizes to stress fibers and focal adhesions, Cell Motil.Cytoskeleton 43 (1999) 186-198.
    [1] J.Peto, Cancer epidemiology in the last century and the next decade, Nature 411 (2001) 390-395.
    [2] 李连第,鲁凤珠,张思,中国恶性肿瘤死亡率20年变化趋势和近期预测分析,中华肿瘤杂志19(1997)3。
    [3] G.R.Donaldson, M.R.Atkinson, A.W.Murray, Inhibition of protein synthesis in Ehrlich ascites-tumour ceils by the phenanthrene alkaloids tylophorine, tyiocrebrine and cryptopleurine, Biochem.Biophys.Res.Commun. 31 (1968) 104-109.
    [4] 韩锐(1997)抗癌药物研究与实验技术,北京医科大学中国协和医科大学联合出版社。
    [5] T.Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J.Immunol.Methods 65 (1983) 55-63.
    [6] A.Monks and others, Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines, J.Natl.Cancer Inst. 83 (1991) 757-766.
    [7] M.J.Hendrix and others, A simple quantitative assay for studying the invasive potential of high and low human metastatic variants, Cancer Lett. 38 (1987) 137-147.
    [8] C.Heussen, E.B.Dowdle, Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates, Anal. B iochem. 102 (1980) 196-202.
    [9] L.A.Repesh, A new in vitro assay for quantitating tumor cell invasion, Invasion Metastasis 9 (1989) 192-208.
    [10] A.Albini and others, A rapid in vitro assay for quantitating the invasive potential of tumor cells, Cancer Res. 47 (1987) 3239-3245.
    [11] Sambrook,J.(2002)分子克隆实验指南,科学出版社。
    [12] V.Nehls, D.Drenckhahn, A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis, Microvasc.Res. 50 (1995) 311-322.
    [13] M.E.Gerritsen and others, Microvascular endothelial cells from E-selectin-deficient mice form tubes in vitro, Lab Invest 75 (1996) 175-184.
    [14] Recker RR (2005) Bone Histomorphometry: Techniques and Interpretation.
    [15] Y.H.Hsiang and others, Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I, J.Biol.Chem. 260 (1985) 14873-14878.
    [16] C.B.Jones and others, Sensitivity to camptothecin of human breast carcinoma and normal endothelial cells, Cancer Chemother.Pharmacol. 40 (1997) 475-483.
    [17] Y.Mizushina and others, Novel triterpenoids inhibit both DNA polymerase and DNA topoisomerase, Biochem.J. 350 Pt 3 (2000) 757-763.
    [18] B.K.McCune, H.S.Earp, The epidermal growth factor receptor tyrosine kinase in liver epithelial cells. The effect of iigand-dependent changes in cellular location, J.Biol.Chem. 264 (1989) 15501-15507.
    [19] 曾益新(2003)肿瘤学。人民卫生出版社。
    [20] 中国科学院昆明植物研,(1983)云南植物志,科学出版社。
    [21] 全国中草药汇编编,(1975)全国中草药汇编,人民卫生出版社。
    [22] J.D.Phillipson, I.Tezcan, P.J.Hylands, Alkaloids of Tylophora species from Sri Lanka, Planta Med. 25 (1974) 301-309.
    [23] R.K.Narasimha, R.K.Bhattacharya, S.R.Venkatachalam, Thymidylate synthase activity in ieukocytes from patients with chronic myeiocytic leukemia and acute lymphocytic leukemia and its inhibition by phenanthroindolizidine alkaloids pergularinine and tylophorinidine, Cancer Lett. 128 (1998) 183-188.
    [24] K.N.Rao, S.R.Venkatachalam, Inhibition ofdihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents, Toxicol.In Vitro 14 (2000) 53-59.
    [25] A.R.Chowdhury and others, Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives, Med.Sci.Monit. 8(2002)BR254-BR265.
    [26] R.H.Himes and others, Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro, Cancer Res. 36 (1976) 3798-3802.
    [27] G.B.Ryan, J.P.Coghlan, B.A.Scoggins, The granulated peripolar epithelial cell: a potential secretory component of the renal juxtaglomerular complex, Nature 277 (1979) 655-656.
    [28] E.Rakovitch and others, Paclitaxel sensitivity correlates with P53 status and DNA fragmentation, but not G2/M accumulation, Int.J.Radiat.Oncol.Biol.Phys. 44 (1999) 1119-1124.
    [29] M.Taron and others, Cytotoxic effects of topotecan combined with various active G2/M-phase anticancer drugs in human tumor-derived cell lines, Invest New Drugs 18 (2000) 139-147.
    [30] M.Suzuki and others, Butyrolactone I induces cyclin B1 and causes G2/M arrest and skipping of mitosis in human prostate cell lines, Cancer Lett. 138 (1999) 121-130.
    [31] K.T.Papazisis and others, Protein tyrosine kinase inhibitor, genistein, enhances apoptosis and cell cycle arrest in K562 cells treated with gamma-irradiation, Cancer Lett. 160 (2000) 107-113.
    [32] R.A.Woo and others, DNA-dependent protein kinase acts upstream of P53 in response to DNA damage, Nature 394 (1998) 700-704.
    [33] M.J.Waterman and others, ATM-dependent activation of P53 involves dephosphorylation and association with 14-3-3 proteins, Nat.Genet. 19 (1998) 175-178.
    [34] G.M.Wahl, A.M.Carr, The evolution of diverse biological responses to DNA damage: insights from yeast and P53, Nat.Cell Biol 3 (2001) E277-E286.
    [35] N.D.Lakin, S.P.Jackson, Regulation of P53 in response to DNA damage, Oncogene 18 (1999) 7644-7655.
    [36] R.Fotedar and others, P21 contains independent binding sites for cyclin and cdk2: both sites are required to inhibit cdk2 kinase activity, Oncogene 12 (1996) 2155-2164.
    [37] S.Waga and others, The P21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA, Nature 369 (1994) 574-578.
    [38] GP.Dimri and others, Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor P21 in cells expressing or lacking a functional retinoblastoma protein, Mol.Cell Biol 16 (1996) 2987-2997.
    [39] A.A.Russo and others, Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex, Nature 382 (1996) 325-331.
    [40] S.H.Hong and others, Changes in expression of cell cycle regulators after G1 progression upon repetitive thioacetamide treatment in rat liver, Exp.Mol.Med 34 (2002) 361-366.
    [41] D.M.Kim, K.Yang, B.S.Yang, Biochemical characterizations reveal different properties between CDK4/cyclin D1 and CDK2/cyclin A, Exp.Mol.Med 35 (2003) 421-430.
    [42] L.Qiao and others, Hepatitis B virus X protein increases expression of P21 (Cip-1/WAF1/MDA6) and p27(Kip-1) in primary mouse hepatocytes, leading to reduced cell cycle progression, Hepatology 34 (2001) 906-917.
    [43] S.Fulda and others, Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid, J.Biol.Chem. 273 (1998) 33942-33948.
    [44] S.Fulda and others, Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells, Cancer Res. 58 (1998) 4453-4460.
    [45] S.Fulda and others, Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells, Int.J.Cancer 82 (1999) 435-441.
    [46] S.Fulda, K.M.Debatin, Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors, Med.Pediatr.Oncol. 35 (2000) 616-618.
    [47] R.Engers, H.E.Gabbert, Mechanisms of tumor metastasis: cell biological aspects and clinical implications, J.Cancer Res.Clin.Oncol. 126 (2000) 682-692.
    [48] J.Schwarzbauer, Basement membranes: Putting up the barriers, Curr.Biol. 9 (1999) R242-R244.
    [49] E.Selzer and others, Effects of betulinic acid alone and in combination with irradiation in human melanoma cells, J.Invest Dermatol. 114 (2000) 935-940.
    [50] X.S.Zhang and others, Multiple drug resistance phenotype of human endothelial cells induced by vascular endothelial growth factor 165, Acta Pharmacol.Sin. 22 (2001) 731-735.
    [51] W.W.Li, Tumor angiogenesis: molecular pathology, therapeutic targeting, and imaging, Acad.Radiol. 7 (2000) 800-811.
    [52] J.Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat.Med. 1 (1995)27-31.
    [53] J.Folkman, What is the evidence that tumors are angiogenesis dependent?, J.Natl.Cancer Inst. 82 (1990) 4-6.
    [54] C.J.Ryan, G.Wilding, Angiogenesis inhibitors. New agents in cancer therapy, Drugs Aging 17(2000)249-255.
    [55] G.Deplanque, A.L.Harris, Anti-angiogenic agents: clinical trial design and therapies in development, Eur.J.Cancer 36 (2000) 1713-1724.
    [56] J.M.Cherrington, L.M.Strawn, L.K.Shawver, New paradigms for the treatment of cancer: the role of anti-angiogenesis agents, Adv.Cancer Res. 79 (2000) 1-38.
    [57] L.Rosen, Antiangiogenic strategies and agents in clinical trials, Oncologist. 5 Suppl 1 (2000)20-27.
    [58] C.O.McDonnell and others, Tumour micrometastases: the influence of angiogenesis, Eur.J.Surg.Oncol. 26 (2000) 105-115.
    [59] S.B.Fox, K.C.Gatter, A.L.Harris, Tumour angiogenesis, J.Pathol. 179 (1996) 232-237.
    [60] D.Ribatti and others, Anti-angiogenesis: a multipurpose therapeutic tool?, Int.J.Clin.Lab Res. 23 (1993) 117-120.
    [61] L.Schweigerer, Anti-angiogenesis as a new concept for the therapy of neovascular diseases, Klin.Wochenschr. 69 (1991) 417-418.
    [62] M.J.Geisow, Anti-angiogenesis: towards a molecular tourniquet, Trends Biotechnol. 9 (1991) 78-79.
    [63] S.A.Mousa, A.S.Mousa, Angiogenesis inhibitors: current & future directions, Curr.Pharm.Des 10 (2004) 1-9.
    [64] T.P.Fan, R.Jaggar, R.Bicknell, Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy, Trends Pharmacol.Sci. 16 (1995) 57-66.
    [65] W.Auerbach, R.Auerbach, Angiogenesis inhibition: a review, Pharmacol.Ther. 63 (1994) 265-311.
    [66] P.Carmeliet, R.K.Jain, Angiogenesis in cancer and other diseases, Nature 407 (2000) 249-257.
    [67] N.Ferrara and others, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene, Nature 380 (1996) 439-442.
    [68] Q.X.Zhang and others, Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis, J.Surg.Res. 67 (1997) 147-154.
    [69] S.Hiratsuka and others, Involvement of Fit-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis, Cancer Res. 61 (2001) 1207-1213.
    [70] H.Habeck and others, Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis, Curr.Biol. 12 (2002) 1405-1412.
    [1] Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications[J]. J Cancer Res Clin Oncol, 2000,126(12);682-92.
    [2] Schwarzbauer J. Basement membranes: Putting up the barriers[J]. Curr Biol, 1999,9(7);R242-R244.
    [3] Nagase H, Woessner JF, Jr. Matrix metalloproteinases[J]. J Bioi Chem, 1999,274(31);21491-4.
    [4] Massova Ⅰ, Kotra LP, Fridman R, et al. Matrix metalloproteinases: structures, evolution, and diversification[J]. FASEB J, 1998,12(12);1075-95.
    [5] Lukashev ME, Werb Z. ECM signalling: orchestrating cell behaviour and misbehaviour[J]. Trends Cell Biol, 1998,8(11);437-41.
    [6] Huiboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function[J]. Mol Hum Reprod, 1997,3(1);27-45.
    [7] Sternlicht MD, Lochter A, Sympson C J, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis[J]. Cell, 1999,98(2);137-46.
    [8] Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonateibandronate and tissue inhibitor of the matrix metalloproteinase-2[J]. J Clin Invest, 1997,99(10);2509-17.
    [9] Xia T, Akers K, Eisen AZ, et al. Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides[J]. Biochim Biophys Acta, 1996,1293(2);259-66.
    [10] Rudolph-Owen LA, Chan R, Muller WJ, et al. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis[J]. Cancer Res, 1998,58(23);5500-6.
    [11]Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy[J]. J Cell Biol, 1998, 140(6); 1535-41.
    [12]Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention[J]. J Clin Invest, 1999, 103(9); 1237-41.
    [13]Brooks PC, Silletti S, von Schalscha TL, et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity[J]. Cell, 1998, 92(3); 391-400.
    [14]Suzuki M, Raab G, Moses MA, et al. Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site[J]. J Biol Chem, 1997, 272(50); 31730-7.
    [15] Schonbeck U, Mach F, Libby P. Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing[J]. J Immunol, 1998, 161(7); 3340-6.
    [16]Tierney GM, Griffin NR, Stuart RC, et al. A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer[J]. Eur J Cancer, 1999, 35(4); 563-8.
    [17]Jones L, Ghaneh P, Humphreys M, et al. The matrix metalloproteinases and their inhibitors in the treatment of pancreatic cancer[J]. Ann N Y Acad Sci, 1999, 880: 288-307.(288-307.
    [18]Gatto C, Rieppi M, Borsotti P, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity[J]. Clin Cancer Res, 1999, 5(11); 3603-7.
    [19]Lokeshwar BL. MMP inhibition in prostate cancer[J]. Ann N Y Acad Sci, 1999, 878: 271-89.(271-89.
    [20] Watson SA, Morris TM, Collins HM, et al. Inhibition of tumour growth by marimastat in a human xenograft model of gastric cancer: relationship with levels of circulating CEA[J]. Br J Cancer, 1999, 81(1); 19-23.
    [21] Tanaka H, Nishida K, Sugita K, et al. Antitumor efficacy of hypothemycin, a new Ras-signaling inhibitor[J]. Jpn J Cancer Res, 1999, 90(10); 1139-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700