鸡肝脏和骨骼肌miRNA表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏代谢和骨骼肌发育是鸡十分重要的两个生物过程,microRNA(miRNA)是一类小的非编码的约22个核苷酸长度的单链RNA分子,是基因表达的重要调控因子,其对肝脏代谢和骨骼肌发育发挥了重要的作用。本研究以鸡肝脏和骨骼肌miRNA为研究对象,对其进行了一系列的表达和功能研究,主要研究结果如下:
     (1)运用实时荧光定量PCR检测miR-122的组织表达,发现其在肝脏中表达量最高。运用靶基因预测软件预测出364个miR-122的靶基因,挑选其中与肝脏代谢相关的预测靶基因P4HA1、PKM2、TGF-β3、FABP5和ARCN1。实时荧光定量PCR显示miR-122在肝脏生长发育过程中上调,在鸡肝细胞离体培养过程中下调,5个基因在肝脏生长发育过程中表达不受影响,P4HA1、TGF-β3和ARCN1在肝细胞离体过程中下调,而FABP5在离体和培养过程中分别下调和上调,PKM2不受影响。体外双荧光素酶报告系统和靶位点突变实验证明5个基因及预测靶位点分别是miR-122的靶基因和靶位点,通过鸡细胞系过表达miR-122证明其对TGF-β3的调控在mRNA水平,而对P4HA1、PKM2和ARCN1的调控不在mRNA水平,表明miR-122可能通过调控这几个基因在鸡肝脏代谢中发挥调控作用。
     (2)原代鸡肝细胞抑制niR-122后通过转录组测序发现共有123个基因差异表达,其中64个基因表达显著上调,59个基因表达显著下调。GO分析显示21个基因参与鸡肝脏代谢过程,表明miR-122可能通过影响这些基因而调控鸡肝脏代谢。通过比较测序及实时荧光定量PCR结果发现miR-122抑制后靶基因P4HA1、PKM2、TGF-β3上调,FABP5下调,而ARCN1不受影响,Western Blotting分析表明靶基因P4HA1蛋白上调,进一步说明miR-122可调控这些靶基因。
     (3)使用RNA干扰技术干扰原代鸡肝细胞中miR-122靶基因TGF-β3后发现TGF-β通路下游基因ACTA2表达上调,LEF1和CCNB2表达下调,表明miR-122通过调控TGF-β3可能影响这些基因进而调控肝脏代谢。
     (4)运用实时荧光定量PCR检测miR-126的组织表达,发现其在肝脏中表达量很少。运用靶基因预测软件预测出54个miR-126的靶基因,挑选其中与肝脏代谢相关的预测靶基因Spredl。实时荧光定量PCR显示miR-126在肝脏生长发育过程中上调,在鸡肝细胞离体培养过程中下调,Spred1表达不受影响。体外双荧光素酶报告系统和靶位点突变实验证明Spred1及预测靶位点分别是miR-126的靶基因和靶位点,通过鸡细胞系过表达miR-126证明其对Spredl的调控不是在mRNA水平,表明miR-126可能通过调控Spredl在鸡肝脏代谢中发挥调控作用。
     (5)使用鸡生长激素cGH处理原代鸡肝细胞,运用高通量测序技术对其miRNA进行测序,共鉴定出216个鸡miRNA,其中受cGH影响的miRNA有56个,29个表达显著上调,27个表达显著下调,这些miRNA可能参与鸡肝脏代谢过程。
     (6)运用实时荧光定量PCR检测miR-1a的组织表达,发现其在骨骼肌中表达量很高。运用靶基因预测软件预测出247个miR-1a的靶基因,挑选其中与肌肉发育相关的预测靶基因ACVR1和Spred1,还有一个之前预测是miR-133a的靶基因后来验证其是miR-1a的靶基因CNBP。实时荧光定量PCR显示miR-1a在腿肌生长发育过程中表达有波动,4周时表达量高于其他时期,ACVR1和Spred1表达不受影响,CNBP先下调后上调。体外双荧光素酶报告系统证明3个基因是miR-1a的靶基因,靶位点突变实验证明ACVR1和Spred1的预测靶位点是miR-122的靶位点。通过鸡细胞系过表达miR-1a证明其对Spred1的调控在mRNA水平,而对ACVR1和CNBP的调控则不是在mRNA水平,表明miR-1a可能通过调控这几个基因在鸡骨骼肌发育中发挥调控作用。
     (7)运用实时荧光定量PCR检测miR-133a的组织表达,发现其在骨骼肌中表达量很高。运用靶基因预测软件预测出287个miR-133a的靶基因,挑选其中与发育相关的预测靶基因BIRC5。实时荧光定量PCR显示miR-133a在腿肌生长发育过程中先下调后上调,BIRC5表达不受影响。体外双荧光素酶报告系统和靶位点突变实验证明BIRC5及预测靶位点分别是miR-133a的靶基因和靶位点,表明miR-133a可能通过调控BIRC5在鸡骨骼肌发育中发挥调控作用。
Liver metabolism and skeletal muscle development are two important biological processes in chicken. microRNAs (miRNAs) are a class of small non-coding RNAs about22nuleotides in length, which regulate gene expression by interacting with the3'untranslated region (UTR) of target mRNA. miRNAs play important roles in liver metabolism and skeletal muscle development. In the current study, a series of expression and function studies about the miRNAs in chicken liver and skeletal muscle were conducted. The main results are as follows:
     (1) miR-122expression in various tissues was detected using real-time quantitative RT-PCR (qRT-PCR). The result showed miR-122was highly expressed in liver. Using miRNA target prediction software,364potential target genes of miR-122were predicted, of which the genes P4HA1, PKM2, TGF-β3, FABP5and ARCN1related with liver metabolism were selected for further investigation. By qRT-PCR it was found that miR-122was up-regulated during the liver development and down-regulated during the isolation and cultivation of hepatocytes, the expression of the5genes were not affected during the liver development, P4HA1, TGF-β3and ARCN1were down-regulated during the isolation of hepatocytes, and FABP5was down-regulated and up-regulated during the isolation and cultivation of hepatocytes, respectively. By dual luciferase reporter assays and target site mutation assays it was validated that the5genes and their predicted target sites were bona fide target genes and target sites of miR-122, respectively. Through the overexpression of miR-122in chicken cell line, it was shown that miR-122regulates TGF-(33in mRNA level, whereas it does not regulate P4HA1, PKM2and ARCN1in mRNA level. These results indicated that miR-122plays roles in liver metabolism by regulating the5genes in chicken.
     (2) After the inhibition of miR-122in primary chicken hepatocytes, the genes were analyzed by trancriptome sequencing. The result showed123genes were differentially expressed, of which64were up-regulated and59were down-regulated. Gene ontology (GO) analysis showed21genes were involved in liver metabolism, indicating that miR-122may regulate liver metabolism by affecting these genes. Through comparison of sequencing and qRT-PCR, it was found that after the inhibition of miR-122P4HA1, PKM2and TGF-β3were up-regulated, FABP5was down-regulated, and ARCN1was not affected. The Western Blotting analysis showed the P4HA1protein was up-regulated by the inhibition of miR-122. These results further validated that miR-122regulate these target genes.
     (3) After the RNA interference of TGF-β3in primary chicken hepatocytes, it was found that3genes downstream the TGF-β3signaling pathway were differentially expressed, of which ACTA2was up-regulated, and LEF1and CCNB2were down-regulated, indicating that miR-122may affect these genes to regulate liver metabolism by targeting TGF-P3.
     (4) miR-126expression in various tissues was detected using qRT-PCR. The result showed miR-126was expressed in liver very low. Using miRNA target prediction software,54potential target genes of miR-126were predicted, of which the gene Spredl related with liver metabolism was selected for further investigation. By qRT-PCR it was found that miR-126was up-regulated during the liver development and down-regulated during the isolation and cultivation of hepatocytes, the expression of Spredl was not affected. By dual luciferase reporter assays and target site mutation assays it was validated that Spredl and its predicted target site were bona fide target gene and target site of miR-126, respectively. Through the overexpression of miR-126in chicken cell line, it was shown that miR-126does not regulate Spred1in mRNA level. These results indicated that miR-126plays roles in liver metabolism by regulating Spredl in chicken.
     (5) After the cGH treatment of primary chicken hepatocytes, the miRNAs were analyzed using deep sequencing. The result showed216chicken miRNAs were identified. Among the identified chicken miRNAs56were affected by cGH, of which29were up-regulated and27were down-regulated, indicating these miRNAs may take part in liver metabolism.
     (6) miR-1a expression in various tissues was detected using qRT-PCR. The result showed miR-la was highly expressed in skeletal muscle. Using miRNA target prediction software,247potential target genes of miR-la were predicted, of which the genes ACVR1and Spredl related with muscle development were selected for further investigation. Another further investigated gene was CNBP, which was previously predicted as miR-133a target gene and validated as miR-la target gene later. By qRT-PCR it was found that miR-la was wavily expressed during the thigh muscle development and it was highly expressed at4week-old stage, the expression of ACVR1and Spredl was not affected, and CNBP was at first down-regulated and then up-regulated. By dual luciferase reporter assays it was validated that the3genes were bona fide target genes of miR-la, and by target site mutation assays it was validated that the predicted target sites in ACVR1and Spredl were bona fide target sites of miR-la. Through the overexpression of miR-la in chicken cell line, it was shown that miR-la regulates Spredl in mRNA level, whereas it does not regulate ACVR1and CNBP in mRNA level. These results indicated that miR-la plays roles in skeletal muscle development by regulating the3genes in chicken.
     (7) miR-133a expression in various tissues was detected using qRT-PCR. The result showed miR-133a was highly expressed in skeletal muscle. Using miRNA target prediction software,287potential target genes of miR-133a were predicted, of which the gene BIRC5related with development was selected for further investigation. By qRT-PCR it was found that miR-133a was down-regulated firstly and up-regulated later during the thigh muscle development, the expression of BIRC5was not affected. By dual luciferase reporter assays and target site mutation assays it was validated that BIRC5and its predicted target site were bona fide target gene and target site of miR-133a, respectively. These results indicated that miR-133a plays roles in skeletal muscle development by regulating BIRC5in chicken.
引文
[1]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-297.
    [2]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5):843-854.
    [3]Griffiths-Jones S, Saini H K, van Dongen S, Enright A J. miRBase:tools for microRNA genomics. Nucleic Acids Res,2008,36(Database issue):D154-158.
    [4]Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBOJ,2004,23(20):4051-4060.
    [5]Kim V N. MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol,2005,6(5): 376-385.
    [6]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim V N. The nuclear RNase Ⅲ Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
    [7]Lund E, Guttinger S, Calado A, Dahlberg J E, Kutay U. Nuclear export of microRNA precursors. Science, 2004,303(5654):95-98.
    [8]Hutvagner G, McLachlan J, Pasquinelli A E, Balint E, Tuschl T, Zamore P D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science,2001, 293(5531):834-838.
    [9]Filipowicz W. RNAi:the nuts and bolts of the RISC machine. Cell,2005,122(1):17-20.
    [10]Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell,2003, 115(2):209-216.
    [11]Carthew R W, Sontheimer E J. Origins and Mechanisms of miRNAs and siRNAs. Cell,2009,136(4): 642-655.
    [12]Davis B N, Hilyard A C, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature,2008,454(7200):56-61.
    [13]Suzuki H I, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature,2009,460(7254):529-533.
    [14]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature,2005,436(7048):214-220.
    [15]Wang Z, Lin S, Li J J, Xu Z, Yao H, Zhu X, Xie D, Shen Z, Sze J, Li K, Lu G, Chan D T, Poon W S, Kung H F, Lin M C. MYC protein inhibits transcription of the microRNA cluster MC-let-7a-l-let-7d via noncanonical E-box. J Biol Chem,2011,286(46):39703-39714.
    [16]Bueno M J, Perez de Castro I, Gomez de Cedron M, Santos J, Calin G A, Cigudosa J C, Croce C M, Fernandez-Piqueras J, Malumbres M. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell,2008,13(6):496-506.
    [17]Chen K C, Liao Y C, Hsieh I C, Wang Y S, Hu C Y, Juo S H. OxLDL causes both epigenetic modification and signaling regulation on the microRNA-29b gene:novel mechanisms for cardiovascular diseases. J Mol Cell Cardiol,2012,52(3):587-595.
    [18]Saito Y, Suzuki H, Taya T, Nishizawa M, Tsugawa H, Matsuzaki J, Hirata K, Saito H, Hibi T. Development of a novel microRNA promoter microarray for Ch1P-on-chip assay to identify epigenetically regulated microRNAs. Biochem Biophys Res Commun,2012,426(1):33-37.
    [19]Saito Y, Saito H. Role of CTCF in the regulation of microRNA expression. Front Genet,2012,3:186.
    [20]Noonan E J, Place R F, Pookot D, Basak S, Whitson J M, Hirata H, Giardina C, Dahiya R. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene,2009,28(14):1714-1724.
    [21]Zhang Z, Tang H, Wang Z, Zhang B, Liu W, Lu H, Xiao L, Liu X, Wang R, Li X, Wu M, Li G. MiR-185 targets the DNA methyltransferases 1 and regulates global DNA methylation in human glioma. Mol Cancer,2011,10:124.
    [22]Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression. Genes Dev, 2004,18(5):504-511.
    [23]Guo H S, Xie Q, Fei J F, Chua N H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell,2005,17(5): 1376-1386.
    [24]Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen S, Inoue K, Enright A J, Schier A F. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science,2006,312(5770):75-79.
    [25]Wu L, Fan J, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A, 2006,103(11):4034-4039.
    [26]Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S. MicroRNA targets in Drosophila Genome Biol,2003,5(1):R1.
    [27]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell,2005,120(1):15-20.
    [28]Liu H, Yue D, Chen Y, Gao S J, Huang Y. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics,2010,11:476.
    [29]Naguibneva I, Ameyar-Zazoua M, Nonne N, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Pritchard L L, Harel-Bellan A. An LNA-based loss-of-function assay for micro-RNAs. Biomed Pharmacother,2006, 60(9):633-638.
    [30]Ebert M S, Neilson J R, Sharp P A. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. Nat Methods,2007,4(9):721-726.
    [31]Ebert M S, Sharp P A. MicroRNA sponges:progress and possibilities. RNA,2010,16(11):2043-2050.
    [32]Jovanovic M, Reiter L, Picotti P, Lange V, Bogan E, Hurschler B A, Blenkiron C, Lehrbach N J, Ding X C, Weiss M, Schrimpf S P, Miska E A, Grosshans H, Aebersold R, Hengartner M O. A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nat Methods,2010,7(10): 837-842.
    [33]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol,2002,12(9):735-739.
    [34]Chang J, Provost P, Taylor J M. Resistance of human hepatitis delta virus RNAs to dicer activity. J Virol, 2003,77(22):11910-11917.
    [35]Wienholds E, Kloosterman W P, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz H R, Kauppinen S, Plasterk R H. MicroRNA expression in zebrafish embryonic development. Science,2005, 309(5732):310-311.
    [36]Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia M A, Xu C, Mason W S, Moloshok T, Bort R, Zaret K S, Taylor J M. miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol,2004,1(2): 106-113.
    [37]Li Z Y, Xi Y, Zhu W N, Zeng C, Zhang Z Q, Guo Z C, Hao D L, Liu G, Feng L, Chen H Z, Chen F, Lv X, Liu D P, Liang C C. Positive regulation of hepatic miR-122 expression by HNF4alpha. J Hepatol,2011, 55(3):602-611.
    [38]Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy S M, Yoon B J, Gunaratne P H, Kim J H, Chen R, Wang J, Zhou H. Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics,2009,10:512.
    [39]Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets. Cell,2003,115(7):787-798.
    [40]Krutzfeldt J, Rajewsky N, Braich R, Rajeev K G, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature,2005,438(7068):685-689.
    [41]Esau C, Davis S, Murray S F, Yu X X, Pandey S K, Pear M, Watts L, Booten S L, Graham M, McKay R, Subramaniam A, Propp S, Lollo B A, Freier S, Bennett C F, Bhanot S, Monia B P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab,2006,3(2):87-98.
    [42]Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen H F, Berger U, Gullans S, Kearney P, Sarnow P, Straarup E M, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature,2008,452(7189):896-899.
    [43]Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen J B, Hansen H F, Straarup E M, McCullagh K, Kearney P, Kauppinen S. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res,2008,36(4):1153-1162.
    [44]Kojima S, Gatfield D, Esau C C, Green C B. MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver. PLoS One,2010,5(6):e11264.
    [45]Castoldi M, Vujic Spasic M, Altamura S, Elmen J, Lindow M, Kiss J, Stolte J, Sparla R, D'Alessandro L A, Klingmuller U, Fleming R E, Longerich T, Grone H J, Benes V, Kauppinen S, Hentze M W, Muckenthaler M U. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest,2011,121(4):1386-1396.
    [46]Li S, Zhu J, Fu H, Wan J, Hu Z, Liu S, Li J, Tie Y, Xing R, Sun Z, Zheng X. Hepato-specific microRNA-122 facilitates accumulation of newly synthesized miRNA through regulating PRKRA. Nucleic Acids Res,2012,40(2):884-891.
    [47]Fish J E, Santoro M M, Morton S U, Yu S, Yeh R F, Wythe J D, Ivey K N, Bruneau B G, Stainier D Y, Srivastava D. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell,2008,15(2): 272-284.
    [48]Meister J, Schmidt M H. miR-126 and miR-126*:new players in cancer. Scientific World.Journal,2010, 10:2090-2100.
    [49]Han Z B, Zhong L, Teng M J, Fan J W, Tang H M, Wu J Y, Chen H Y, Wang Z W, Qiu G Q, Peng Z H. Identification of recurrence-related microRNAs in hepatocellular carcinoma following liver transplantation. Mol Oncol,2012,6(4):445-457.
    [50]Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst A O, Landthaler M, Lin C, Socci N D, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller R U, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir D B, Choksi R, De Vita G, Frezzetti D, Trompeter H I, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler C E, Nagle J W, Ju J, Papavasiliou F N, Benzing T, Lichter P, Tam W, Brownstein M J, Bosio A, Borkhardt A, Russo J J, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell,2007,129(7):1401-1414.
    [51]Novellino L, Rossi R L, Bonino F, Cavallone D, Abrignani S, Pagani M, Brunetto M R. Circulating hepatitis B surface antigen particles carry hepatocellular microRNAs. PLoS One,2012,7(3):e31952.
    [52]Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang D W. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci,2012,8(6):811-818.
    [53]Guan P, Yin Z, Li X, Wu W, Zhou B. Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res,2012,31(1):54.
    [54]Grabher C, Payne E M, Johnston A B, Bolli N, Lechman E, Dick J E, Kanki J P, Look A T. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia,2011,25(3):506-514.
    [55]Wang S, Aurora A B, Johnson B A, Qi X, McAnally J, Hill J A, Richardson J A, Bassel-Duby R, Olson E N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell, 2008,15(2):261-271.
    [56]Chen J J, Zhou S H. Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J,2011,18(6):675-681.
    [57]van Solingen C, Seghers L, Bijkerk R, Duijs J M, Roeten M K, van Oeveren-Rietdijk A M, Baelde H J, Monge M, Vos J B, de Boer H C, Quax P H, Rabelink T J, van Zonneveld A J. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med,2009,13(8A):1577-1585.
    [58]Kuhnert F, Mancuso M R, Hampton J, Stankunas K, Asano T, Chen C Z, Kuo C J. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development,2008,135(24): 3989-3993.
    [59]Zou J, Li W Q, Li Q, Li X Q, Zhang J T, Liu G Q, Chen J, Qiu X X, Tian F J, Wang Z Z, Zhu N, Qin Y W, Shen B, Liu T X, Jing Q. Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res,2011,108(2):201-209.
    [60]Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty K E, Lawson N D. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature,2010,464(7292):1196-1200.
    [61]Harris T A, Yamakuchi M, Kondo M, Oettgen P, Lowenstein C J. Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol,2010,30(10):1990-1997.
    [62]Huang X, Gschweng E, Van Handel B, Cheng D, Mikkola H K, Witte O N. Regulated expression of microRNAs-126/126* inhibits erythropoiesis from human embryonic stem cells. Blood,2011,117(7): 2157-2165.
    [63]Harris T A, Yamakuchi M, Ferlito M, Mendell J T, Lowenstein C J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA,2008,105(5):1516-1521.
    [64]Bolleyn J, Fraczek J, Vinken M, Lizarraga D, Gaj S, van Delft J H, Rogiers V, Vanhaecke T. Effect of Trichostatin A on miRNA expression in cultures of primary rat hepatocytes. Toxicol In Vitro,2011,25(6): 1173-1182.
    [65]Guo C, Sah J F, Beard L, Willson J K, Markowitz S D, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer,2008,47(11):939-946.
    [66]Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One,2011,6(1):e16617.
    [67]Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, Yin H, Lu Q. MicroRNA-126 regulates DNA methylation in CD4+T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum,2011,63(5):1376-1386.
    [68]Liu N, Williams A H, Kim Y, McAnally J, Bezprozvannaya S, Sutherland L B, Richardson J A, Bassel-Duby R, Olson E N. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A,2007,104(52):20844-20849.
    [69]Rao P K, Kumar R M, Farkhondeh M, Baskerville S, Lodish H F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci USA,2006,103(23):8721-8726.
    [70]McCarthy J J, Esser K A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol,2007,102(1):306-313.
    [7]] Nakajima N, Takahashi T, Kitamura R, Isodono K, Asada S, Ueyama T, Matsubara H, Oh H. MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. Biochem Biophys Res Commun,2006,350(4):1006-1012.
    [72]Chen J F, Mandel E M, Thomson J M, Wu Q, Callis T E, Hammond S M, Conlon F L, Wang D Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 2006,38(2):228-233.
    [73]Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Munsterberg A. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J Cell Sci,2012, 125(Pt 15):3590-3600.
    [74]Lu L, Zhou L, Chen E Z, Sun K, Jiang P, Wang L, Su X, Sun H, Wang H. A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY 1-miRNA network. PLoS One, 2012,7(2):e27596.
    [75]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet, 2006,38(7):813-818.
    [76]Zhao Y, Ransom J F, Li A, Vedantham V, von Drehle M, Muth A N, Tsuchihashi T, McManus M T, Schwartz R J, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRN A-1-2. Cell,2007,129(2):303-317.
    [77]Kwon C, Han Z, Olson E N, Srivastava D. MicroRNAl influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA,2005,102(52):18986-18991.
    [78]王星果,郁建锋,顾志良.microRNA在肌肉发育中的功能研究进展.生命科学,2010,22(2):133-138.
    [79]Huang M B, Xu H, Xie S J, Zhou H, Qu L H. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One,2011,6(12):e29173.
    [80]Boutz P L, Chawla G, Stoilov P, Black D L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev,2007,21(1):71-84.
    [81]Bland C S, Cooper T A. Micromanaging alternative splicing during muscle differentiation. Dev Cell,2007, 12(2):171-172.
    [82]Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang M L, Segnalini P, Gu Y, Dalton N D, Elia L, Latronico M V, Hoydal M, Autore C, Russo M A, Dorn G W, Ellingsen O, Ruiz-Lozano P, Peterson K L, Croce C M, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med,2007,13(5):613-618.
    [83]Belevych A E, Sansom S E, Terentyeva R, Ho H T, Nishijima Y, Martin M M, Jindal H K, Rochira J A, Kunitomo Y, Abdellatif M, Carnes C A, Elton T S, Gyorke S, Terentyev D. MicroRNA-1 and-133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One,2011,6(12):e28324.
    [84]Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T, Kimura T. MicroRNA-133 regulates the expression of GLUT4 by targeting K.LF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun,2009,389(2):315-320.
    [85]Yin V P, Lepilina A, Smith A, Poss K D. Regulation of zebrafish heart regeneration by miR-133. Dev Biol, 2012,365(2):319-327.
    [86]Torella D, laconetti C, Catalucci D, Ellison G M, Leone A, Waring C D, Bochicchio A, Vicinanza C, Aquila I, Curcio A, Condorelli G, Indolfi C. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res,2011,109(8):880-893.
    [87]Tao J, Wu D, Xu B, Qian W, Li P, Lu Q, Yin C, Zhang W. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncology Reports,2012,27(6):1967-1975.
    [88]项茹,吴正升,张晴,徐晓春,吴强.miR-133a在乳腺癌组织中的表达及其临床意义.安徽医科大学学报,2011,46(2):109-112.
    [89]谢海涛.miR-133a在结肠癌组织中的表达.广东医学,2012,33(15):2242-2243.
    [90]Coutinho L L, Matukumalli L K, Sonstegard T S, Van Tassell C P, Gasbarre L C, Capuco A V, Smith T P. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol Genomics,2007,29(1):35-43.
    [91]Gu Z, Eleswarapu S, Jiang H. Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett,2007,581(5):981-988.
    [92]Jin W, Grant J R, Stothard P, Moore S S, Guan L L. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mol Biol,2009,10:90.
    [93]Consortium B G S a A. The genome sequence of taurine cattle:a window to ruminant biology and evolution. Science,2009,324(5926):522-528.
    [94]Guduric-Fuchs J, O'Connor A, Cullen A, Harwood L, Medina R J, O'Neill C L, Stitt A W, Curtis T M, Simpson D A. Deep sequencing reveals predominant expression of miR-21 amongst the small non-coding RN As in retinal microvascular endothelial cells. J Cell Biochem,2012,113(6):2098-2111.
    [95]Jin W, Dodson M V, Moore S S, Basarab J A, Guan L L. Characterization of microRNA expression in bovine adipose tissues:a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Mol Biol,2010,11:29.
    [96]Miretti S, Martignani E, Taulli R, Bersani F, Accornero P, Baratta M. Differential expression of microRNA-206 in skeletal muscle of female Piedmontese and Friesian cattle. Vet J,2011,190(3): 412-413.
    [97]Castro F O, Sharbati S, Rodriguez-Alvarez L L, Cox J F, Hultschig C, Einspanier R. MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology,2010, 73(1):71-85.
    [98]Ma T, Jiang H, Gao Y, Zhao Y, Dai L, Xiong Q, Xu Y, Zhao Z, Zhang J. Microarray analysis of differentially expressed microRNAs in non-regressed and regressed bovine corpus luteum tissue; microRNA-378 may suppress luteal cell apoptosis by targeting the interferon gamma receptor 1 gene. J Appl Genet,2011,52(4):481-486.
    [99]Miles J R, McDaneld T G, Wiedmann R T, Cushman R A, Echternkamp S E, Vallet J L, Smith T P. MicroRNA expression profile in bovine cumulus-oocyte complexes:possible role of let-7 and miR-106a in the development of bovine oocytes. Anim Reprod Sci,2012,130(1-2):16-26.
    [100]Abd El Naby W S, Hagos T H, Hossain M M, Salilew-Wondim D, Gad A Y, Rings F, Cinar M U, Tholen E, Looft C, Schellander K, Hoelker M, Tesfaye D. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote,2011,11:1-21.
    [101]Mondou E, Dufort I, Gohin M, Fournier E, Sirard M A. Analysis of microRNAs and their precursors in bovine early embryonic development. Mol Hum Reprod,2012,18(9):425-434.
    [102]Zhao C, Tian F, Yu Y, Liu G, Zan L, Updike M S, Song J. miRNA-dysregulation associated with tenderness variation induced by acute stress in Angus cattle. J Anim Sci Biotechnol,2012,3(1):12.
    [103]Romao J M, Jin W, He M, McAllister T, Guan le L. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One,2012,7(7):e40605.
    [104]Li H, Zhang Z, Zhou X, Wang Z, Wang G, Han Z. Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Mol Biol Rep,2011,38(7):4273-4280.
    [105]Tripurani S K, Lee K B, Wee G, Smith G W, Yao J. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev Biol,2011,11:25.
    [106]Lingenfelter B M, Tripurani S K, Tejomurtula J, Smith G W, Yao J. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2):a maternal effect gene regulated by miR-181a. Reprod Biol Endocrinol, 2011,9:40.
    [107]Xu H, Wang X, Du Z, Li N. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Lett,2006,580(15):3610-3616.
    [108]Hicks J A, Trakooljul N, Liu H C. Discovery of chicken microRNAs associated with lipogenesis and cell proliferation. Physiol Genomics,2010,41(2):185-193.
    [109]Glazov E A, Cottee P A, Barris W C, Moore R J, Dalrymple B P, Tizard M L. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res,2008,18(6): 957-964.
    [110]Yao J, Wang Y, Wang W, Wang N, Li H. Solexa sequencing analysis of chicken pre-adipocyte microRNAs. Biosci Biotechnol Biochem,2011,75(1):54-61.
    [111]Li T, Wu R, Zhang Y, Zhu D. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics,2011,12:186.
    [112]Wang X G, Yu J F, Zhang Y, Gong D Q, Gu Z L. Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poult Sci,2012,91(1):139-149.
    [113]Burnside J, Morgan R. Emerging roles of chicken and viral microRNAs in avian disease. BMC Proc,2011, 5 Suppl 4:S2.
    [114]Bannister S C, Tizard M L, Doran T J, Sinclair A H, Smith C A. Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biol Reprod,2009,81(1):165-176.
    [115]Huang P, Gong Y, Peng X, Li S, Yang Y, Feng Y. Cloning, identification, and expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 363*. Acta Biochim Biophys Sin (Shanghai), 2010,42(8):522-529.
    [116]Darnell D K, Kaur S, Stanislaw S, Konieczka J H, Yatskievych T A, Antin P B. MicroRNA expression during chick embryo development. Dev Dyn,2006,235(11):3156-3165.
    [117]Bolisetty M T, Dy G, Tam W, Beemon K L. Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol,2009,83(23):12009-12017.
    [118]Shi L, Ko M L, Ko G Y. Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alphalC subunit in chicken cone photoreceptors. J Biol Chem,2009,284(38): 25791-25803.
    [119]Xu H, Yao Y, Smith L P, Nair V. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell Int,2010,10:15.
    [120]Guillon-Munos A, Dambrine G, Richerioux N, Coupeau D, Muylkens B, Rasschaert D. The chicken miR-150 targets the avian orthologue of the functional zebrafish MYB 3'UTR target site. BMC Mol Biol, 2010,11:67.
    [121]Trakooljul N, Hicks J A, Liu H C. Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet,2010,41(4):357-364.
    [122]Lee S I, Lee B R, Hwang Y S, Lee H C, Rengaraj D, Song G, Park T S, Han J Y. MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proc Natl Acad Sci USA,2011,108(26):10426-10431.
    [123]Rengaraj D, Lee B R, Lee S I, Seo H W, Han J Y. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One,2011,6(5):e19524.
    [124]Kim D, Song J, Jin E J. MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem,2010,285(35):26900-26907.
    [125]Kim D, Song J, Kim S, Kang S S, Jin E J. MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochem Biophys Res Commun,2011,414(4): 653-659.
    [126]Guan Y J, Yang X, Wei L, Chen Q. MiR-365:a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J,2011,25(12):4457-4466.
    [127]Kim D, Song J, Kim S, Chun C H, Jin E J. MicroRNA-34a regulates migration of chondroblast and IL-1 beta-induced degeneration of chondrocytes by targeting EphA5. Biochem Biophys Res Commun, 2011,415(4):551-557.
    [128]Kim D, Song J, Kim S, Park H M, Chun C H, Sonn J, Jin E J. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Racl cross-talk in chondroblasts. J Biol Chem,2012,287(15): 12501-12509.
    [129]Sharbati-Tehrani S, Kutz-Lohroff B, Scholven J, Einspanier R. Concatameric cloning of porcine microRNA molecules after assembly PCR. Biochem Biophys Res Commun,2008,375(3):484-489.
    [130]Li M, Xia Y, Gu Y, Zhang K, Lang Q, Chen L, Guan J, Luo Z, Chen H, Li Y, Li Q, Li X, Jiang A A, Shuai S, Wang J, Zhu Q, Zhou X, Gao X. MicroRNAome of porcine pre-and postnatal development. PLoS One, 2010,5(7):e11541.
    [131]Lian C, Sun B, Niu S, Yang R, Liu B, Lu C, Meng J, Qiu Z, Zhang L, Zhao Z. A comparative profile of the microRNA transcriptome in immature and mature porcine testes using Solexa deep sequencing. FEBS J,2012,279(6):964-975.
    [132]Xie S S, Huang T H, Shen Y, Li X Y, Zhang X X, Zhu M J, Qin H Y, Zhao S H. Identification and characterization of microRNAs from porcine skeletal muscle. Anim Genet,2010,41(2):179-190.
    [133]Li G, Li Y, Li X, Ning X, Li M, Yang G. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J Cell Biochem,2011,112(5):1318-1328.
    [134]Chen C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang S. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One,2012, 7(2):e31426.
    [135]Cho I S, Kim J, Seo H Y, Lim do H, Hong J S, Park Y H, Park D C, Hong K C, Whang K Y, Lee Y S. Cloning and characterization of microRNAs from porcine skeletal muscle and adipose tissue. Mol Biol Rep,2010,37(7):3567-3574.
    [136]Sharbati S, Friedlander M R, Sharbati J, Hoeke L, Chen W, Keller A, Stahler P F, Rajewsky N, Einspanier R. Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics,2010,11:275.
    [137]Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F. Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One,2010,5(8):e11744.
    [138]Curry E, Safranski T J, Pratt S L. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology,2011,76(8):1532-1539.
    [139]Gu Y, Li M, Zhang K, Chen L, Jiang A A, Wang J, Lv X, Li X. Identification of suitable endogenous control microRNA genes in normal pig tissues. Anim Sci J,2011,82(6):722-728.
    [140]Cirera S, Birck M, Busk P K, Fredholm M. Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comp Med,2010,60(2):136-141.
    [141]Maak S, Boettcher D, Komolka K, Tetens J, Wimmers K, Reinsch N, Swalve H H, Thaller G. Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for congenital splay leg in piglets. Anim Genet,2010,41(4):447-448.
    [142]Lei B, Gao S, Luo L F, Xia X Y, Jiang S W, Deng C Y, Xiong Y Z, Li F E. A SNP in the miR-27a gene is associated with litter size in pigs. Mol Biol Rep,2011,38(6):3725-3729.
    [143]Xu S, Linher-Melville K, Yang B B, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology,2011,152(10):3941-3951.
    [144]Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, Li K. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci,2012,8(4):459-469.
    [145]Li C, He H, Zhu M, Zhao S, Li X. Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. Dev Comp Immunol,2013,39(1-2):110-116.
    [146]Sheng X, Song X, Yu Y, Niu L, Li S, Li H, Wei C, Liu T, Zhang L, Du L. Characterization of microRNAs from sheep (Ovis aries) using computational and experimental analyses. Mol Biol Rep,2011,38(5): 3161-3171.
    [147]McBride D, Carre W, Sontakke S, Hogg C O, Law A S, Donadeu F X, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction,2012,144(2): 221-233.
    [148]Caiment F, Charlier C, Hadfield T, Cockett N, Georges M, Baurain D. Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res, 2010,20(12):1651-1662.
    [149]Wenguang Z, Jianghong W, Jinquan L, Yashizawa M. A subset of skin-expressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. OMICS,2007,11(4):385-396.
    [150]Torley K J, da Silveira J C, Smith P, Anthony R V, Veeramachaneni D N, Winger Q A, Bouma G J. Expression of miRNAs in ovine fetal gonads:potential role in gonadal differentiation. Reprod Biol Endocrinol,2011,9:2.
    [151]Luense L J, Veiga-Lopez A, Padmanabhan V, Christenson L K. Developmental programming:gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology,2011,152(12):4974-4983.
    [152]Takeda H, Charlier C, Farnir F, Georges M. Demonstrating polymorphic miRNA-mediated gene regulation in vivo:application to the g+6223G->A mutation of Texel sheep. RNA,2010,16(9): 1854-1863.
    [153]Kubista M, Andrade J M, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N. The real-time polymerase chain reaction. Mol Aspects Med,2006, 27(2-3):95-125.
    [154]Rodriguez-Lazaro D, Hernandez M, Esteve T, Hoorfar J, Pla M. A rapid and direct real time PCR-based method for identification of Salmonella spp. J Microbiol Methods,2003,54(3):381-390.
    [155]Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):e179.
    [156]Morrison T B, Weis J J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green 1 monitoring during amplification. Biotechniques,1998,24(6):954-958,960,962.
    [157]Krek A, Grun D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade 1, Gunsalus K C, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet,2005,37(5):495-500.
    [158]Cheng A M, Byrom M W, Shelton J, Ford L P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res,2005,33(4):1290-1297.
    [159]Mardis E R. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet,2008,9: 387-402.
    [160]Mitra R D, Shendure J, Olejnik J, Edyta Krzymanska O, Church G M. Fluorescent in situ sequencing on polymerase colonies. Anal Biochem,2003,320(1):55-65.
    [161]Shendure J, Porreca G J, Reppas N B, Lin X, McCutcheon J P, Rosenbaum A M, Wang M D, Zhang K, Mitra R D, Church G M. Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 2005,309(5741):1728-1732.
    [162]Fields S. Molecular biology. Site-seeing by sequencing. Science,2007,316(5830):1441-1442.
    [163]Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell,1990,2(4):279-289.
    [164]Guo S, Kemphues K J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell,1995,81(4):611-620.
    [165]Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811.
    [166]Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-498.
    [167]Sen G L, Blau H M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol,2005,7(6):633-636.
    [168]黄坤寨,蔡建春.RNA干扰原理及其在肿瘤研究中的应用.医学综述,2010(01):72-74.
    [169]Li R, Sun Q, Jia Y, Cong R, Ni Y, Yang X, Jiang Z, Zhao R. Coordinated miRNA/mRNA expression profiles for understanding breed-specific metabolic characters of liver between Erhualian and large white pigs. PLoS One,2012,7(6):e38716.
    [170]Kivirikko K I, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases. Adv Enzymol Relat Areas Mol Biol,1998,72:325-398.
    [171]Rocnik E F, Chan B M, Pickering J G. Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest,1998,101(9):1889-1898.
    [172]Annunen P, Autio-Harmainen H, Kivirikko K 1. The novel type Ⅱ prolyl 4-hydroxylase is the main enzyme form in chondrocytes and capillary endothelial cells, whereas the type Ⅰ enzyme predominates in most cells. J Biol Chem,1998,273(11):5989-5992.
    [173]Li L, Zhang K, Cai X J, Feng M, Zhang Y, Zhang M. Adiponectin upregulates prolyl-4-hydroxylase alphal expression in interleukin 6-stimulated human aortic smooth muscle cells by regulating ERK 1/2 and Spl. PLoS One,2011,6(7):e22819.
    [174]Gupta V, Bamezai R N. Human pyruvate kinase M2:a multifunctional protein. Protein Sci,2010,19(11): 2031-2044.
    [175]Christofk H R, Vander Heiden M G, Wu N, Asara J M, Cantley L C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature,2008,452(7184):181-186.
    [176]Panasyuk G, Espeillac C, Chauvin C, Pradelli L A, Horie Y, Suzuki A, Annicotte J S, Fajas L, Foretz M, Verdeguer F, Pontoglio M, Ferre P, Scoazec J Y, Birnbaum M J, Ricci J E, Pende M. PPARgamma contributes to PKM2 and HK2 expression in fatty liver. Nat Commun,2012,3:672.
    [177]Luo W, Semenza G L. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget,2011,2(7):551-556.
    [178]Hayashi H, Sakai T. Biological Significance of Local TGF-beta Activation in Liver Diseases. Front Physiol,2012,3:12.
    [179]Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said H M, Lorenzen J, Ten Dijke P, Gressner A M. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology,2003, 125(1):178-191.
    [180]Yadav H, Rane S G. TGF-beta/Smad3 Signaling Regulates Brown Adipocyte Induction in White Adipose Tissue. Front Endocrinol (Lausanne),2012,3:35.
    [181]Yamazaki H, Arai M, Matsumura S, Inoue K, Fushiki T. Intracranial administration of transforming growth factor-beta3 increases fat oxidation in rats. Am J Physiol Endocrinol Metab,2002,283(3): E536-544.
    [182]Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res,2009,48(1):1-26.
    [183]Westerbacka J, Kolak M, Kiviluoto T, Arkkila P, Siren J, Hamsten A, Fisher R M, Yki-Jarvinen H. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes,2007, 56(11):2759-2765.
    [184]Hertzel A V, Smith L A, Berg A H, Cline G W, Shulman G I, Scherer P E, Bernlohr D A. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am J Physiol Endocrinol Metab,2006,290(5):E814-823.
    [185]Guo Q, Vasile E, Krieger M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J Cell Biol,1994,125(6):1213-1224.
    [186]Barysch S V, Aggarwal S, Jahn R, Rizzoli S O. Sorting in early endosomes reveals connections to docking-and fusion-associated factors. Proc Natl Acad Sci U S A,2009,106(24):9697-9702.
    [187]Douaire M, Belloir B, Guillemot J C, Fraslin J M, Langlois P, Mallard J. Lipogenic enzyme and apoprotein messenger RNAs in long-term primary culture of chicken hepatocytes. J Cell Sci,1993,104 (Pt 3):713-718.
    [188]Fraslin J M, Touquette L, Douaire M, Menezo Y, Guillemot J C, Mallard J. Isolation and long-term maintenance of differentiated adult chicken hepatocytes in primary culture. In Vitro Cell Dev Biol,1992, 28A(9-10):615-620.
    [189]陈黎龙.成年鸡肝细胞的分离与原代培养.江西农业大学学报,2008,30(3).
    [190]Li J, Ghazwani M, Zhang Y, Lu J, Fan J, Gandhi C R, Li S. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. JHepatol,2013,58(3):522-528.
    [191]Jung C J, lyengar S, Blahnik K R, Ajuha T P, Jiang J X, Farnham P J, Zern M. Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One,2011,6(11):e27740.
    [192]Boutz D R, Collins P J, Suresh U, Lu M, Ramirez C M, Fernandez-Hernando C, Huang Y, Abreu Rde S, Le S Y, Shapiro B A, Liu A M, Luk J M, Aldred S F, Trinklein N D, Marcotte E M, Penalva L O. Two-tiered approach identifies a network of cancer and liver disease-related genes regulated by miR-122. J Biol Chem,2011,286(20):18066-18078.
    [193]Stern-Ginossar N, Gur C, Biton M, Horwitz E, Elboim M, Stanietsky N, Mandelboim M, Mandelboim O. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nature Immunology,2008,9(9):1065-1073.
    [194]Su J, Baigude H, McCarroll J, Rana T M. Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res,2011,39(6):e38.
    [195]Nawshad A, Hay E D. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development. J Cell Biol,2003,163(6):1291-1301.
    [196]Buskohl P R, Sun M L, Thompson R P, Butcher J T. Serotonin potentiates transforming growth factor-beta3 induced biomechanical remodeling in avian embryonic atrioventricular valves. PLoS One, 2012,7(8):e42527.
    [197]Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, YoshimuraA. Spred is a Sprouty-related suppressor of Ras signalling. Nature,2001,412(6847):647-651.
    [198]Kato R, Nonami A, Taketomi T, Wakioka T, Kuroiwa A, Matsuda Y, Yoshimura A. Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation Biochem Biophys Res Commun,2003,302(4):767-772.
    [199]Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow M A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell,1998,92(2):253-263.
    [200]Casci T, Vinos J, Freeman M. Sprouty, an intracellular inhibitor of Ras signaling. Cell,1999,96(5): 655-665.
    [201]Mason J M, Morrison D J, Basson M A, Licht J D. Sprouty proteins:multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol,2006,16(1):45-54.
    [202]Sivak J M, Petersen L F, Amaya E. FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell,2005,8(5):689-701.
    [203]Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, Oike Y, Yonemitsu Y, Maehara Y, Yoshimura A. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol,2007,27(12):4541-4550.
    [204]Nonami A, Kato R, Taniguchi K, Yoshiga D, Taketomi T, Fukuyama S, Harada M, Sasaki A, Yoshimura A. Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. J Biol Chem,2004,279(50):52543-52551.
    [205]Ishizaki T, Tamiya T, Taniguchi K, Morita R, Kato R, Okamoto F, Saeki K, Nomura M, Nojima Y, Yoshimura A. miR126 positively regulates mast cell proliferation and cytokine production through suppressing Spredl. Genes Cells,2011,16(7):803-814.
    [206]Wells J A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A,1996,93(1):1-6.
    [207]Szego C M, White A. The influence of purified growth hormone on fasting metabolism. J Clin Endocrinol Metab,1948,8(7):594.
    [208]del Rincon J P, Iida K, Gaylinn B D, McCurdy C E, Leitner J W, Barbour L A, Kopchick J J, Friedman J E, Draznin B, Thorner M O. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue:mechanism for growth hormone-mediated insulin resistance. Diabetes, 2007,56(6):1638-1646.
    [209]Ng F M, Jiang W J, Gianello R, Pitt S, Roupas P. Molecular and cellular actions of a structural domain of human growth hormone (AOD9401) on lipid metabolism in Zucker fatty rats. J Mol Endocrinol,2000, 25(3):287-298.
    [210]Johansen T, Richelsen B, Hansen H S, Din N, Malmlof K. Growth hormone-mediated breakdown of body fat:effects of GH on lipases in adipose tissue and skeletal muscle of old rats fed different diets. Horm Metab Res,2003,35(4):243-250.
    [211]Moller N, Vendelbo M H, Kampmann U, Christensen B, Madsen M, Norrelund H, Jorgensen J O. Growth hormone and protein metabolism. Clin Nutr,2009,28(6):597-603.
    [212]Eleswarapu S, Gu Z, Jiang H. Growth hormone regulation of insulin-like growth factor-Ⅰ gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology,2008,149(5):2230-2240.
    [213]Zhu T, Goh E L, Graichen R, Ling L, Lobie P E. Signal transduction via the growth hormone receptor. Cell Signal,2001,13(9):599-616.
    [214]Lanning N J, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord, 2006,7(4):225-235.
    [215]Cheung L, Gustavsson C, Norstedt G, Tollet-Egnell P. Sex-different and growth hormone-regulated expression of microRNA in rat liver. BMC Mol Biol,2009,10:13.
    [216]Attisano L, Carcamo J, Ventura F, Weis F M, Massague J, Wrana J L. Identification of human activin and TGF beta type Ⅰ receptors that form heteromeric kinase complexes with type Ⅱ receptors. Cell,1993, 75(4):671-680.
    [217]Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev,2005,19(23):2783-2810.
    [218]Zhao X, Mo D. Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, Cong P, He Z, Wang C, Li J, Chen Y. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One,2011,6(5):e19774.
    [219]Shore E M, Xu M, Feldman G J, Fenstermacher D A, Cho T J, Choil H, Connor J M, Delai P, Glaser D L, LeMerrer M, Morhart R, Rogers J G, Smith R, Triffitt J T, Urtizberea J A, Zasloff M, Brown M A, Kaplan F S. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva Nat Genet,2006,38(5):525-527.
    [220]Song G A, Kim H J, Woo K M, Baek J H, Kim G S, Choi J Y, Ryoo H M. Molecular consequences of the ACVR1(R2O6H) mutation of fibrodysplasia ossificans progressiva J Biol Chem,2010,285(29): 22542-22553.
    [221]Tanaka K, Inoue Y, Hendy G N, Canaff L, Katagiri T, Kitazawa R, Komori T, Sugimoto T, Seino S, Kaji H. Interaction of Tmem119 and the bone morphogenetic protein pathway in the commitment of myoblastic into osteoblastic cells. Bone,2012,51(1):158-167.
    [222]Song H, Wang Q, Wen J, Liu S, Gao X, Cheng J, Zhang D. ACVR1,a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a Int J Mol Sci,2012,13(2): 2063-2077.
    [223]Rajavashisth T B, Taylor A K, Andalibi A, Svenson K L, Lusis A J. Identification of a zinc finger protein that binds to the sterol regulatory element Science,1989,245(4918):640-643.
    [224]Konicek B W, Xia X, Rajavashisth T, Harrington M A. Regulation of mouse colony-stimulating factor-1 gene promoter activity by API and cellular nucleic acid-binding protein. DNA Cell Biol,1998,17(9): 799-809.
    [225]Crosio C, Boyl P P, Loreni F, Pierandrei-Amaldi P, Amaldi F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res,2000,28(15):2927-2934.
    [226]Michelotti E F, Tomonaga T, Krutzsch H, Levens D. Cellular nucleic acid binding protein regulates the CT element of the human c-myc protooncogene. J Biol Chem,1995,270(16):9494-9499.
    [227]Ambrosini G, Adida C, Altieri D C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma Nature Medicine,1997,3(8):917-921.
    [228]Dallaglio K, Marconi A, Pincelli C. Survivin:a dual player in healthy and diseased skin. The Journal of Investigative Dermatology,2012,132(1):18-27.
    [229]Li F, Ambrosini G, Chu E Y, Plescia J, Tognin S, Marchisio P C, Altieri D C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature,1998,396(6711):580-584.
    [230]Li F, Ackermann E J, Bennett C F, Rothermel A L, Plescia J, Tognin S, Villa A, Marchisio P C, Altieri D C. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nature Cell Biology,1999,1(8):461-466.
    [231]Barrett R M, Colnaghi R, Wheatley S P. Threonine 48 in the BIR domain of survivin is critical to its mitotic and anti-apoptotic activities and can be phosphorylated by CK2 in vitro. Cell Cycle,2011,10(3): 538-548.
    [232]Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-All during mammalian myoblast differentiation. Nat Cell Biol,2006,8(3):278-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700