细胞分裂素和生长素调控拟南芥体细胞胚根端分生组织建立的分子基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞胚胎发生是植物发育过程中的特殊现象,指各种器官或组织的体细胞通过组织培养可以再生出类似于合子胚的结构——体细胞胚,进而发育成完整的植株。自从早期利用胡萝卜细胞培养体细胞胚的研究开始,这种独特的发育潜能已经成为细胞离体培养体系再生完整植株的重要手段,也成为研究植物胚胎发生早期形态建成调控机理的替代模型。因此,研究体细胞胚胎发生与发育的机理对于揭示细胞全能性与研究合子胚的形态发生等问题具有重要意义。目前,有关体细胞胚胎发生的分子机理和基因调控研究还很少,有待展开系统的研究。本实验室已有的实验结果指出生长素诱导WUS基因的表达对体细胞胚胎发生过程中茎端分生组织的重建是至关重要的。本文将从体细胞胚根端分生组织建成的机制以及microRNA(miRNA)影响体细胞胚胎发生的机理两个方面进行深入研究,期望研究结果为理解体细胞胚胎发生和发育的分子机理提供新的重要信息。主要研究结果如下:
     (1)细胞分裂素调控体细胞胚胎发生早期根端分生组织的建成
     为了研究体细胞胚胎发生过程中根端分生组织的重新建立情况,我们用激光共聚焦显微镜观察了根分生组织特征基因的表达模式。根端静止中心特征基因WUSCHEL RELATED HOMEOBOX 5(WOX5)最早在体细胞胚诱导16小时后开始表达,根端分生组织特征基因PLETHORA 2(PLT2)在诱导后24小时内就已经表达,之后SHORT ROOT(SHR)开始表达,而SCARECROW(SCR)开始表达的时间较晚,直到诱导2天后才检测到。雌激素诱导的pER8-WOX5 anti植株抑制了WOX5基因的表达,其胚性愈伤组织几乎丧失了再生体细胞胚的能力,而plt1-1 plt2-1双突变体的初级体细胞胚茎端虽形态正常并分化出两片子叶,但根端出现了严重的缺陷而且无法伸长。以上结果表明体细胞胚胎发生过程中根端分生组织特征基因的表达决定了体细胞胚根端分生组织的建立。
     在体细胞胚诱导的早期(1~4天),表征生长素分布的DR5荧光信号无法在WOX5和PLT2表达区域被检测到;诱导5天后,体细胞胚已形成成熟的子叶,此时生长素的信号开始在根端分生组织特征基因的表达位置分布。这说明在茎端分生组织重新建成过程中起重要调节作用的生长素,在体细胞胚诱导早期并不分布在根端分生组织区域。
     施加细胞分裂素合成的抑制剂洛伐他丁导致胚性愈伤组织的胚性完全丧失而无法再生体细胞胚。进一步的实验发现,A类细胞分裂素响应调节因子ARABIDOPSIS RESPONSE REGULATOR 7(ARR7)基因的表达区域与PLT2一直重叠,细胞分裂素合成基因ISOPENTENYLTRANSFERASE 5(IPT5)的表达也向根端集中。而且利用细胞分裂素受体基因ARABIDOPSIS HISTIDINE KINASE(AHK)的双突变体ahk2 ahk4和ahk3 ahk4以及细胞分裂素响应调节因子35S::ARR7和35S::ARR15过量表达植株,抑制细胞分裂素的信号转导途径,会导致初级体细胞胚出现类似plt1-1 plt2-1双突变体根端缺陷的表型,次级体细胞胚的再生也出现异常。这说明细胞分裂素在体细胞胚胎发生早期特异的分布在根端分生组织区域,对胚的根端分生组织的建立起主要的调控作用。虽然生长素和细胞分裂素共同参与了合子胚顶-基轴的建立,但是与生长素和细胞分裂素协同调控体细胞胚纵向茎端-根端分生组织的建成的模式是不同的。生长素调控体细胞胚胎发生早期WUS的表达和茎端分生组织的形成,而细胞分裂素通过其信号转导途径调控WOX5的表达和根端分生组织的形成。
     (2)miR167通过其靶基因ARF6和ARF8调控体细胞胚胎发生
     植物中的miRNA是一类约21个核苷酸组成的内源非编码小分子RNA,通过与其靶基因mRNA互补配对结合,以抑制基因表达或切割mRNA的方式,实现对靶基因的负调控。近年来,越来越多的miRNA在植物生长发育过程中的功能和作用被揭示出来,我们也运用芯片技术检测在体细胞胚胎发生过程中差异表达的miRNA,并结合遗传学实验最终发现miR167在体细胞胚胎发生过程中起着重要作用。
     首先,我们发现过量表达miR167家族的成员miR167c会显著抑制体细胞胚胎发生。35S::miR167c的愈伤组织在培养过程中逐渐丧失胚性,仅能再生少量的体细胞胚,同时愈伤组织中的LEAFY COTYLEDON 1(LEC1)、LEC2和FUSCA 3(FUS3)等胚胎特征基因的表达水平也明显降低。进一步研究发现过量表达miR167c会导致生长素极性运输蛋白PIN-FORMED 1(PIN1)在愈伤组织中的极性定位消失,导致生长素极性分布模式无法形成,并使WUS基因表达模式紊乱,从而抑制了体细胞胚胎发生。
     另外,miR167c的靶基因AUXIN RESPONSE FACTOR 6(ARF6)和ARF8的突变体也导致体细胞胚的发生出现异常,arf6-2、arf8-3和arf6-2 arf8-3/+突变体诱导的体细胞胚再生频率明显降低。从表达模式上来看,miR167c及其靶基因ARF6和ARF8均在再生的体细胞胚中特异表达,也说明它们在体细胞胚的诱导过程中起作用。以上结果证明miR167是通过生长素响应因子ARF6和ARF8来调控生长素的极性运输及分布,进而影响体细胞胚茎端分生组织的建成。
Somatic embryos (SE) have been defined as structures that arise from somatic cells but resemble zygotic embryos. Somatic embryogenesis is an important way to generate SE and whole plants. Since the initial description of SE formation from carrot callus cells, this unique developmental process has been recognized both as an important way for plants regeneration from cell culture systems and as a potential model for studying early regulatory and morphogenetic events in plant embryogenesis. Thus, somatic embryogenesis has been used for studying the plant cell totipotency and the developmental events in zygotic embryogenesis. However, molecular mechanisms of somatic embryogenesis remain largely unknown. Previous studies in our laboratory have demonstrated that auxin-induced WUS expression is essential for shoot apical meristem (SAM) formation during Arabidopsis somatic embryogenesis. Herein, we focus on studying the mechanism of root apical meristem (RAM) establishment and effects of microRNA (miRNA) in Arabidopsis somatic embryogenesis. Our results shed new light on molecular mechanisms regulating somatic embryogenesis in Arabidopsis. The main results are as follows:
     (1) RAM establishment was regulated by cytokinin during early somatic embryogenesis
     In order to study the initiation of RAM stem cells during somatic embryogenesis in Arabidopsis, we analyzed the expression pattern of genes which were reported to express in the RAM during embryogenesis using laser scanning confocal microscope. The localization of root quiescent center-specific gene WUSCHEL RELATED HOMEOBOX 5 (WOX5) was analyzed by pWOX5::GFP expression. WOX5 gene expression was detected in embryonic calli within 16 hours after SE induction. Then, signals of other genes involved in root stem cell specification during early embryogenesis such as PLETHORA 2 (PLT2), SHORT ROOT (SHR) and SCARECROW (SCR), were detected sequentially within two days after SE induction. More importantly, repressing the expression of WOX5 or PLT resulted in abnormal somatic embryogenesis. Embryonic callus of pER8-WOX5-anti almost lost the ability to reproduce SE after induction by 17β-estradiol. Primary SE of the plt1-1 plt2-1 double mutant could form normal shoot apex with cotyledons, but defected in root apex and SE elongation. These results indicated that RAM-specific genes play important roles in SE root development during early somatic embryogenesis.
     Auxin that is important in SAM renewal only concentrated around shoot apex during early somatic embryogenesis, but not in RAM region, because the genes related to auxin biosynthesis and transport only expressed in shoot apex. Fluorescence signal of DR5rev::YFP or DR5rev::GFP, which mark auxin distribution, did not overlap with the signal of pWOX5::GFP or pPLT2::RFP during early somatic embryogenesis. Only after 5 days induction, auxin response signal could be detected in the root apex.
     Application of cytokinin synthesis inhibitor lovastatin led to complete loss of embryonic ability in the callus, and failure to induce SE. Further experiments showed that the expression region of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7), which is used to mark cytokinin response, could overlap the expression region of PLT2 during early somatic embryogenesis, and the expression of cytokinin biosynthetic gene IPT5 was detected in the root apex. Furthermore, repressing the cytokinin signal transduction resulted in defective somatic embryogenesis. The double mutants of cytokinin receptor genes ARABIDOPSIS HISTIDINE KINASE (AHK), ahk2 ahk4 and ahk3 ahk4, showed similar phenotype to that of the double mutant plt1-1 plt2-1 in the root apex. Overexpression of ARR7 and ARR15 both resulted in abnormal primary and secondary SE. These results indicated that cytokinin specifically distributed in root apex, and regulated the establishment of RAM through its signal transduction.
     Our results suggest that although the interaction between auxin and cytokinin plays an important role in the establishment of apical-basal polarity in zygotic embryo, there is a different pattern in the SE shoot-root apex polarity. Auxin regulates WUS expression and SAM renewal in shoot apex while cytokinin controls WOX5 expression and RAM formation in root apex.
     (2) MiR167 regulated somatic embryogenesis through its target genes ARF6 and ARF8 MiRNAs are small, endogenous RNAs that regulate gene expression in plants and animals. In plants, these ~21 nucleotide RNAs are processed from stem-loop regions of long primary transcripts and are loaded into silencing complexes, where they generally direct cleavage of complementary mRNAs of their target genes. In recent years, more and more functions of miRNA were revealed at various stages of plant growth and development. We detected a large number of miRNA differentially expressed during SE induction by microarray technology, and found that miR167 played an important role in Arabidopsis somatic embryogenesis.
     First, we showed that overexpression of miR167 family members decreased somatic embryogenesis frequency. Moreover, the expression of WUS and embryo-specific genes, such as LEAFY COTYLEDON 1 (LEC1), LEC2 and FUSCA 3 (FUS3), were repressed. Further experiments indicated that the polar localization of PIN-FORMED 1 (PIN1) and normal expression pattern of WUS were not detected in 35S::miR167c, resulting in disrupted pattern of SE shoot stem cell renewal.
     Both miR167c and its target genes AUXIN RESPONSE FACTOR 6 (ARF6)/ARF8 expressed specifically in embryonic callus where SE was produced. In addition, mutants of ARF6 and ARF8 also showed defects in somatic embryogenesis. Primary SE of arf6-2, arf8-3 and arf6-2 arf8-3/+ were morphologically normal, but the frequency of secondary SE induction decreased obviously.
     Our results suggested that miR167 regulated auxin polar transport and gradient distribution through auxin response factor ARF6 and ARF8, thereby affecting RAM establishment in somatic embryogenesis.
引文
陈以峰,周樊,汤日圣。水稻体细胞培养中胚性细胞出现与IAA的关系。植物学报,1998,(40):474-477
    崔凯荣,戴若兰。植物体细胞胚发生的分子生物学。科学出版社,2000
    王兴春,李宏,王敏,杨致荣。植物体细胞胚胎发生的调控网络。生物工程学报,2010,(26):141-146
    许智宏,刘春明。植物发育的分子机理。科学出版社,1998
    许智宏。植物发育与生殖的研究:进展和展望。植物学报,1999,(41):909-920
    杨曦,何玉科。植物microRNA的生物合成和调控功能。生命科学,2010,(22):687-696
    张云峰,季勤,杨清,邢宇俊。植物miRNA在植物生长发育中的作用研究。安徽农业科学,2007,(35):9834-9836
    章文蔚,罗玉萍,李思光。microRNA及其在植物生长发育中的作用。植物生理学通讯,2006,(42):1015-1020
    Adai A., Johnson C., Mlotshwa S., Archer-Evans S., Manocha V., Vance V. and Sundaresan V.. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res., 2005, (15): 78-91
    Aida M., Beis D., Heidstra R., Willemsen V., Blilou I., Galinha C., Nussaume L., Noh Y.S., Amasino R. and Scheres B.. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004, (119): 109-120
    Aida M., Ishida T., and Tasaka M.. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 1999, (126): 1563-1670
    Aida M., Ishida T., Fukaki H., Fujisawa H. and Tasaka M.. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, (9): 841-857
    Aida M., Vernoux T., Furutani M., Traas J. and Tasaka M.. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development, 2002, (129): 3965-3974
    Allen E., Xie Z., Gustafson A.M. and Carrington J.C.. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, (121): 207-221
    Ammirato P.V., Sharp W.R., Yamada Y. and Evans D.A.. Techniques for propagation and breeding (Handbook of plant cell culture). Macmillan Pub. New York, 1983, 82-123
    Aukerman M.J. and Sakai H.. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell, 2003, (15): 2730-2741
    Baker C.C., Sieber P., Wellmer F. and Meyerowitz E.M.. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol., 2005, (15): 303-315
    Bartel B. and Bartel D.P.. MicroRNAs: at the root of plant development? Plant Physiol., 2003, (132): 709-717
    Bartel D.P.. MicroRNAs: genomics biogenesis mechanism and function. Cell, 2004, (116): 281-297
    Bassuner B.M., Lam R., Lukowitz W. and Yeung E.C.. Auxin and root initiation in somatic embryos of Arabidopsis. Plant Cell Rep., 2007, (26): 1-11
    Baudino S., Hansen S., Brettschneider R., Hecht V.F., Dresselhaus T., Lorz H., Dumas C. and Rogowsky P.M.. Molecular characterisation of two novel maize LRR receptor-like kinases which belong to the SERK gene family. Planta, 2001, (213): 1-10
    Birnbaum K.D. and Sanchez Alvarado A.. Slicing across kingdoms: Regeneration in plants and animals. Cell, 2008, (132): 697-710
    Bollman K.M., Aukerman M.J., Park M.Y., Hunter C., Berardini T.Z. and Poethig R.S.. HASTY the Arabidopsis ortholog of exportin 5/MSN5 regulates phase change and morphogenesis. Development, 2003, (130): 1493-1604
    Boutilier K., Offringa R., Sharma V.K., Kieft H., Ouellet T., Zhang L., Hattori J., Liu C.M., van Lammeren A.A., Miki B.L., Custers J.B. and van Lookeren Campagne M.M.. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, (14): 1737-1749
    Bronner R., Jeannin G. and Hahne G.. Early cellular events during organogenesis and somatic embryogenesis induced on immature zygotic embryos of sunflower (Helianthus annuus). Can. J. Bot., 1994, (72): 239-248
    Busch M., Mayer U. and Jurgens G.. Molecular analysis of the Arabidopsis pattern formation of gene GNOM: Gene structure and intragenic complementation. Mol. Gen. Genet., 1996, (250): 681-691
    Byrne M.E., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A. and Martienssen R.A.. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, (408): 967-971
    Carrington J.C. and Ambros V.. Role of microRNAs in plant and animal development. Science, 2003, (301): 336-338
    Chapman E.J., Prokhnevsky A.I., Gopinath K., Dolja V.V. and Carrington J.C.. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev., 2004, (18): 1179-1186
    Chen X.. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, (303): 2022-2025
    Cheng Y., Dai X. and Zhao Y.. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell, 2007, (19): 2430-2439
    Clough S.J. and Bent A.F.. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 1998, (16): 735-743
    De Jong A.J., Heidstra R., Spaink H.P., Hartog M.V., Meijer E.A., Hendriks T., Schiavo F.L., Terzi M., Bisseling T., Van Kammen A. and De Vries S.C.. Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell, 1993, (5): 615-620
    Dean Rider S., Jr., Henderson J.T., Jerome R.E., Edenberg H.J., Romero-Severson J. and Ogas J.. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J., 2003, (35): 33-43
    Dharmasiri N., Dharmasiri S., Weijers D., Lechner E., Yamada M., Hobbie L., Ehrismann J.S., Jurgens G. and Estelle M.. Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell, 2005, (9): 109-119
    Dhonukshe P., Aniento F., Hwang I., Robinson D.G., Mravec J., Stierhof Y.D. and Friml J.. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol., 2007, (17): 520-527
    Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K. and Scheres B.. Cellular organisation of the Arabidopsis thaliana root. Development, 1993, (119): 71-84
    Dudits D., Bogre L. and Gyorgyey J.. Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J. Cell Sci., 1991, (99): 475-484
    Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F. and Bowman J.L.. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol., 2003, (13): 1768-1774
    Finer J.J.. Direct somatic embryogenesis. Plant Cell Tiss. Org., 1995, 91-102 Fletcher J.C., Brand U., Running M.P., Simon R. and Meyerowitz E.M.. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, (283): 1911-1914
    Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R. and Jurgens G.. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 2003, (426): 147-153
    Gaj M.D., Zhang S., Harada J.J. and Lemaux P.G.. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta, 2005, (222): 977-988
    Galinha C., Hofhuis H., Luijten M., Willemsen V., Blilou I., Heidstra R. and Scheres B.. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 2007, (449): 1053-1057
    Galweiler L., Guan C., Muller A., Wisman E., Mendgen K., Yephremov A. and Palme K.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, (282): 2226-2230
    Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Muller P., Delbarre A., Ueda T., Nakano A. and Jurgens G.. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling auxin transport and auxin-dependent plant growth. Cell, 2003, (112): 219-230
    Geldner N., Richter S., Vieten A., Marquardt S., Torres-Ruiz R.A., Mayer U. and Jurgens G.. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related post-embryonic development of Arabidopsis. Development, 2004, (131): 389-400
    Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A. and Enright A.J.. miRBase: microRNA sequences targets and gene nomenclature. Nucleic Acids Res., 2006, (34): D140-144
    Guo H.S., Xie Q., Fei J.F. and Chua N.H.. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell, 2005, (17): 1376-1386
    Haecker A., Gross-Hardt R., Geiges B., Sarkar A., Breuninger H., Herrmann M. and Laux T.. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development, 2004, (131): 657-668
    Hall Q. and Cannon M.C.. The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell, 2002, (14): 1161-1172
    Hamann T., Benkova E., Baurle I., Kientz M. and Jurgens G.. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev., 2002, (16): 1610-1615
    Hamann T., Mayer U. and Jurgens G.. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development, 1999, (126): 1387-1395
    Harding E.W., Tang W., Nichols K.W., Fernandez D.E. and Perry S.E.. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol., 2003, (133): 653-663
    Hecht V., Vielle-Calzada J.P., Hartog M.V., Schmidt E.D., Boutilier K., Grossniklaus U. and de Vries S.C.. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol., 2001, (127): 803-816
    Heck G.R., Perry S.E., Nichols K.W. and Fernandez D.E.. AGL15 a MADS domain protein expressed in developing embryos. Plant Cell, 1995, (7): 1271-1282
    Heidstra R., Welch D. and Scheres B.. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev.,2004, (18): 1964-1969
    Helariutta Y., Fukaki H., Wysocka-Diller J., Nakajima K., Jung J., Sena G., Hauser M.T. and Benfey P.N.. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000, (101): 555-567
    Higuchi M., Pischke M.S., Mahonen A.P., Miyawaki K., Hashimoto Y., Seki M., Kobayashi M., Shinozaki K., Kato T., Tabata S., Helariutta Y., Sussman M.R. and Kakimoto T.. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U. S. A., 2004, (101): 8821-8826
    Hosoda K., Imamura A., Katoh E., Hatta T., Tachiki M., Yamada H., Mizuno T. and Yamazaki T.. Molecular structure of the GARP family of plant Myb-related DNA binding motifs of the Arabidopsis response regulators. Plant Cell, 2002, (14): 2015-2029
    Ikeda-Iwai M., Satoh S. and Kamada H.. Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J. Exp. Bot., 2002, (53): 1575-1580
    Ikeda-Iwai M., Umehara M., Satoh S. and Kamada H.. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J., 2003, (34): 107-114
    Jenik P.D., Gillmor C.S. and Lukowitz W.. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol., 2007, (23): 207-236
    Jenik P.D., Jurkuta R.E. and Barton M.K.. Interactions between the cell cycle and embryonic patterning in Arabidopsis uncovered by a mutation in DNA polymerase epsilon. Plant Cell, 2005, (17): 3362-3377
    Jones-Rhoades M.W. and Bartel D.P.. Computational identification of plant microRNAs and their targets including a stress-induced miRNA. Mol. Cell, 2004, (14): 787-799
    Jones-Rhoades M.W., Bartel D.P. and Bartel B.. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol., 2006, (57): 19-53
    Jurgens G.. Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J., 2001, (20): 3609-3616
    Kamada H. and Harada H.. Changes in the endogenous level and effects of abscisic acid during somatic embryogenesis of Daucus carota L. Plant Cell Physiol., 1981, (22): 1423-1529
    Kamada H., Ishikawa K., Saga H. and Harada H.. Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tiss. Cult. Lett., 1993, (10): 38-44
    Kasschau K.D., Xie Z., Allen E., Llave C., Chapman E.J., Krizan K.A. and Carrington J.C.. P1/HC-Pro a viral suppressor of RNA silencing interferes with Arabidopsis development and miRNA unction. Dev. Cell, 2003, (4): 205-217
    Kerstetter R.A., Bollman K., Taylor R.A., Bomblies K. and Poethig R.S.. KANADI regulatesorgan polarity in Arabidopsis. Nature, 2001, (411): 706-709
    Khraiwesh B., Arif M.A., Seumel G.I., Ossowski S., Weigel D., Reski R. and Frank W.. Transcriptional control of gene expression by microRNAs. Cell, 2010, (140): 111-122
    Kim J., Jung J.H., Reyes J.L., Kim Y.S., Kim S.Y., Chung K.S., Kim J.A., Lee M., Lee Y., Narry Kim V., Chua N.H. and Park C.M.. microRNA-directed cleavage of ATHB15
    mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J., 2005, (42): 84-94
    Kim V.N.. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 2005, (6): 376-385
    Kiyosue T., Kamada H. and Harada H.. Induction of somatic embryogenesis by salt stress in carrot. Plant Tiss. Cult. Lett., 1989, (6): 162-164
    Kurihara Y., Takashi Y. and Watanabe Y.. The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA, 2006, (12): 206-212
    Lagos-Quintana M., Rauhut R., Lendeckel W. and Tuschl T.. Identification of novel genes coding for small expressed RNAs. Science, 2001, (294): 853-858
    Lai E.C., Tomancak P., Williams R.W. and Rubin G.M.. Computational identification of Drosophila microRNA genes. Genome Biol., 2003, (4): R42
    Lanet E., Delannoy E., Sormani R., Floris M., Brodersen P., Crete P., Voinnet O. and Robaglia C.. Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell, 2009, (21): 1762-1768
    Laux T., Mayer K.F., Berger J. and Jurgens G.. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, (122): 87-96
    Laux T., Wurschum T. and Breuninger H.. Genetic regulation of embryonic pattern formation. Plant Cell, 2004, 16 Suppl: S190-202
    Lee H., Fischer R.L., Goldberg R.B. and Harada J.J.. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl. Acad. Sci. U. S. A., 2003, (100): 2152-2156
    Lee R.C., Feinbaum R.L. and Ambros V.. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, (75): 843-854
    Liscum E. and Reed J.W.. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol. Biol., 2002, (49): 387-400
    Liu C., Xu Z. and Chua N.H.. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell, 1993, (5): 621-630
    Liu Q. and Chen Y.Q.. Insights into the mechanism of plant development: Interactions of miRNAs pathway with phytohormone response. Biochem. Biophys. Res. Comms., 2009,(384): 1-5
    Llave C., Kasschau K.D., Rector M.A. and Carrington J.C.. Endogenous and silencing-associated small RNAs in plants. Plant Cell, 2002a, (14): 1605-1619
    Llave C., Xie Z., Kasschau K.D. and Carrington J.C.. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002b, (297): 2053-2056
    Lobbes D., Rallapalli G., Schmidt D.D., Martin C. and Clarke J.. SERRATE: a new player on the plant microRNA scene. EMBO Rep., 2006, (7): 1052-1058
    Long J.A., Moan E.I., Medford J.I. and Barton M.K.. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, (379): 66-69
    Loschiavo F., Filippini F., Cozzani F., Vallone D. and Terzi M.. Modulation of auxin-binding proteins in cell suspensions : I. Differential responses of carrot embryo cultures. Plant Physiol., 1991, (97): 60-64
    Loschiavo F., L., P., Giuliano G., Torti G., Nutironchi V., Marazziti D., Vergara R., Orselli S. and Terzi M.. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation differentiation hormones and hypomethylating drugs. Theor. Appl. Genet., 1989, (77): 325-331
    Lotan T., Ohto M., Yee K.M., West M.A., Lo R., Kwong R.W., Yamagishi K., Fischer R.L., Goldberg R.B. and Harada J.J.. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, (93): 1195-1205
    Luerssen H., Kirik V., Herrmann P. and Misera S.. FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J., 1998, (15): 755-764
    Lukowitz W., Roeder A., Parmenter D. and Somerville C.. A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell, 2004, (116): 109-119
    Luo Y. and Koop H.U.. Somatic embryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta, 1997, (202): 387-396
    Mallory A.C., Bartel D.P., and Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell, 2005, (17): 1360-1375
    Mallory A.C., Dugas D.V., Bartel D.P. and Bartel B.. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic vegetative and floral organs. Curr. Biol., 2004, (14): 1035-1046
    Mallory A.C., Elmayan T. and Vaucheret H.. MicroRNA maturation and action - the expanding roles of ARGONAUTEs. Curr. Opin. Plant Biol., 2008, (11): 560-566
    Mantiri F.R., Kurdyukov S., Lohar D.P., Sharopova N., Saeed N.A., Wang X.D., VandenboschK.A. and Rose R.J.. The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol., 2008, (146): 1622-1636
    Mathieu M., Lelu-Walter M.A., Blervacq A.S., David H., Hawkins S. and Neutelings G.. Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol. Biol., 2006, (61): 615-627
    Mayer K.F., Schoof H., Haecker A., Lenhard M., Jurgens G. and Laux T.. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, (95): 805-815 Mayer U., Buttner G. and Jurgens G.. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development, 1993, (117): 149-162
    Mayer U., Herzog U., Berger F., Inze D. and Jurgens G.. Mutations in the pilz group genes disrupt the microtubule cytoskeleton and uncouple cell cycle progression from cell division in Arabidopsis embryo and endosperm. Eur. J. Cell Biol., 1999, (78): 100-108
    Mayer U., Torres Ruiz R.A., Berleth T., Miseera S., and Jurgens G. Mutations affecting body organization in the Arabidopsis embryo. Nature, 1991, (353): 402-407
    McConnell J.R., Emery J., Eshed Y., Bao N., Bowman J. and Barton M.K.. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, (411): 709-713
    Meinke D.W.. Perspectives on genetic analysis of plant embryogenesis. Plant Cell, 1991, (3): 857-866
    Merkle S.A., Prrott W.A. and Flinn B.S.. Morphogenic aspects of somatic embryogenesis. In Vitro Embryogenesis in Plants, 1995, 155-204
    Mi S., Cai T., Hu Y., Chen Y., Hodges E., Ni F., Wu L., Li S., Zhou H., Long C., Chen S., Hannon G.J. and Qi Y.. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell, 2008, (133): 116-127
    Michniewicz M., Zago M.K., Abas L., Weijers D., Schweighofer A., Meskiene I., Heisler M.G., Ohno C., Zhang J., Huang F., Schwab R., Weigel D., Meyerowitz E.M., Luschnig C., Offringa R. and Friml J.. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007, (130): 1044-1056
    Millar A.A. and Waterhouse P.M.. Plant and animal microRNAs: similarities and differences. Funct. Integr. Genomics, 2005, (5): 129-135
    Miyawaki K., Matsumoto-Kitano M. and Kakimoto T.. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin cytokinin and nitrate. Plant J., 2004, (37): 128-138
    Moller B. and Weijers D.. Auxin control of embryo patterning. Cold Spring Harb. Perspect. Biol., 2009, (1): a001545
    Mordhorst A.P., Voerman K.J., Hartog M.V., Meijer E.A., van Went J., Koornneef M. and de Vries S.C.. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics, 1998, (149): 549-563
    Mourelatos Z., Dostie J., Paushkin S., Sharma A., Charroux B., Abel L., Rappsilber J., Mann M. and Dreyfuss G.. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev., 2002, (16): 720-728
    Mu J., Tan H., Zheng Q., Fu F., Liang Y., Zhang J., Yang X., Wang T., Chong K., Wang X.J. and Zuo J.. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol., 2008, (148): 1042-1054
    Muller B. and Sheen J.. Advances in cytokinin signaling. Science, 2007, (318): 68-69 Muller B. and Sheen J.. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 2008, (453): 1094-1097
    Nagpal P., Ellis C.M., Weber H., Ploense S.E., Barkawi L.S., Guilfoyle T.J., Hagen G., Alonso J.M., Cohen J.D., Farmer E.E., Ecker J.R. and Reed J.W.. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, (132): 4107-4118
    Nakajima K., Sena G., Nawy T. and Benfey P.N.. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 2001, (413): 307-311
    Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S. and Ueguchi C.. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell, 2004, (16): 1365-1377
    Nodine M.D. and Bartel D.P.. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev., 2010, (24): 2678-2692 O’Neill C.M. and Mathias R.J.. Regeneration of plants from protoplasts of Arabidopsis thaliana L. cv. Columbia (C24) Via direct embryogenesis. J. Exp. Bot., 1993, (44): 1579-1585
    Ogas J., Cheng J.C., Sung Z.R. and Somerville C.. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science, 1997, (277): 91-94
    Okushima Y., Overvoorde P.J., Arima K., Alonso J.M., Chan A., Chang C., Ecker J.R., Hughes B., Lui A., Nguyen D., Onodera C., Quach H., Smith A., Yu G. and Theologis A.. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: Unique and overlapping functions of ARF7 and ARF19. Plant Cell, 2005, (17): 444-463
    Palatnik J.F., Allen E., Wu X., Schommer C., Schwab R., Carrington J.C. and Weigel D.. Control of leaf morphogenesis by microRNAs. Nature, 2003, (425): 257-263
    Paponov I.A., Teale W.D., Trebar M., Blilou I. and Palme K.. The PIN auxin efflux facilitators: Evolutionary and functional perspectives. Trends Plant Sci., 2005, (10): 170-177
    Parcy F., Valon C., Raynal M., Gaubier-Comella P., Delseny M. and Giraudat J.. Regulation of gene expression programs during Arabidopsis seed development: Roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell, 1994, (6): 1567-1582
    Park W., Li J., Song R., Messing J. and Chen X.. CARPEL FACTORY a Dicer homolog and HEN1 a novel protein act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol., 2002, (12): 1484-1495
    Pillon E., Terzi M., Baldan B., Mariani P. and Lo Schiavo F.L.. A protocol for obtaining embryogenic cell lines from Arabidopsis. Plant J., 1996, (9): 573-577
    Prigge M.J., Otsuga D., Alonso J.M., Ecker J.R., Drews G.N., and Clark S.E. Class III homeodomain-leucine zipper gene family members have overlapping antagonistic and distinct roles in Arabidopsis development. Plant Cell, 2005, (17): 61-76
    Ray S., Golden T. and Ray A.. Maternal effects of the short integument mutation on embryo development in Arabidopsis. Dev. Biol., 1996, (180): 365-369
    Reed J.W.. Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci., 2001, (6): 420-425
    Reinert J.. Morphogenese und ihre Kontrolle an Gewebekulturen aus Carotten. Die Naturwissenschaften, 1958, (45): 344-345
    Reinhart B.J., Weinstein E.G., Rhoades M.W., Bartel B. and Bartel D.P.. MicroRNAs in plants. Genes Dev., 2002, (16): 1616-1626
    Rhoades M.W., Reinhart B.J., Lim L.P., Burge C.B., Bartel B. and Bartel D.P.. Prediction of plant microRNA targets. Cell, 2002, (110): 513-520
    Riefler M., Novak O., Strnad M. and Schmulling T.. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth leaf senescence seed size germination root development and cytokinin metabolism. Plant Cell, 2006, (18): 40-54
    Ryu K.H., Kang Y.H., Park Y.H., Hwang I., Schiefelbein J. and Lee M.M.. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development, 2005, (132): 4765-4775
    Sabatini S., Beis D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P. and Scheres B.. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 1999, (99): 463-472
    Sabatini S., Heidstra R., Wildwater M. and Scheres B.. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev., 2003, (17): 354-358
    Sambrook J., Fritsch E. and Maniatis T.. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. 1998
    Sangwan R.S., Bourgeois Y., Dubois F. and Sangwannorreel B.S.. In vitro regeneration ofArabidopsis thaliana from cultured zygotic embryos and analysis of regenerants. J. Plant Physiol., 1992, (140): 588-595
    Sarkar A.K., Luijten M., Miyashima S., Lenhard M., Hashimoto T., Nakajima K., Scheres B., Heidstra R. and Laux T.. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature, 2007, (446): 811-814
    Schauer S.E., Jacobsen S.E., Meinke D.W. and Ray A.. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci., 2002, (7): 487-491
    Scheres B., Wolkenfelt H., Willemsen V., Terlouw M., Lawson E., Dean C. and Weisbeek P.. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development, 1994, (120): 2475-2487
    Schlereth A., Moller B., Liu W., Kientz M., Flipse J., Rademacher E.H., Schmid M., Jurgens G. and Weijers D.. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 2010, (464): 913-916
    Schmid M., Davison T.S., Henz S.R., Pape U.J., Demar M., Vingron M., Scholkopf B., Weigel D. and Lohmann J.U.. A gene expression map of Arabidopsis thaliana development. Nat. Genet., 2005, (37): 501-506
    Schmidt E.D., Guzzo F., Toonen M.A. and de Vries S.C.. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, (124): 2049-2062
    Schoof H., Lenhard M., Haecker A., Mayer K.F., Jurgens G. and Laux T.. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, (100): 635-644
    Schwab R., Palatnik J.F., Riester M., Schommer C., Schmid M. and Weigel D.. Specific effects of microRNAs on the plant transcriptome. Dev. Cell, 2005, (8): 517-527
    Shevell D.E., Leu W.M., Gillmor C.S., Xia G., Feldmann K.A. and Chua N.H.. EMB30 is essential for normal cell division cell expansion and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell, 1994, (77): 1051-1062
    Skoog F. and Miller C.O.. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 1957, (11): 118-130
    Song L., Axtell M.J. and Fedoroff N.V.. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr. Biol., 2010, (20): 37-41
    Souer E., van Houwelingen A., Kloos D., Mol J. and Koes R.. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, (85): 159-170
    Souret F.F., Kastenmayer J.P. and Green P.J.. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell, 2004, (15): 173-183
    Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente L.M., Xie D.Y., Dolezal K., Schlereth A., Jurgens G. and Alonso J.M.. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 2008, (133): 177-191
    Steward F.C.. Growth and organized development of cultured cells. 3. Interpretations of the growth from free cell to carrot plant. Am. J. Bot., 1958, (45): 709-713
    Stone S.L., Braybrook S.A., Paula S.L., Kwong L.W., Meuser J., Pelletier J., Hsieh T.F., Fischer R.L., Goldberg R.B. and Harada J.J.. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proc. Natl. Acad. Sci. U. S. A., 2008, (105): 3151-3156
    Stone S.L., Kwong L.W., Yee K.M., Pelletier J., Lepiniec L., Fischer R.L., Goldberg R.B. and Harada J.J.. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. U. S. A., 2001, (98): 11806-11811
    Su Y.H., Zhao X.Y., Liu Y.B., Zhang C.L., O'Neill S.D. and Zhang X.S.. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J., 2009, (59): 448-460
    Sunkar R. and Zhu J.K.. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, (16): 2001-2019
    Szemenyei H., Hannon M. and Long J.A.. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 2008, (319): 1384-1386
    Tabata R., Ikezaki M., Fujibe T., Aida M., Tian C.E., Ueno Y., Yamamoto K.T., Machida Y., Nakamura K. and Ishiguro S.. Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol., 2010, (51): 164-175
    Takada S., Hibara K., Ishida T. and Tasaka M.. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 2001, (128): 1127-1135
    Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., Cheng Y., Lim J., Zhao Y., Ballare C.L., Sandberg G., Noel J.P. and Chory J.. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008, (133): 164-176
    Tiwari M.M., Brock R.W., Megyesi J.K., Kaushal G.P. and Mayeux P.R.. Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am. J. Physiol. - Renal Physiol., 2005, (289): F1324-1332
    Tiwari S.B., Hagen G. and Guilfoyle T.. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 2003, (15): 533-543
    Ulmasov T., Hagen G. and Guilfoyle T.J.. Activation and repression of transcription byauxin-response factors. Proc. Natl. Acad. Sci. U. S. A., 1999, (96): 5844-5849
    Vaucheret H., Vazquez F., Crete P. and Bartel D.P.. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev., 2004, (18): 1187-1197
    Vazquez F., Vaucheret H., Rajagopalan R., Lepers C., Gasciolli V., Mallory A.C., Hilbert J.L., Bartel D.P. and Crete P.. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell, 2004, (16): 69-79
    Vroemen C.W., Mordhorst A.P., Albrecht C., Kwaaitaal M.A. and de Vries S.C.. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell, 2003, (15): 1563-1677
    Waizenegger I., Lukowitz W., Assaad F., Schwarz H., Jurgens G. and Mayer U.. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr. Biol., 2000, (10): 1371-1374
    Wang J.W., Wang L.J., Mao Y.B., Cai W.J., Xue H.W. and Chen X.Y.. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell, 2005, (17): 2204-2216
    Wang X., Niu Q.W., Teng C., Li C., Mu J., Chua N.H. and Zuo J.. Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res., 2009, (19): 224-235
    Wang X.J., Reyes J.L., Chua N.H. and Gaasterland T.. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol., 2004, (5): R65
    Weigel D. and Jurgens G.. Stem cells that make stems. Nature, 2002, (415): 751-754
    Weijers D. and Jurgens G.. Auxin and embryo axis formation: the ends in sight? Curr. Opin. Plant Biol., 2005, (8): 32-37
    Weijers D., Schlereth A., Ehrismann J.S., Schwank G., Kientz M. and Jurgens G.. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev. Cell, 2006, (10): 265-270
    West M. and Harada J.J.. Embryogenesis in higher plants: An overview. Plant Cell, 1993, (5): 1361-1369
    Wightman B., Ha I. and Ruvkun G.. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, (75): 855-862
    Williams L., Grigg S.P., Xie M., Christensen S. and Fletcher J.C.. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development, 2005, (132): 3657-3668
    Willmann M.R., Mehalick A.J., Packer R.L. and Jenik P.D.. MicroRNAs regulate the timingof embryo maturation in Arabidopsis. Plant Physiol., 2011, (155): 1871-1884
    Wu M.F., Tian Q. and Reed J.W.. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression and regulates both female and male reproduction. Development, 2006, (133): 4211-4218
    Wu Y., Haberland G., Zhou C. and Koop H.U.. Somatic embryogenesis formation of morphogenetic callus and normal development in zygotic embryos of Arabidopsis thaliana in vitro. Protoplasma, 1992, (169): 89-96
    Wysocka-Diller J.W., Helariutta Y., Fukaki H., Malamy J.E. and Benfey P.N.. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 2000, (127): 595-603
    Xie Z., Allen E., Fahlgren N., Calamar A., Givan S.A. and Carrington J.C.. Expression of Arabidopsis MIRNA genes. Plant Physiol., 2005, (138): 2145-2154
    Xie Z., Kasschau K.D. and Carrington J.C.. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol., 2003, (13): 784-789 Yao Y., Guo G., Ni Z., Sunkar R., Du J., Zhu J.K. and Sun Q.. Cloning and characterization of microRNAs from wheat. Genome Biol., 2007, (8): R96
    Yeung E.C. and Meinke D.W.. Embryogenesis in Angiosperms: Development of the suspensor. Plant Cell, 1993, (5): 1371-1381
    Yu B., Bi L., Zheng B., Ji L., Chevalier D., Agarwal M., Ramachandran V., Li W., Lagrange T., Walker J.C. and Chen X.. The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc. Natl. Acad. Sci. U. S. A., 2008, (105): 10073-10078
    Yu B., Yang Z., Li J., Minakhina S., Yang M., Padgett R.W., Steward R. and Chen X.. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, (307): 932-935
    Zamore P.D.. Ancient pathways programmed by small RNAs. Science, 2002, (296): 1265-1269
    Zhang B.H., Pan X.P., Wang Q.L., Cobb G.P. and Anderson T.A.. Identification and characterization of new plant microRNAs using EST analysis. Cell Res., 2005, (15): 336-360
    Zhao Z., Andersen S.U., Ljung K., Dolezal K., Miotk A., Schultheiss S.J. and Lohmann J.U.. Hormonal control of the shoot stem-cell niche. Nature, 2010, (465): 1089-1092. Zimmerman J.L.. Somatic embryogenesis: A model for early development in higher plants. Plant Cell, 1993, (5): 1411-1423
    Zuo J., Niu Q.W., Frugis G. and Chua N.H.. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J., 2002, (30): 349-359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700