用户名: 密码: 验证码:
ECM组分和cAMP对大鼠前体脂肪细胞增殖与分化的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以生长发育正常、健康状况良好的20日龄雄性SD大鼠为实验动物,采用脂肪细胞离体培养技术系统地研究了ECM组分中的Ⅳ型胶原和层粘连蛋白(LN)、环腺苷酸(cAMP)以及胰岛素(INS)、肾上腺素对大鼠前体脂肪细胞增殖与分化的调控,并比较了ECM组分中的Ⅳ型胶原和LN对大鼠脂肪细胞中Ⅰ、Ⅲ、Ⅳ型三种胶原基因在转录水平上表达效果的影响。
     经过反复试验,寻找到适合本实验室的大鼠前体脂肪细胞培养条件。用消化培养法时大鼠前体脂肪细胞数目增加快、生长旺盛,而组织块培养法细胞数目很少、生长一般;比较了四种底物对大鼠前体脂肪细胞培养的影响,发现细胞长势由好到差依次是加鼠尾胶原、不加底物、加盖玻片和加塑料膜:用HE染色、红油0染色和免疫组化染色等三种染色技术观察到大鼠前体脂肪细胞可转化成典型的成熟脂肪细胞:胞质中有许多数目不同、大小不等的脂滴,胞核在细胞边缘;并检测了大鼠前体脂肪细胞中不同培养时间下蛋白质、DNA、葡萄糖、甘油三酯等生化指标的含量,发现大鼠前体脂肪细胞在培养6d以前4种生化指标含量逐渐递增,而培养6d以后4种生化指标含量逐渐降低。
     利用MTT比色、流式细胞仪分析、GPDH活性测定、透射电镜分析、斑点杂交等实验技术系统研究了ECM组分中的Ⅳ型胶原和LN对大鼠前体脂肪细胞增殖与分化的调控。结果表明:Ⅳ型胶原和LN均有利于大鼠前体脂肪细胞的增殖,100ul/ml Ⅳ型胶原促增殖作用比50、150、200ul/ml三种浓度的明显,10ul/ml LN促增殖作用比5、20、40ul/ml三种浓度的作用显著;两种ECM组分均可降低脂肪细胞中G1期的细胞比例,升高PrI期的细胞比例,经检验,100ul/ml Ⅳ型胶原处理的脂肪细胞中各细胞周期细胞比例与对照、50、150ul/ml三种处理相比差异显著(P<0.05),10ul/ml LN对各细胞周期细胞比例的影响与对照、5、20ul/ml三种处理相比差异显著(P<0.05),根据脂肪细胞中G2/G1期DNA含量的比值接近2,证明脂肪细胞分裂按二倍体进行;Ⅳ型胶原和LN对大鼠前体脂肪细胞中的蛋白质、DNA、葡萄糖、甘油三酯的含量有明显促进作用,其中100ul/ml的Ⅳ型胶原可使4种生化指标含量与对照、50、150ul/ml处理相比差异极显著(P<0.01),10ul/mlLN对4种生化指标的影响与对照、5、20ul/ml处理相比差异极显著(P<0.01):用LN和Ⅳ型胶原处理大鼠前体脂肪细胞后,其GPDH活性均极显著地高于对照组(P<0.01),说明LN和Ⅳ型胶原均能促进前体脂肪细胞的分化,其中10ul/ml LN和100ul/ml Ⅳ型胶原处理的前体脂肪细胞中GPDH活性极显著地高于相应的其它处理组(P<0.01);不同浓度的Ⅳ型胶原和LN对大鼠前体脂肪细胞形态及其超微结构的影响不同,其中100ul/mlⅣ型胶原和10ul/ml LN对其形态及其超微结构的改善最有利;并且Ⅳ型胶原和LN均可不同程度地增加Ⅰ、Ⅲ、Ⅳ型三种胶原cDNA探针与脂肪细胞中总RNA的阳性杂交信号,其中LN的作用效果比Ⅳ型胶原更强。
     采用细胞计数、MTT比色、流式细胞仪分析、GPDH活性检测、透射电镜分析等技术探讨了直接用cAMP对大鼠前体脂肪细胞增殖与分化的调控。结果显示:不同浓度的cAMP溶液均可显著地
    
    增加前体脂肪细胞数目(P<0.05或P<0.01)、缩短细胞倍增时间,其中10’PM的CAMP使前体脂肪
    细胞数目的增加幅度最大、对减小细胞倍增时间最有利;CAMP处理的前体脂肪细胞生长曲线与对
    照组相比左移,而且培养6d以前细胞数目递增,此后细胞数目递减;它可使G;期细胞比例明显
    地低于对照组,Prl期细胞比例明显高于对照组,表明cAMP可促进大鼠前体脂肪细胞增殖;CAMP
    处理的大鼠前体脂肪细胞中蛋白质、DNA、葡萄糖、甘油三酯含量明显高于对照,证明CAllP可提
    高前体脂肪细胞中 4种生化指标含量,其中 10’PM的 CAMP提高 4种生化指标含量的效果最好;CAMP
    溶液可使脂肪细胞中 GpDH活性极显著地高于对照组(p<0.01),而且川加的 CAMp效果最佳;此
    外,cMIP溶液对大鼠前体脂肪细胞的形态及超微结构具有明显影响,其中 10血的 CAMP对其影晌
    最有利。
     通过Mh比色、流式细胞仪分析、GPDH活性检测等技术研究了LS和肾上腺素对大鼠前体脂
    肪细胞增殖与分化的调控。结果表明:INS可促进大鼠前体脂肪细胞的增殖,而肾上腺素则抑制
    前体脂肪细胞的增殖,其中 25uU/。IINS(生理浓度)处理的前体脂肪细胞增殖效果好于 0.IU;’ml
    INS(药理浓度),10y肾上腺素(药理浓度)抑制前体脂肪细胞增殖的效果高于川M肾上腺素
     (生理浓度);INS可降低G;期细胞比例,提高卜 期(细胞增殖指数)的细胞比例,肾上腺素提
    高G;期细胞比例,降低 Prl期细胞比例,其中 25uU/ml INS促进增殖的效果最好,10一、肾上腺素
    抑制增殖的程度最强;INS可使前体脂肪细胞中的 GPDH活性极显著地高于对照组(PCO,01);肾
    上腺素处理的前体脂肪细胞中GPDH活性极显著地低于对照组(P<0.01),其中25uU/ml INS升高
    细胞中 GPDH活性的幅度最大(约 4倍),10-初肾上腺素降低细胞中 GPDH活性的幅度最大(约 3
    倍)。
Normal and healthy male SD mice were employed to systematically explore the regulation of ECM Component ?collagen-IV , LN, cAMP, INS and adrenal hormone, on the proliferation and differentiation of mice preadipocytes, and influences were compared between the effects of Collagen-IV and LN on the expression of type I, III, IV of collagen genes at transcriptional level in mice adipocytes.
    Through repeated experiments, conditions required for the culture of mice preadipocytes were founded. In digestion culture, mice preadipocytes increase fast and vigorously, but in tissue culture, they increase slowly and evenly; when compared the influences of 4 substitutes on the culture of mice preadipocyte, it was found that growing conditions go down in the order of adding mice tale collagen, without substitutes, under glass slides and under plastic slides. By HE dyeing, Oil Red O dyeing and Immunohistochemical dyeing, it can all be found that mice preadiopocytes can be transformed to mature adipocytes with many lipid drops of various number and volume in cytoplasma, and the cellular nucleus by the side of the cells. Chemical indexes of protein, DNA, glucose, triglyceride were measured after mice preadipocytes were cultured for different times, it was found that the indexes increase gradually before the mice preadipocytes being cultured for 6 days, and they decline gradually after 6 days.
    By MTT method, Flow cytometer, GPDH activity detection, TE analysis and dot hybridization, regulation were investigated of collagen-IV and LN on the proliferation and differentiation of mice preadipocytes. The results showed that collagen-IV and LN can enhance the proliferation of mice preadipocytes, especially with a concentration of 100 ul/ml and 10 ul/ml respectively; and the two ECM components can reduce the cellular ratio during Gl period of the adipocytes cell cycle, increase it during PrI period, both are remarkable. The DNA content ratio of G2 to G1 period is very close to 2, it can be proven that the cell mitosis is in the way of bisplit; collagen-IV and LN and remarkably improve the content of protein, DNA, glucose, triglyceride in the mice adipocytes, especially at the concentration of 100 ul/ml and 10 ul/ml respectively. GPDH activities were much high than the control after the mice preadipocytes were treated with collagen-IV and LN, especially at the concentration of 100 ul/ml and 10 ul/ml respectively, it shows that they can both enhance the differentiation of preadipocytes. Various concentrations of collagen-IV and LN can differently influence the morphology and super microstructure of mice adipocytes, of which 100 ul/ml of collagen-IV and 10 ul/ml of LN and mostly improve the morphology and super microstructure. Collagen-IV and LN both can increase the positive hybridization signals of cDNA probe of I, III, IV types of collagen with the total RNA in adipocytes, and LN acts more obviously than collagen-IV do.
    By cellular numbering, MTT method, GPDH activity detection, TE analysis, the regulation of cAMP on the proliferation and differentiation of mice preadipocytes were investigated. The results are as follows: cAMPs of various concentrations can all remarkably increase the cell numbers of
    
    
    
    preadipocytes, reduce the cell double time, especially at the concentration of 107PM. Growth curve of preadipocytes treated with cAMP moves to the left of the control, the cell number increases before being cultured for 6 days, decreases after that. The cellular ratio is remarkably lower than the control in Gl period, higher in PrI period, indicating that cAMP can enhance the proliferation of mice preadipocytes. The contents of proteins, DNA, glucose, triglyceride are obviously higher in mice preadipocytes treated with cAMP than the control, especially when cAMP is at the concentration of of 107PM, showing that cAMP can improve the contents of the 4 substances in preadipocytes. The GPDH activities of adipocytes treated with cAMP are much more active than the control, and cAMP can have obvious influences on the morphology and super mic
引文
1. Adama M, Reginato MJ, Shao D, et al. Transcriptional activtion by peroxisome proliferator-activated receptor-γ is inhibited by phosphorylation at a consensus raitogen-actived protein kinase site. J Biol Chem, 1997, 272 : 5128-5132.
    2. Akambi, K.A., A. E. Brodie, A. svryawan, C. Y. Hu. Effect of age on the differentiation of porcine adipose stromal-Vascvlar cells in culture. J. Anim. Sci. 1994, 72:11, 2828-2835.
    3. Amri, E. Z., F. Bonlno, G. Ailhaudil, N. A. Abumard, and P. A. Grimaldi. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J. Biol. Chem. 1995, 270:2367-2371.
    4. Anderson, D. B and kauffman, R. G. (1973) Cellular and enzymatic changes in porcine adipose tissue during growth. J. Lipid Res. 16 : 160-168.
    5. Akira Kobataa, Occurrence of 3' , 5'-cyclic AMP in milk. J. Biochemistry, 1963, 50(3) : 275-276.
    6. Bjorntorp, P., M. Karlsson,L. Gustafusson. Quantitation of different cells in the epididymal fat pad of the rat. J. Lipid. Res. 1979,20:97.
    7. Boone, C., F. Gregoire, L. P. Clercq,C. Remacle, The modulation of cell shape influences porcine preadipocyte differentiation. In vitro cell. Dev. Biol-Anim.1999,35:61-63.
    8. Broad, T. E. and R. G. Ham. Growth and differentiation of sheep preadipocyte fibroblasts in serum-free medium(abstract). Eur. J. Biochem. 1983,3:33-39.
    9. Bortell, R. , T. Aowen, R. Ignotz, G. S. Stein, and J. L Stein. TGF beta 1 prevents the down-regulation oof type I procollagen, fibronectin, and TGF beta 1 gene expression associated with 3T3-L1 pre-adipocyte differentiation. J. Cell Biochem. 1994, 54:256-263.
    10. Carson , D. A, Ribeiro JM. Apoptoses and disease. Lancet, 1993, 341 :1251-1254.
    11. C. F. Boone, Gregoire, C. Remacle. Culture of porcine stromal-vascular cells in serum-free medium:Differential action of various hormonal agents on adipose conversion. J. Anim. Sci.2000, 78:885-895.
    12. Chawla A, Lazar, M. A. Peroxisome proliferalor and retinoid signaling pathways co-regulate preadipocyte phenotype and survival. Proc Natl Acad Sci USA, 1994, 91 : 1786-1790.
    13. Christian Vannier, Ez-zoubir Amri, Jacqueline Etienne, et al. (1988) Maturation and Secretion of Lipoprotein Lipase in Cultured adipose Cells. J.Biol. chem. 260(7) 4424-4431.
    14. Christophe Boone et al.Various stimulators of the cyclic AMP Pathway fail to promote adipose conversion of porcine preadipocytes in primary culture. Differentiation.1999,64:255-262.
    15. Cryer, A., B. R. Gray, and J. S. Woodhead. Studies on the characterization of bovine adpocyte precursor cells and their differentiation in vitro, rsing an indirect-labelled second-antibody cellular
    
    immunoassay. J. Dev. Physiol.1984, 6:159-176.
    16. Clark JH. Gorski J. Ontogeny of the estrogen receptor during early uterine development. Science. 1970, 169:76.
    17. Calvo, J. C., D. Rodbard, a. Katki, S. Chernick, and M. Yanagishita. Differentiation of 3T3-L1 preadipocytes with 3-isobuty 1-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans. Jbiol. Chem. 1991, 266:11237-11244.
    18. Cynthia, M. Shas and Hei Sook Svl.Control of adipocyte differentiation. Biochem. J. 1995, 309:697-710.
    19. Dodson. M. V., J. L Vierck, K. L. Hossner., K. Byrne., J. P. Mcnzmara. The development and utility of a defined muscle and fat co-culture system. Tissue and cell Research. 1997, 29:5, 517-524.
    20. Darcy K. M.,Black J. D.,Hahm H. A. et al. Mammary organoids from immature virgin rats undergo ductal and alveolar morphogenesis when growth within a reconstituted basement membrane. Exp. Cell Res. 1991,196:49-65.
    21. Deslex, S., R. Negrel and G. Aihaud. Differentiation of rat adipose precursor cells. Exp Cell Res. 1987,168:15-30.
    22. Dani, C., A. G. Smith, s. Dessolin, P. Leroy, L. Staccini, P. Villageois, C. Darimont, and G. Ailhaud. Differentiation of embryonic stem cells into adipocytes in vitro(abstract). J.Cell Sci.1997, 110:1279-1285.
    23. Desnoyer, F., Pascal, G. .Etienne, M et al. (1980) Cellularity of adipose tissue in the fetal pig. J. Lipid Res. 21 : 301-308.
    24. Edvardsson U, Bergstrom M, Alexandersson M, et al. Rosiglitazone(BRL 49653) , a PPAR gamma-selective agonist, causes peroxisome proliferator-like liver effects in obese mice. J Lipid Res 1999, 40(7) :1177.
    25. Ehmann U.K., Guzman R.C. ,0sborn R. C. et al. Cultured mouse mammary epithelial cells:normal phenotype after implantation. JNCI. 1987, 78:751-757.
    26. Ellwood L. C., Chatzidakis C., Failla M. L. Fructose utilization by the human intestinal epithelial cell line, Caco-2. Proc. Soc. Exp. Biol. Med. 1993,202:440-446.
    27. Entenmann, G. and H.Hauner. Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am. J. Physiol. 1996, 270:(Cell Physiol. 39) :C1011-C1016.
    28. Fiallka I., Schwartz H., Reichmann E. et al. The estrogen-dependent cjuner protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J.Cell Biol. 1996, 132:1115-1132.
    29. Fantini J., Guoo X. J., Marvaldi J. et al. Suramin inhibits proliferation of rat glioma cells and alters N-cam cell surface expression. Int, J. Camser. 1990, 45:554-561.
    30. Fisher H. W., Puck T. T., Sato G. Molecular growth requirements of single mammalian
    
    cells:the action of fetuin in promoting cell attachment to glass. Proc. Natl. Acad. Sci. USA. 1958, 44:4-10.
    31. French, P. W. et al. Localization of low-sulfur keratin proteins in the wool follicle using monoclonal antibodies. 13A. 1986,82(3) :24391.
    32. Flatt, J. P. (1970) Energy metabolism and control of Lipogensis in adipose tissue. In Adipose Tissue pp. 93-101. Georg Thieme and Academic Press. Stuttgart/New York/London.
    33. Fornal.N. Heritability of the activity of some blood enzyme and their relation to practical use of wool from merino sheep. CA. 1988, 108:72779.
    34. Freake HC. A genetic mutation in PPAR gamma is associated with enhanced fat cell differentiation : implications for human obesity. Nutr Rev 1999,57(5 Pt 1) :154.
    35. Fraser A, Evan G. A license to kill. Cell, 1996, 85 : 781-784.
    36. Gaillard D, et al. Control of terminal differentiation of adipose precursor cells by glutocorticoids. J Lipid Res. 1991, 32 : 569.
    37. Gaillard, D. ,M. Wabitsch, B. Pipy, and R. Negrel. Control of terminal differentiation of adipose precursor cells by glucocorticoids. J. Lipid Res. 1991, 32:569-579.
    38. Geloen A, Roy PE, Bukowiecki LJ. Regrssion of white adipose tissue in diabetic rats. AMJ Phsiol, 1989, 257 : E547-553.
    39. Geri, G. m ., zappa, P .A . et al(1990) Relationship between adipose tissue characteristics of newborn pigs and subsequent performance J. Anim. Sci. 68 : 1936-1943.
    40. G. J. Hausman. Techniques for studying adipocytes. Stain Technology. 1981, 56(3) : 149-154.
    41. G.J.Hausman et al. The Histochemistiry of developing adipocytes in primary stromal-vascular cultures of rat adipose tissue. Histochemistry. 1984, 80:353-358.
    42. G. J. Hausman et al. Adipocyte development in primary Rat cell cultures. Effect of cell density and serum source. J. Anmi. Sci. 1985, 60(6) :1553-1561.
    43. G. J. Hausman et al. Newly Recruited and pre-Existing preadipocytes in culture of porcine stromal-vascular cells:Morphology, Expression of Extracellar Matrix components, and lipid Accretion. J. Anim. Sci. 1998, 76:48-60.
    44. G. J. Hausman, J. E. Novakof ski. ,R. J.Martin, et al. The development of adipocytes in primary stromal-vascular culture of fetal pig adipose tissue.Cell and Tissue Research. 1984,236:459-464.
    45. Gregoire, F. , N. Debroux, N. Hauser, H. Heremans, J. Vandamme, andC. Remacle. Interferon-gamma and interleukin-1 beta inhibit adipoconversion in cultured rodent preadipocytes. J. Cell. Physiol. 1995, 151:300-309.
    46. Green. H and 0. Kehinde. Formation of normally differentiated subcutaneous fat pads by an established preadipocyte cell line.J.Cell Physiol. 1979, 101:169-171.
    47. Green,H., and M. Meuth. An established preadipose cell line and its differentiation in
    
    culture. Cell.1974, 3:127-133.
    48. Hardman, J. G., Regulation of cyclic GMP Metabolism. Iin Dument, T. and Nunez. J. Horrmones and cell regulation, Elserier/North-Holland Biochemical Press. Amsterdam, 1980, 4 : 257-271.
    49. Hausman, G. J., kauffman, R. G. (1986) mitotic activity in fetal and early postmatal porcine adipose tissue. J. Anim. Sci. 63 : 659-673.
    50. Hauner, H., G. Entenmann. M. Wabitsch, D. Gaillard, G. ailhaud, R. Negrel, and E. F. Pfeiffer. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemical defined medium. J. Clin.Invest.1961, 84:1663-1670.
    51. Hausman, G. J., Campion, D. R. and Thomas, G. B. (1983) Adipose tissue cellularity and histochemistry in fetal swine as affected by genetic selection for high or low backfat. J. Lipid Res. 24 : 223-228.
    52. Hausman, G. J. (1985) Cellular and enzyme-histochemical aspects of adipose tissue development in obese (ossabaw) and lean (crossbred) pig fetuses : An ontogeny study. J. Anim. Sci. 60(6) : 1539-1552.
    53. Hausman, G. J., kauffman, R. G., (1986) The histology of developing porcine adipose tissue. J. Anim. Sci. 63 : 642-658.
    54. Hausman.G.J. The influence of insulin, triiodothyronine and insulin-like growth factor-1 on the differentiation of preadipocytes in serum-free cultures of pig stromal-vascular cells.J. Anim Sci. 1989B, 67:3136-3143.
    55. Hasam S. Z. Cell to cell interaction and normal mammary gland function. J. Dairy Sci. 1988,108:1127-1138.
    56. Hausman, G. J.,Responsiveness to adipogenic agents in stromal-vascular cultures derived from lean and preobese pig fetuses:an ontogeny study. J. Anim. Sci. 1992B, 70:106-114.
    57. Hyman. B. T, et al.Prostaglandin Production by 3T3-L1 cells in culture. Biochem. Biophys. Acta. 1982, 713:375-385.
    58. Huwang CS et al. Transcriptional activation of the mouse obese gene by C/EBPα. Proc Nat1 Acad Sci USA, 1996, 93 :873.
    59. H. J. mersmann et al.Development of swine adipose tissue:Morphology and chemical composition. Journal of lipid Research. 1976,16:269-279.
    60. Hood, R. L. And Allen, C. E. (1973) Lipogenic enzyme activity in adipose tissue during the growth of swine with different propensities to fatten. J. Nutr. 103 : 353.
    61. Kalbitz, S., Muller, E, (1988) Selection for the activity of NADPH-generating enzymes in backfat of pigs. Ⅳ. Insulin receptors and glucose metabolism in isolated fat cells. J Anim. Breeding and Genetics 105(4) : 306-316.
    62. Kallen CB, Lazar M. Antidiabetic thiazolidinedione inhibitleptin gene expression in
    
    3T3-L1 adipocyte. Proc Nat1 Acad Sci USA, 1996, 93 : 5793.
    63. Kirkland, J. L., C.H. Hollenberg, and W. S. Gillon.Age, anatomic site, and the replication and differentiation of adipocyte precursors. Am. J. Physiol. 1990, 258(Cell Physiol,27) :C206-C210.
    64. Kim Frojdman et al. Differential distribution of type Ⅳ clooagen chains in the developing rat testis and ovary. Differentiation. 1998, 63:125-130.
    65. Kleinman. H. K., E. B. Mcgoodwin, S. I. Rennard, G. R. Martin. Prearation of collagen substrates for cell attachment:effect of collagen concentration and phosphate buffer. Analytical. Biochemistry.1979,94:308-312.
    66. Kleinman. H. K., R. J. Klebe, and G. R. Martin. Role of collagenous matrices in the adhesion and growth of cells. J. Cell. Biol. 1981, 88:473-485.
    67. Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999, 4(4) : 597.
    68. Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factor is mediated by 38P mitogen-activated protein kinase, J Biol Chem, 1997, 272 : 20490-20494.
    69. Lee-SC., Kim-DW., Lee-HJ, et al. Differentiation of adipose stromal-vascular cells from Korean native steers in culture, (abstract)Korean Journal of ainimal Science. 1997,39:415-422.
    70. Lithauer D, et al. The primary culture of mouse adipocyte precursor cells in defined medium, comp biochem physiol A. 1992, 101 : 59.
    71. Lowenstein, J. M. (1961) The pathway of hydrogen in biosynthesis. Ⅱ Extramitochondrial isocitrate dehydrogenase. J. Biol. Chem. 236 : 1217-1219.
    72. Levine JF, Stockdale FE. Cell-cell interactions promote mammary epithelial cell differentiation.J Cell Biol.1985,100:1415-1419.
    73. Mailander, C. (1984) Selection for activity of NADPH-generating enzymes in backfat of pigs. 4 Isoenzymes of 6-pGDH and their effect on growth performance. Zuchtungskunde 56(4) : 273-279.
    74. Majumder, G. G., Hormonal regulation of protein kinase and adenosine Attention: 3' , 5'-monophosphate-binding protein in developing mammary gland. J. Biol. chem., 1971, 246: 5545.
    75. Mandrup, S. , and M. D. Lane. Regulating adipogenesis. J. Biol. Chem. 1997, 272:5367-5370.
    76. Mcnamara, J. P. , Martin, R. J. (1982) Muscle and adipose Lipoprotein Lipase in fetal and neonatal swine as affected by genetic selection for high and low backfat. J. Anim. Sci. 55 : 1057-1061.
    77. Mersmann, H. J., Pond, W. G. and Yen, J. T. (1982) Plasma glucose, insulin and Lipids during growth of genetically lean and obse swine. Growth. 46 : 189.
    78. Martin, W., H. Hans, H. Eberhard and M. T. Walter. The role of growth hormone/insulin-like
    
    growth factors in adipocyte differentiation. Metabolism. 1995, 44:45-49.
    79. Moustaid, N., and H. S. Sul. Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine. J. Biol. Chem. 1991, 266:18550-18554.
    80. Muller, E., Maliander, C. and Niebel. E. (1984) Selection for the activity of NADPH-generating enzymes in backfat of pigs. Ⅴ. Population analysis of plasma-insulin secretion and some blood parameters (submitted to 2. Tiezuchtung and zuchtsungs biologie).
    81. Muller, E. (1987) Selection for the activity of NADPH-generating enzymes in backfat of pigs. Lisbon, Portugal, European Association for Animal Production 1260-1261.
    82. Miller WHJ, Faust IM, Goldberger AC, et al. Effects of severe longterm food deprivation and refeeding on adipose tissue cells in the rat. AMJ Physiol. 1983, 254 : E74-80.
    83. Navre M, et al. Differential effects of fibroblast growth factor and tumor promoters on the initiation and maintenace of adipocyte differetiation. J cell boil. 1989, 109 :1857.
    84. Negrel R, et al. Prostacyclin as a potent effector of adipose-cell differentiation. Biochem J. 1989, 257 : 399.
    85. Nusse, R. The int genes in mammary tumorigenesie and in normaldevelopment. Trends Genet.1988,4:291-295.
    86. N. C. Steel, et al. (1974) Lipogenesis and cellularity of adipose tissue from genetically lean and obese swine. J. Anim. Sci. 1974, 39 : 12.
    87. Niitsu,Y., Listowsky, I. Mechanisms for the formation of ferritin oligomers. Biochemistry. 1973, 12:4690-4695.
    88. Notides AC. Binding affinity and specificity of the estrogen receptor of rat uterus and anterior pituitary. Endocrinolgy. 1970, 87:987-990.
    89. Ohsumi J, et al. Adipogeneses inhibitory factor. A novel inhibitory regulator of adipose conversion in bone marrow. Febs lett. 1991, 288 : 13.
    90. Ono, M., Y. Aratanir, I. Kitagawa, and Y. Kitagawa. Ascorbic acid phosphate stimulates type Ⅳ collagen synthesis and accelerates adipose conversion of 3T3-L1 cells. Exp. Cell Res. 1990, 187:309-314.
    91. Ormond A et al. Transcriptional regulation of gene wxpression during adipocyte differentiation. Ann Rev Biochem, 1995, 64 : 345.
    92. Paieault, J., and H. Green. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrgenase as differentiation marker(abstract). Proc. Nat1. Acad. Sci. USA. 1979, 76:5138-5142.
    93. Per Bjorntorp et al. Quantitation of different cells in the epididymal fat pad of the rat. J. of lipid Research. 1979, 20:97-106.
    94. Poznanski WJ. Et al. Human fat cell precursors Morphologic and metabolic
    
    differentiation in culture, lab invest, 1973, 29 :570.
    95. Prins, J. B., and S. O' Rahilly. Regulation of adipose cell number in roan. Clin. Sci. 1997, 92:3-11.
    96. Prins JB, Walker NI. Apoptosis of human adipocytes in vitro. Biochem Biophys Res Commun, 1994, 201 : 500-507.
    97. Prins JB, Niesler JB. Tumor necrosis factor-alpha induces apoplosis of human adipose cells. Diabetes, 1997, 46 : 1939-1944.
    98. Prins JB, Walker NI. Human adipocytes apoptosis occurs in malignancy. Biochem Biophys Res Commun, 1994, 205 : 625-630.
    99. Prins JB, Stephen 0 Rahilly. Regulation of adipose cell number in man. Clin Sci, 1997, 92 : 3-11.
    100. Prior, R. L. and Smith, S. B. (1982) Hormonal effects on partitioning of mutrients for tissue growth : Role of insulin. Fed. Proc, 40 : 2545.
    101. Prior, R. L and Jacobson, J. J. (1979) Effect of fasting and refeeding and intravenous glucose metabolism on in vitro lipogenesis in bovine adipose tissue. J. Nutr. 109 : 1279.
    102. Qian H, Cary JH. Leptin Regulation of PPARγ,TNF-α and UCP-2 expression in adipose tissues. Biochem Biophys Res Commun, 1998, 246 : 660-667.
    103. Qian H, Azain MJ. Brain administration of leptin causes deletion of adipocytes by apoptosis. Endocrinology, 1998, 139 : 791-794.
    104. R. D. Negrel, Gaillard. and G. Ailhaud. Prostacyclin as a potent effector of adipose-cell differentiation. Biochem. J. 1989,257:399-405.
    105. R. L.Richardson et al. Adipocyte development in primary Rat cell culture:A scanning Electron Microscopy study. The Anatomical record. 1986, 216:416-422.
    106. Roncari DA, et al. Purefication and partial characterzation of a mitogenic protein released from preadipocytes of massively obese subjects. Biochem Cell Biol. 1990, 68 : 764.
    107. Richardsong, R. L., G. J. Havsman and H. R. Gaskins. Effect of transforming growth factor-3 on insulin-like growth factor-1 and dexamethasone-induced proliferation and differentiation in primary cultures of pig preadipocytes. Acta. Anat. 1992, 145:321-326.
    108. Ramsay. T. G., S. V. Rao., C. K. Wolverton. In vitro systems for the analysis of the development of adipose tissue in domestic animals. J, Nutr. 1992, 122:806-817.
    109. Sutherland and Robison, Cyclic AMP, Academic Press, new York, 1971.
    110. Sato. K, N. Nakanishi and M. Mitsumoto. Culture condition supporting adipocyte conversion of stromal-vascllar cells from bovine intramuscullar adipocyte tissues. Journal of Veterinary Medical Science. 1996, 58:1073-1078.
    111. Schmidt M, et al. Adipose conversion of 3T3-L1 cells in a serum free culture system depends on epidermal growth factor, insulin-like growth factor corticosterone and
    
    cyclic AMP. J Biol Chem. 1990, 165 : 15489.
    112. Smas, C. M., L. Chen, and H. S. Sul. Structural characterization and alternate splicing of the gene encoding the preadipocyte EGF-like protein pref-1. Biochemistry. 1994, 33:9257-9265.
    113. Smas, C. M., L. Chen, and H. S. Sul. Cleavage of membraneassociated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol. Cell. Biol. 1997, 17:977-988.
    114. Serrero G, et al. Prostaglandin F2 alpha inhibits the differentiation of adipocyte precursors in primary culture. Biochem Biophys Res Commun. 1992, 183 : 438.
    115. Serrero G, et al. Decrease in transforming growth factor beta 1 binding during differentiation of rat adipocyte precursors in primary culture. Cell growth didder. 1991, 2 : 173.
    116. Serrero G, et al. Physiological role of epidermal growth factor on adipose tissue development in vivo, proc natl acad sci USA. 1991, 88 : 3912.
    117. Shinohara O, et al. Enhancrment of differentiation of rat adipocyte precursor cells by pertussis toxin. Biochem Med Metab Biol. 1991, 46 : 85.
    118. Shinohara O, et al. Endothelin-1 suppression of rat adipocyte precursor cell differeniation in serum-free culture. 1992, 130 : 2031.
    119. Shai D, Lazar MA. PPARγ, C/EBPα and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem, 1997, 272 : 21473.
    120. Sjostrom, L., Bjorntorp, P. and Vrana , J. (1971) Microscopic fat cell size measurements on frozen-cut adipose tissue in comparison with automatic determination of osmium-fixed fat cell. J. Lopid Res. 12 : 521-530.
    121. Smith V. Morphological studies of human subcutaneous adipose tissue in vitro. Anat Rec. 1971, 169 : 97.
    122. Strutz, ch. And Rogdakis, E. (1979) Phenotypic and genetic parameters of NADPH-generating enaymes in porcine adipose tissue. Zeitschrift fur Tierzuchtung and zuchtungsbiologie 96. 170-185.
    123. Sturm, G., Rogdakis, E. et al. (1976) Lipogenec enzyme activity in relation to fat accumulation. Nutr. Metabol. 20 : 65.
    124. Spiegelman, B. M., and S. R. Farmer. Decreases in tubulin and actin gene expression prior to morphological differetiation of 3T3-adipocytes. Cell. 1982, 29:53-60.
    125. Sugihara, H., N. Yonemitsu, S. Miyabara, and K. Yun. Primary cultures of unilocular fat cells:characteristics of growth in vitro and changes in differentiation properties(abstact). Differetiation. 1986, 31:42-49.
    126. Suryawan, A. L. V. Swanson, and C. Y. Hu>Lnsulin and hydrocortisone, but not. Triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J. Anim. Sci. 1997,75:105-111.
    127. Taketani Y, Oka T. Tumor promoter 12-0-tetradecanoylphorbol 13-acetate, like epidermal growth factor, stimulates cell proliferation and inhibits differentiation of mouse
    
    mammary epithelial cell in culture. Proc Natl.Acad Sci USA. 1983, 80:1646-1649.
    128. Taylor-Papadimitriou,J. ,Berdichevsky, F. , Souza, B. D., et al. Human models of breast cancer, in: Cancer surveys, vol. 18. Lemoine. N. R. , Wright, B. A., eds, The molecular pathology of cancer. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press, 1993.
    129. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980, 26:1049.
    130. Torti FM, et al. Modulation of adipocyte differentiation by tumor necroses factor and transforming growth factor beta. J cell Biol. 1989, 108 : 1105.
    131. Timchenko, N. A., M. Wilde, M. Nakanishi, J. R. smit, andG. J. Darlington. CCAAT/enhancer-bind ing protein alpha (C/EBP alpha) inhibits cell proliferation through the p21(WAF-1/CIP-1/SDI-1) protein(abstract). Genes Dev. 1996, 10:804-815.
    132. Torti, F. M., S. V. Torti, J. W. Larrick, and G. M. Ringold. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J. Cell Biol. 1989, 108:1105-1113.
    133. Toscani A, et al. Sodium butyrate in combination with insulin or dexaamethasone can terminally differentiate actively proliterating Swiss 3T3 cells into adipocytes. J Biol Chem. 1990, 265 : 5722.
    134. Van. R.L.R., C.E.Bayliss., and D. A. K. Roncari. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J. Clin.Invest.1976,58:699-704.
    135. Van RLR, et al. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin invest. 1976, 58 : 699.
    136. Van RLR, et al. Complete differentiation of adipocyte precursors. Cell tiss Res. 1978, 195 : 317.
    137. Van RLR, et al. Complete differentiation in vivo of implanted cultured adipocyte precursors from adult rats. Cell tiss Res. 1982, 225 :557.
    138. Van RLR, Roncari DAK complete differentiation of adipocyte precursors. A culture system for studying the cellular nature of adipose tissue. Cell Tissue Res. 1978, 195:317-329.
    139. Vassaux G, et al. Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2 : Physioligical implications. Endocrinology. 1992, 131 : 2393.
    140. Valve R, Sivenius K, Miettinen R, et al. Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. J Clin Endocrinol Metab 1999, 84(10) : 3708.
    141. Vassaux, G., R.Negrel, G. Ailhaud, and D. Gaillard. Proliferation and differentiation of rat adipose precursor cells in chemically defined medium:differential action of anti-adipogenic agents.J.Cell. Physiol. 1994,161:249-256.
    142. Varzaneh F. E.,G.Shillabeer,K. L. Wong, and D.C.Lau. Extracellular matrix components secreted by microvascular endothelial cells stimulate preadipocyte differentiation
    
    in vitro. Metabolism. 1994,43:906-912.
    143. Vorherr H. Human lactation and breast feeding. In:Larson BL(ed) Lactation:A Comprehensive Treatise. Academic Press, New York. 1978, Vol 4:182-186.
    144. Wabitsch, M.,E. Heinze, H. Hauner, R.M. Shymko, W.M. Teller, P. Demeytse and M.M. Ilondo. Oiologicao effects of human growth hormone in rat adipocyte precursor cells and newly differentiation adipocytes in primary culture. Metabolism. 1996, 45:34-43.
    145. Wabitsch, M.,H. Hauner, E. Heinze, and W.M. Teller. The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism. 1995,44:45-49.
    146. Walker NI, Bennett RE, Kerr JFR. Cell death by apoplosis during involution of the lactating breast in mice and rals. Amm J Anat, 1989,185: 19-32.
    147. Wasserman E, et al. Histological review and present status of free fat graft autotrensplantation in plastic and reconstructive surgery Plast Reconstr. 1989, 368:83.
    148. Walid Kuri-Harcuch et al. Extracellular matrix production by mouse 3T3-F_(442A) cells during adipose differentiation in culture. Differentiation. 1984,28:173-178.
    149. Weiner, F.R.,A. shan, P. J. Smith, C.S. Rubin, and M.A. Zern. Regulation of collagen gene expression in 3T3-L_1 cells. Effects of adipocyte differentiation and tumor necrosis factor alpha. Biochemistry. 1989,28:4094-4099.
    150. Xing H et al. TNFα-mediated-inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARγ without effects on pref-1 expression. Endocrinology, 1997, 138:2776.
    151. Xu, B.,and Bjorntorp, P. Etlects of dexamethasone on multiplication and differentiation of rat adipose precursor cells. Exp cell Res. 1990,189:247-252.
    152. Zhang E et al. Down-regulation of the expression of obese gene by an antidiabetic thiazolidinedione in Zucker diabetic fatty rat and db/db mouse. J Biol Chem, 1996, 271:9455.
    153. Zhou YT, Wang ZW, Higa M, et al. Reversing adipocyte differentiation; implications for treatment of obesity. Proc Natl Acad Sci USA 1999, 96(5): 2391.
    154.R.S.埃尔克莱斯著,王淑霞译.人类疾病生物化学.1988,人民卫生出版社.
    155.张世荣,INS和胰岛素介体对细胞的cAMP和脂解作用的调节.生物化学与生物物理学报.1987,19(2):79-85.
    156.张曼夫等.注射生长激素对猪脂肪组织中脂肪合成酶的影响.中国畜牧杂志,1990,26(3):6-9.
    157.蔡东升,罗敏.脂肪细胞分化与肥胖、胰岛素抵抗.国外医学(内分泌分册) 1999,19(3):67
    158.李振华,黄汝多.脂肪细胞分化作用及其分子控制机理.激光生物学报.2000,9(3):236-240.
    
    
    159.欧阳五庆.山羊乳腺上皮细胞培养体系的建立及cAMP对该细胞的影响.西北农业大学博士论文.1999.6.
    160.鲁安太.山羊奶中环腺苷酸含量与产奶性能的关系.西北农业大学学报.1988,16(3):41-46.
    161.鲁安太.外源性环核苷酸对奶山羊的增乳试验.第三届全国生化会议论文汇编.1988,201-209.
    162.杨在清.激素介导物-cAMP和cGMP对肥育猪生长的影响.西北农业大学硕士论文.1990,6.
    163.杨在清.生长激素促进畜禽生长的生理生化机制研究进展.畜牧兽医杂志.1995,(1):33-36.
    164.梁威.外源性环核苷酸对黑白花奶牛泌乳性能影响的研究.西北农业大学硕士论文.1991,6.
    165.郁枫.外源性环核苷酸对细毛羊产毛的性能的影响.西北农业大学硕士论文.1992,6.
    166.金心梅.脂肪细胞的组织培养.细胞生物学杂志.1999,5(2):28-29.
    167.陈一丽,刘永春.脂肪细胞细胞化学染色研究.河北医学.1996,2(1):87-89.
    168.司徒镇强,吴军正.细胞培养.西安世界地图出版社.1999,2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700