缺氧过程中大鼠脑皮质线粒体细胞色素氧化酶活性及其亚基表达协调性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺氧可致中枢神经系统功能障碍,而能量生成不足是其主要原因。线
    粒体是能量产生的主要场所,缺氧时脑线粒体氧化磷酸化功能改变的确切
    机制尚不清楚。线粒体结构和功能的完整相当程度上依赖于呼吸链上酶功
    能的正常发挥。由mtDNA和nDNA编码的13个蛋白亚基组成的细胞色
    素氧化酶(COX)是呼吸链上的关键酶,其亚基的正确匹配对酶功能的
    正常发挥极其重要,也是线粒体能量合成的基础。我们通过观察缺氧暴露
    不同时间大鼠脑组织COX活性、COX亚基Ⅰ和Ⅳ的基因表达状况,藉以
    了解缺氧过程中COX活性与其基因表达的关系、缺氧对mtDNA和nDNA
    编码COX亚基表达协调性的变化,以阐明缺氧时COX在线粒体氧化呼
    吸功能改变中的作用。11-14周龄的成熟Wistar大鼠50只随机分为平原
    组、缺氧2天组、缺氧5天组、缺氧15天组和缺氧30天组。缺氧组于模
    拟5000米高原低压舱(大气压405.35mmHg)内连续缺氧24小时/天,
    于舱内取材,平原组动物于舱外喂养及取材。采用本室建立的方法提取脑
    皮质组织线粒体;极谱法测量COX活性;Wesrern Blot分析线粒体内COX
    Ⅰ和COXⅣ蛋白量;RT-PCR检测COXⅠ和COXⅣmRNA稳态量(state
    level)。
    主要结果:
    1、大鼠经缺氧2天、5天、15天时,脑组织COX活性降低,与平原对
    照组相比,差异非常显著,缺氧15天时达到最低,只有平原对照组的
    58%;缺氧30天时,COX活性与缺氧15天组相比活性升高,但仍低
    于平原对照组,只有平原对照组的79%。
    
    
    二、缺氧 2天和 5天时,COX mRNA稳态量与平原对照组相比显著增加。
     缺氧 15天和 30天时 mRNA稳态量恢复到平原对照水平;随缺氧时间
     的延长,COXwmRNA稳态量增加,在缺氧15天时达到高峰,缺氧30
     天时下降并低于平原对照水平;COXIV/COX mRNA量比值在缺氧 15
     天时显著升高,其它缺氧组与平原组及其组间差异无显著意义;12sr
     RNA在缺氧2天时增加,与平原对照组差异有显著意义,其它各组与
     平原对照组差异无显著意义。
    3、缺氧过程中,线粒体内 COX和 COXIV蛋白含量没有显著变化。COX
     IVCOX蛋白比值在各组间差异无显著意义。
    结 论
    1、缺氧时大鼠脑皮质线粒体COX活性降低,并且与缺氧存在时间依赖
     关系,在缺氧 15天以内呈进行性降低,缺氧 30天时 COX活性有部分
     恢复,表明缺氧过程中COX活性改变是线粒体氧化呼吸和能量生成改
     变的原因之一。
    二、缺氧并不引起大鼠脑皮质线粒体内 COX、IV亚基蛋白含量的改变,
     提示COX活性的变化主要是通过定性调节的。
    3、缺氧早期门天、5天L COX、IV mRNA稳态量呈相协调性升高,
     而缺氧 15天时发生失调,但缺氧过程中蛋白水平上 COX!、IV及其
     比值的相对恒定,则提示COX亚基表达及其协调性的调节存在转录后
     或蛋白水平上的调整。
To understand the mechanism of disorder in brain energy metabolism and
     explore the contributing role of COX in disorder in mitochondrial respiratory
     function during hypoxic exposure. We observed the brain cortex mitochondrial
     COX activity, COX subunits gene expression ecoded by mtDNA and nDNA
     during rat exposed to hypoxia.
    
     Adult male Wistar rats were exposed to simulated high altitude at 5000m
     for 0(control), 2(2d), 5(5d), 15(1 Sd) and 30 days(30d) in hypobaric chamber.
     Animals were sacrificed by decaptation under normoxic(control) and
     hypoxic(other groups)conditions respectively Rats brain cortex was removed
     and mitochondria were isolated by centrifugation. COX activity was measured
     by the Clark oxygen electrode. The protein content of COX subunit I and IV in
     mitochondria were detected by Western blot analysis and mRNA state level of
     the two COX subunits( I and IV) in tissues by RT.-PCR.
    
     The results showed that: 1) Within the 15 days hypoxic exposure, COX
     activity decreased significantly than control, expecially in I Sd group animals;
     but restored to 78% of the control level in 30d group animals; 2) During
     hypoxic exposure , the protein content of COX subunit I and IV in
     mitochondria from brain cortex did not change ; the ratio of subunit IV/ I also
     had no significant differences among each groups; 3)The subunit I mRNA state
     level increased significantly in 2d and Sd than in control, but decreased to
     control level in 15d and 30d group ; Subunit IV mRNA state level of animals
     in 2d, Sd and 1 Sd group were dramatically higher than that in control, but
    
    
    
    
    
    lower in 30d group; l2sr RNA state level was higher in 2d group than in
     control, Sd, 15.d and 30d, but no sinificant differences among control, Sd, 15d
     and 30d group. Except higher in 1 Sd group than in control, the ratio of mRNA
     state level of COX subunit IV to I had no significant differences between other
     groups.
    
     Conclusion: 1) COX activity in rat brain cortex decreased during rat
     exposed to hypoxia .Within 15 days hypoxic exposure, COX activity decreased
     progressly and then partly recovered when rat further exposure. It showed that
     the changes of COX activity in rat brain cortex were time-dependent with
     hypoxic exposure. This results indicated that the changes contribute to the
     disorder of mitochondrial respiratory function and energy pruduction during
     hypoxia; 2) The content of COX subunit I and IV protein in mitochondria from
     rat brain cortex had no differences among each groups of hypoxic exposed
     animals , which suggested that qualitative control in regulation of COX
     activity might be the major model during hypoxic exposure; 3) In early of
     hypoxic exposure (2 days and Sdays), COX subunit I and IV mRNA state level
     increased coordinately, but disproportionly at 15 days hypoxic exposure. While
     the content of COX subunit I and IV protein and their ratio in mitochondria
     from rat brain cortex during hypoxic exposure had no change. This concluded
     that the regulation of COX subunits gene expression and the their coordination
     might be adjusted at post-transcription level or protein level.
引文
1、Grivell LA. Nucleo-mitochondrial interactions in mitochondrial gene expression. Criti Rev Biochem Mole Biol, 1995; 30(2): 121-164
    2、Nijtmans LGT, Spelbrink JN, Van Galen MJM. Expression and fate of the nuclearly encoded subunits of cytochrome c oxidase in cultured human cells depleted of mitochondrial gene products. Biochimica Biophysica Acta, 1995; 1265:117-126
    3、Lenka N, Vijayasarathy C, Mullick J, et al. Structural organization and transcription of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol, 1998; 61: 309-344
    4、Gennis R, Ferguson MS. Structure of cytochrome c oxidase, energy generator of aerobic life [comment] Science, 1995; 269(5227): 1063-1064
    5、高文祥,柳君泽等.急、慢性缺氧对大鼠脑线粒体能量代谢.中国病理生理杂志.2000;16(10):879-882
    6、李露丝,郑彩梅.大鼠脑线粒体呼吸功能测定的方法探讨.第三军医大学学报.1994;16(6):451-453
    7、Rafael J. Cytochrome c oxidase. Methods of Enzymatic Analysis,vol. Ⅲ:266-273
    8、Comi GP, Bordoni A, Salani S, et al. Cytochrome c oxidase subunit Ⅰ microdeletion in a patient with motor neuron disease.Anna Neurol, 1998; 43(1): 110-116
    9、Rubio GME, Smeitink JAM, Ruitenbeek W, et al. Spinal muscle atrophylike picture ,cardiomyopatjhy, and cytochrome c oxidase deficiency. Neurol, 1999; 52(2): 383-386
    10、Garstka HL, Facke M, Escribano JR, et al. Stoichiometry of mitochondrial transcripts and regulation of geng expression by mitochondrial transcription factorA. Biochim Biophy Res Commu, 1994;
    
    200(1) :619-626
    11、 Wiesner. RJ, Ruegg JC, Morano I. Counting target molecules by exponential polymerase chain reaction :copy number of mitochondrial DNA in rat tissues.Biochem Biophy Res Commu, 1992;183(2) :553-559
    12、 Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem, 1996;65: 563-607
    13、 柳君泽等.缺氧大鼠脑线粒体能量代谢特性.第三军医大学学 报,1998;10(6) :540
    14、 Chavez JC, Pichiule P, Boero J. Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neurosci Lett, 1995; 193:169-172
    15、 Wong RMTT. Cytochrome c oxidase: an endogenous metabolic marker for neuronal activity. Trends Pharmacol Sci, 1989;12:94-101
    16、 Zhang C, Wong RMT. Synthesis and degradation of cytochrome c oxidase subunit mRNAs in neurons: differential biogenomic regulation by neuronal activity.J Neurosci Res, 2000;60(3) : 338-344
    17、 Mulvey JM, RenshawGM. Neuronal oxidative hypometabolism in the brainstem of the epaulette shark (Hemiscyllium ocellatum) in response to hypoxic pre-conditioning. Neurosci Lett, 2000; 290(1) : 1-4
    18、 Hochachka PW, Buck LT, Doll CJ.et al. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA, 1996 ; 93(18) : 9493-9498
    19、 Lutz PL. Mechanisms for anoxic survival in the vertebrate brain.. Annu Rev Physiol, 1992;54: 601-618
    20、 Burke PV, Poyton RO. Structure/function of oxygen-regulated isoforms in cytochrome c oxidase.J Exp Biol, 1998;201:1163-1175
    21、 Burke PV, Rait DC, Allen LA, et al. Effects of oxygen concentration on
    
    the expression of cytochrome c oxidase genes in yeast. J Biol Chem, 1997; 272(23) :H705-14712
    22、 Napiwotzki J, Kadenbach B. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem, 1998; 379(3) : 335-339
    23、 黄巧冰,武一曼.线粒体介导细胞凋亡的机制.医学综述,2001;7(2) :67-69
    24、 Nakatsuka H, Ohta S, Tanaka K .et al. Hiwtochemical cytochrome c oxidase activity and caspase-3 in gerbil hippcampal CA1 neurons after transient forebrain ischemia. Neurosci Lett, 2000; 85(2) : 127-130
    25、 Chandle NS, Budinger GRS, Schumacker PT. Molecular oxygen modulate cytochrome c oxidase function.J Biol Chem, 1996;271(31) : 18672-18677
    26、 Connor MK, Hood D. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles.J Appl Physiol,1998; 84(2) :593-598
    27、 Ojaaimj J, Masters CL, Mclean C, et al. Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimers's disease.Annal Neurol,1999;46(4) :656-660
    28、 Vijayasarathy C, Damle S, Lenka N.et al. Tissue variant effects of heme inhibitors on the mouse cytochrome c oxidase gene expression and catalytic activity of the enzyme complex. Eur J Biochem,1999;266(1) : 191-200
    29、 Vijayasarathy C, Biunno I, Lenka N.et al. Variations in the subunit content and catalytic activity of the cytochrome c oxidase complex from different tissues and different cardiac compartments. Biochim Biophys Acta,1998;1371(1) :71-82
    30、 Nijtmans L, Taanman JW, Muijsers AO. Assembly of cytochrome c oxidase in cultured human cells. Eur J Biochem,1998; 254:389-394
    
    
    31、 Das TK, Pecoraro C, Tomson FL, et al. The post-transcriptional modification in cytochrome c oxidase is required to establish a functioal environment of the catalytic site. Biochem, 1998;37(41) : 14471-14476
    32、 Bae MGF, Kwon YW, Kim MS. Identification of genes differentially expressed by hypoxia in hepatocellular cacinoma cells. Biochem Biophys Res Commu, 1998; 243(1) : 158-162
    33、 Sauleda J, Garcia PF, Wiesner RJ.et al. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med,1998; 157:1413-1417
    34、 Cai Q, Storey KB. Anoxia-induced gene expression in turtle heart. Upregulation of mitochondrial genes for NADH-ubiquinqne oxidoreductase subunit 5 and cytochrome c oxidase subunit 1. Eur J Biochem, 1996;241(1) : 83-92
    35、 Grivell LA.Nucleo-mitochondrial interactions in mitochondrial gene expression.Criti Rev Biochem Mol BIOL,1995;30(2) : 121-164
    36、 Lefai EL, Vincent A, Tanguy OB. Quantitative decrease of human cytochrome c oxidase during development : evidences for a post-transcriptional rgulation.Biochim Biophy Acta,1997;1318:191-201
    37、 Luis AM, Izquierdo JM, Ostronoff LK. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem, 1993; 268(3) : 1868-1875
    38、 Baily JR, Driedzic WR. Decreased total ventricular and mitochondrial protein synthesis during extended anoxia in turtle heart.Am J Physiol,1996;271: R1660-R1667
    39、 Douglas DN, Giband M, Altosaar I. Anoxia induces changes in
    
    translatable mRNA populations in turtle organs: a possible adaptive strategy for anaerobiosis. J Comp Physiol B,1994; 164(5) : 405-414
    40、 蔡明春。急慢性缺氧对大鼠脑线粒体结构与蛋白翻译功能的影响。 第三军医大学硕士研究生论文 1999
    41、 Nakai T, Mera Y, Yasuhara T. Devalent metal ion-dependent mitochondrial degration of unasembled subunits 2 and 3 of cytochrome c oxidase. J Biochem, 1994; 116:752-758
    42、 Poyau A, Buchet K, Bouzidi MF.et al. Missense mutations in SUF1 associated with deficient cytochrome c oxidase assembly in Leigh syndrome patients. Hum Genet,2000;106(2) : 194-205
    43、 Wiesner RJ, Aschenbrenner V, Ruegg JC.et al. Coordination of nuclear and mitochondrial gene expression during the development of cardiac hypertrophy in rats. Am J Physiol, 1994;267(1 Pt 1) : C229-235
    44、 Fanburg BL, Massaro DJ, Gerutti-PA. Regulation of gene expression by O2 tension. Am J Physiol, 1992 ; 262(2 Pt 1) : L235-241
    45、 Grossman LI, Seelan RS, Jaradat SA. Transcriptional regulation of mammalian cytochrome c oxidase genes. Electrophoresis, 1998 ; 19(8-9) : 1254-1259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700