急性缺氧对氯霉素处理大鼠脑线粒体氧化呼吸功能及细胞色素氧化酶亚基表达的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺氧是常见而又重要的病理生理过程,由其导致的中枢神经系统功能障碍与线粒体能量生成不足密切相关。脑组织对缺氧最敏感,急性缺氧时脑线粒体氧化磷酸化功能改变及细胞核与线粒体两基因组之间相互调控的机制还不清楚。线粒体结构和功能的完整相当程度上依赖于呼吸链上酶功能的正常发挥。由线粒体DNA(mtDNA)和核DNA(nDNA) 编码的13个蛋白亚基组成的细胞色素氧化酶(COX)是呼吸链上的关键酶,其亚基的正确匹配对酶功能的正常发挥极其重要,也是线粒体能量合成的基础。氯霉素是线粒体蛋白翻译特异抑制剂,利用氯霉素处理大鼠建立实验模型,观察急性缺氧时脑线粒体氧化呼吸功能、COX活性及其亚基表达及相关调控因子mtTFA和NRF-1的表达,探讨急性缺氧时脑能量代谢障碍的机制及线粒体氧化呼吸功能改变在其中的作用,进而探讨线粒体自身遗传系统在维持其氧化呼吸功能中的作用及其与细胞核基因组之间存在的协调调控关系。Wistar系大鼠随机分为四组:平原对照组、药物处理组、急性缺氧组和药物处理+急性缺氧组。药物处理为0.5%氯霉素,腹腔注射, 50mg/kg体重,1次/12小时,连续注射7天后低压舱内取材;动物缺氧条件为:低压舱模拟海拔5000米高原,大气压为405.35mmHg,连续减压 24h。平原对照组与药物处理组于舱外同时喂养,并于实验前7天开始腹腔注射等量的生理盐水。采用本室建立的方法提取脑皮质线粒体,Clark电极法测定线粒体呼吸活性,极谱法测量COX活性,Western Blot分析COXⅠ、COXⅣ和NRF-1蛋白表达,RT-PCR检测COXⅠ、COXⅣ、12s rRNA、mtTFA和NRF-1 mRNA稳态量(state level)。
    
    主要结果
    1、急性缺氧暴露24小时,大鼠脑线粒体ST3和RCR显著降低,ST4显著升高,与正常对照组相比,差异非常显著;而氯霉素处理大鼠经急性缺氧暴露后,脑线粒体ST3较正常对照组显著降低,与单纯缺氧组相比无显著差异, ST4比单纯缺氧组显著降低,而且也显著低于正常对照组, RCR比单纯缺氧组显著升高,但仍低于正常组。
    2、急性缺氧暴露24小时,大鼠脑线粒体COX活性显著降低,而氯霉素处理大鼠急性缺氧后COX活性显著回升,由65.7%回升到86.5%,但仍低于正常组。
    
    
    3、急性缺氧暴露24小时,大鼠脑线粒体COXⅠ蛋白表达比正常组显著降低,致使COXⅣ/COXⅠ比值显著升高,COXⅣ和脑组织NRF-1的表达则无改变;急性缺氧与氯霉素处理两因素对COXⅠ蛋白表达、COXⅣ/COXⅠ比值有显著交互影响,与正常组比无差异,脑组织NRF-1蛋白的表达未受影响。
    4、急性缺氧暴露24小时,大鼠脑皮质COXⅣ、mtTFA、NRF-1 mRNA均显著降低,COXⅠ、COXⅣ/COXⅠ mRNA比值及12s rRNA未受影响;而氯霉素处理大鼠经急性缺氧暴露后,COXⅠ、COXⅣ、COXⅣ/COXⅠ比值及mtTFA mRNA较单纯缺氧时均显著升高,与正常组比较无显著差异, NRF-1 mRMA与单纯缺氧组比较无显著差异,但显著低于正常组。
    
    结 论
    1. 急性缺氧暴露可造成大鼠脑线粒体氧化呼吸功能障碍,但经线粒体蛋白合成特异抑制剂氯霉素处理的大鼠再经急性缺氧暴露时可以改善单纯缺氧造成的线粒体功能障碍,提高氧化磷酸化效率。而COX活性的变化与线粒体氧化呼吸改变的一致,提示COX在缺氧和氯霉素处理的大鼠脑线粒体呼吸链氧化磷酸化功能改变中的重要作用。
    2. 急性缺氧以及氯霉素处理后大鼠脑线粒体COXⅠ蛋白量的改变与COX活性相一致,提示COXⅠ在全酶功能发挥中起着主导作用,同时表明缺氧对COX活性的影响至少在一定程度上受到酶蛋白亚基表达的定量调节。
    3. 通过对COXⅠ、COX Ⅳ和mtTFA、NRF-1的mRNA和蛋白水平表达的观察发现,缺氧以及氯霉素处理对COX亚基表达的调控表现在细胞核与线粒体两个基因组的转录与翻译两个水平上,而转录后或翻译水平上存在微细调整。
It is known that brain is the most sensitive organ to hypoxia and mitochondrial dyfunction resulted from acute hypoxia is a key factor for the disorder in brain energy metabolism. Objective To understand the changing aspects of mitochondrial oxidative phosphorylation function and cytochrome c oxidase activity during acute hypoxia exposure and their mechanism regulated by gene expression encoded by mtDNA and nDNA. An animal model set by chloramphenicol(CAP) administration ,CAP is a specific inhibitor for mitochondrial protein synthesis,was used. Methods Adult male Wistar rats were divided into four groups.They were hypoxia exposure group(H group), medication group(M group), medication plus hypoxia exposure group(MH group) and control group(C group). Medication was administrated by giving CAP(50mg/kg, intraperitoneal injection) every 12 hours for 7 days. Hypoxia exposure was administrasted by exposing rats to a hypobaric chamber simulated 5000m high altitude for 24 hours. C group received only equal amount of normal saline by intraperitoneal injection every 12 hours for 7 days. All animals were sacrificed by decapitation under normoxic(C and M) and hypoxic(H and MH)conditions respectively at 12 hours after the last injection. The rat cerebral cortex was removed and the mitochondria was isolated by centrifugation programme. Mitochondrial respiratory function and COX activity were measured by Clark oxygen electrode. The protein content of COX subunit I and IV in mitochondria and NRF-1 in cerebral tissues was detected by Western blot analysis. And mRNA state levels of COXⅠ,COXⅣ,12s rRNA,mtTFA and NRF-1 in tissues were determined by RT-PCR. Results 1) Compared with C group, H group showed elevated state 4 respiration(ST4) and decreased state 3 respiration(ST3) and respiratory control rate(RCR) in mitochondrial respiration during acute hypoxic exposure significantly; ST3 in MH group was significantly lower than that in C group but not decrease than in H group,while ST4 in MH group is lower significantly than that in H group as well as C group. RCR in MH group was higher than that in H group but lower than that in C group; 2) COX
    
    activity in H group decreased significantly than in C group. In MH group, COX activity increased and was higher than that in H group, but which was still lower than in C group, restored from 65.7% to 86.5% of the control(C group) level; 3) A decreased protein content of COX subunit I and an elevated ratio of subunit IV/ I were observed in H group than in C group. There was no significant difference of the protein content of COXI and the ratio of subunit IV/ I between C and MH groups. But a mutual effect by two factors(medication and acute hypoxia) was observed in MH group.The protein content of COXIV and NRF-1 remained similar among all groups; 4) Compared with C group, H group showed significant decreased COXIV, mtTFA and NRF-1 mRNA state level, while 12s rRNA, COXI and the ratio of subunit IV/ I mRNA had no significant change among groups; In MH group, mtTFA,COXI , COXIV mRNA and the ratio of subunit IV/ I mRNA showed significant higher than those in H group but not than in C group. The state level of NRF-1 mRNA decreased significantly in MH group than in C group, but not than in H group;12s rRNA state level had no significant changes among all groups.
    Conclusion:1) Acute hypoxic exposure could lead to mitochondrial respiratory dyfunction, bur CAP admistration might be beneficial to the recovering of rat respiratory function and oxidative phosphorylation efficiency during acute hypoxic exposure. The change of COX activity is consistent with that of mitochondrial respiratory function during acute hypoxic exposure and CAP-admistration, which indicated that COX played an important role in oxidative phosphorylation function of motochondria from cerebral cortex of hypoxic and CAP-administrated rats; 2) The alteration in content of COX subunit I protein in mitochondria from cerebral cortex of rats exposed to acute hypoxia and CAP-administrated, is consistent with that of COX activity
引文
1. 柳君泽.线粒体与能量转换.医学分子细胞生物学.章静波,杨恬主编.中国协和医科大学出版社,北京,第一版.2002;77-100.
    2. Bruno A, Martinuzzi Y, et al. A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am. J. Hum. Genet. 1999;65: 611-620.
    3. Zhang JL, Edward R. et L.Down-regulation of mitochondrial cytochrome c oxidase in senescent porcine pulmonary artery endothelial cells. Mechanisms of Ageing and Development. 2002;123(10): 1363-1374.
    4. Koyama H, Kurokawa T, Nonami T, et al.Increases in the mitochondrial DNA replication and transcription in the remnant liver of rats. Biochem. Biophys. Res. Commun. 1998;243: 858-861.
    5. 高文祥,柳君泽,蔡明春.缺氧大鼠脑线粒体能量代谢的研究.中国病理生理杂志,2000;16(10):1144. 
    6. Gluseppina M,Gluliano N,Claudia R,et al.Investigation on the turnover of adrenocortical mitochondria .AM.J.ANAT.1978;153:67-80.
    7. John B,Clark,William J,Nicklas,et al.The metabolism of rat brain mitochondria.J Biochem.1970;245(18):4724-4731.
    8. 高文祥,柳君泽等.急性缺氧对大鼠脑线粒体能量代谢的影响.高原医学杂志,1999;9(3):13-17.
    9. 李露斯,郑彩梅. 大鼠脑线粒体呼吸功能测定的方法探讨. 第三军医大学学报,1994,16(6):451-453.
    10. Chavez JC ,Pichiule P,et,al.Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia.Neuroscience Letters.1995;193:169-172.
    11. Rafael J. Cytochrome c oxidase. Methods of Enzymatic Analysis,vol.Ⅲ:266-273
    12. Xiaozhong Yu, Hisayo Kubota and et al.Involvement of Bcl-2 Family Genes and Fas Signaling System in Primary and Secondary Male Germ Cell Apoptosis Induced by 2-Bromopropane in Rat. Toxicology and Applied Pharmacology. 2001 ;174: 35-48.
    13. 谭小玲,柳君泽等.缺氧对大鼠大脑皮质细胞色素氧化酶亚基Ⅰ、Ⅳ表达协同性的影响.生理学报.2002;54(6):519-524.
    Rubio GME, Smeitink JAM, Ruitenbeek W, et al. Spinal muscle atrophy-like picture,
    
    14. cardiomyopatjhy, and cytochrome c oxidase deficiency. Neurol, 1999;52(2):383-386.
    15. Garstka HL, Facke M, Escribano JR, et al. Stoichiometry of mitochondrial transcripts and regulation of geng expression by mitochondrial transcription factorA. Biochim Biophy Res Commu, 1994;200(1):619-626.
    16. Wiesner. RJ, Ruegg JC, Morano I. Counting target molecules by exponential polymerase chain reaction :copy number of mitochondrial DNA in rat tissues. Biochem Biophy Res Commu, 1992; 183(2):553-559.
    17. Taro M. ,Yoshiharu S. and Astushi Y.,et al.Induction of nuclear factor-1 expression by an acute bout of exercise in rat muscle.Biochi and Biophy Acta,1998;1381:113-122.
    18. Bing Li,John O. and Clay F.Respiratory uncoupling induces δ-aminolevulinate synthase expression on through a nuclear respiratory factor-1-dependent machanism in Hela cells.J Biol Chem,1999;274(25):17534-17540.
    19. Rehncrona S,Mela L,et al.Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia.Stroke 1979;10(4):437-446.
    20. Brailovskaia IV,Scepnera LV,et al.Effect of acute hypoxia on rat liver mitochondrial respiratory.Vopr Med Khim.1980;26(4):435-438.
    21. Puka M,Wallin C and et al.Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res.2000; 125(1-2): 43-50.
    22. 高文祥,柳君泽等.急、慢性缺氧对大鼠脑线粒体能量代谢的影响.中国病理生理杂志.2000;16(10):879-882.
    23. 时庆德,张勇等.疲劳性运动中线粒体电子漏引起质子漏增加.生物化学与生物物理学报.1999; 31(1):97-100.
    24. 宋志刚,王德华.质子漏及其在基础代谢中的作用.生物化学与生物物理进展.2001;28(4):474-477.
    25. Ostermeier C, Iwatat S et al. Cytochrome c oxidase. Curr Opin Struct Biol. 1996;6:460-466.
    26. 江海洪、谢燕等.细胞色素c氧化酶的分子生物学研究进展. 国外医学·生理、病理科学与临床分册2001;21(1):20-22.
    27. Zhang C, Wong RMT. Synthesis and degradation of cytochrome c oxidase subunit mRNAs in neurons: differential biogenomic regulation by neuronal activity. J Neurosci Res, 2000;60(3): 338-344.
    
    
    
    28. Burke PV, Poyton RO. Structure/function of oxygen-regulated isoforms in cytochrome c oxidase. J Exp Biol, 1998;201:1163-1175.
    29. Burke PV, Rait DC, Allen LA, et al. Effects of oxygen concentration on the expression ofcytochrome c oxidase genes in yeast. J Biol Chem, 1997;272(23): .14705-14712.
    30. Ojaaimj J, Masters CL, Mclean C, et al. Irregular distribution of cytochrome c oxidase protein subunits in aging and Alzheimers's disease.Annal Neurol, 1999;46(4):656-660.
    31. Connor MK, Hood D. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles.J Appl Physiol, 1998; 84(2):593-598.
    32. Vijayasarathy C, Damle S, Lenka N.et al. Tissue variant effects of heme inhibitors on the mouse cytochrome c oxidase gene expression and catalytic activity of the enzyme complex. Eur J Biochem, 1999;266(1):191-200.
    33. Lenka N, Vijayasarathy C, Mullick J, et al. Structural organization and transcription of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol, 1998; 61:309-344.
    34. Nijtmans L, Taanman JW, Muijsers AO. Assembly of cytochrome c oxidase in cultured human cells. Eur J Biochem, 1998; 254:389-394.
    35. Das TK, Pecoraro C, Tomson FL, et al. The post-transcriptional modification in cytochrome c oxidase is required to establish a functioal environment of the catalytic site. Biochem, 1998;37(41): 14471 - 14476.
    36. Bae MGF, Kwon YW, Kim MS. Identification of genes differentially expressed by hypoxia in hepatocellular cacinoma cells. Biochem Biophys Res Commu, 1998; 243(1): 158-162.
    37. Sauleda J, Garcia PF, Wiesner RJ.et al. Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1998;157:1413-1417.
    38. Connor MK and Hood DA. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J Appl Physiol. 1998;84: 593-598.
    39. Grivell LA.Nucleo-mitochondrial interactions in mitochondrial gene expression. Criti Rev Biochem Mol B IOL, 1995;30(2): 121-164.
    40. Brown JR, Beckenbach K, Beckenbach AT, and et al. Length Variation, Heteroplasmy and Sequence Divergence in the Mitochondrial DNA of Four Species of Sturgeon (Acipenser).Genetics. 1996; 142: 525-535.
    Schaefer L., Engman, H. and Miller, J.B., Coding sequence, chromosomal localization,
    
    41. and expression pattern of Nrf1: the mouse homolog of Drosophila erect wing. Mamm Genome.2000;11: 104-110.
    42. Rafael Garesse and Carmen G.mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene ,2001;263(1-2):1-16.
    43. Aurelio R.,Hector E. and Gemma G.Human mitochondrial transcription factor A (mtTFA):gene structure and characterization of related pseudogenes. 2002; 291(1-2):223-232.
    44. Kastsuhiro K.,Toshiaki N.Effects of chronic liver diseases on mitochondrial DNA transcription and replication in human liver.Life Sciences.1999;65(5):557-563.
    45. Carlos T.Moraes.What regulates mitochondria DNA copy number in animal cells?Trends in Genetics.2001;17(4):199-205.
    46. Richard C. Scarpulla. Nuclear activators and coactivators in mammalian mitochondrial biogenesis,.Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 2002;1576(1-2):1-14.
    47. Gugne s,Virbasius C.A.and Scarpulla R.Nuclear respiratory factor 1 and 2 utilize similar glutamine-containing clusters of hydrophobic residues to active transcription.Mol Cell Biol.1998;16:5708-5716.
    48. 谢燕,朱光旭,江海洪等.缺氧复氧对培养仔鼠心肌细胞NRF1和mtTFA表达的影响与L-carnitine保护作用.第三军医大学学报,2001;23(12):1399-1402.
    49. Li K, Neufer PD, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. Am.J.Physio Cell Physiol.1995;269:C1265-1270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700