草鱼脑芳香化酶的cDNA克隆、启动子分离与转录活性的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素P450芳香化酶能够催化雄性激素向雌性激素的转化,被认为是类固醇激素代谢过程中的一个关键酶。在硬骨鱼中存在两种芳香化酶异构体,P450aromA和P450aromB,分别在性腺组织和脑组织中有高表达。有趣的是,硬骨鱼的脑芳香化酶活性大约是其他脊椎动物的100-1000倍,但至今对这种现象未有合理的解释。在目前的研究中,我们运用RT-PCR以及快速扩增cDNA末端(RACE)的方法成功克隆了草鱼脑芳香化酶(gcP450aromB)的cDNA序列。该序列全长共有1947bp,其中开放阅读框(ORF)长1527bp,可以编码509个氨基酸残基。经氨基酸序列比对发现,草鱼脑芳香化酶与其他硬骨鱼类脑芳香化酶有较高的相似性(66%-93%),而与性腺芳香化酶仅有约60%相似性,与哺乳动物芳香化酶有50%的相似性。运用半定量RT-PCR的方法进行组织分布研究发现,在所选择的10个组织中,仅在脑和垂体腺中发现了gcP450aromaB的mRNA表达,进一步在脑的不同区域中发现gcP450aromB的mRNA在视前区、下丘脑和垂体区域有表达。此外,利用基于PCR方法的基因步移法克隆了草鱼脑芳香化酶基因5’端的上游序列。所获得的启动子序列共有2.3kb,其中包括了1个TATA框,1个CAAT框以及许多潜在的转录因子结合位点,包括GATAs,AP1,ERE, CRE,C/EBP,NF-1,Sp1,PPARalpha/RXR-alpha,SREBP-1,GP,NF-kappaB,AhR/Arnt,STATx元件和CRE-BP1/c-Jun等等。此外,实验结果显示,gcP450aromB基因的翻译从第二个外显子开始,与不翻译的第一个外显子之间存在一个较长的内含子,大约有2.7kb。草鱼脑芳香化酶启动子活性的检测是以体外大鼠神经胶质瘤细胞(C6)为模型,对5’端上游序列采取5’端逐渐缺失片段构建荧光素酶报告基因的表达质粒来完成。结果显示,与阴性对照pGL-3-basic相比,几乎所有包括了第一个内含子全部序列的报告质粒都表现出不同程度的转录活性,而仅含有启动子序列的的报告质粒都没有转录活性。实验中还初步探讨了下丘脑分泌因子(PACAP)和垂体分泌激素(STH、GTH和activin)对调控序列转录活性的影响,表明PACAP在调控序列缺失到pGL3-159/+2822后一直表现为明显的抑制作用,而GTH对不同长短的启动子序列的转录水平都呈现出抑制作用,特别是在pGL3+1855/+2822抑制效果尤为显著。与之不同的是,生长激素(STH)在报告质粒pGL3-828/+2822显示出明显的促进作用。但是这种作用在进一步的缺失后被阻断,甚至在+861/+1855区域缺失后转为抑制作用。出乎意料的是,activin对草鱼脑芳香化酶的转录调节效果与生长激素的相类似。
As cytochrome P450 aromatase can catalyze the conversion of androgens to estrogens, it is considered as a key enzyme in the hormonal steroidogenic pathway. In teleosts, two isoforms of aromatase are expressed mainly in ovary and brain, which are named as aromA and aromB respectively. Interestingly, teleost fish aromB expression is 100-1000 times greater than that found in other vertebrates, but the mechanism responsible for this phenomenon is unclear. In the present study, the full-length cDNA of aromB was cloned from grass carp by RT-PCR coupled to rapid amplification of cDNA ends, named as gcAromB. The cDNA contained an open reading frame of 1527bp encoding a predicted protein of 509 amino acid residues, which shared 66-93% sequence identity with its counterparts in other teleosts, but only showed about 50% identity to mammalian aromatase. RT-PCR analysis revealed that gcAromB only expressed in brain from 10 selected tissues. Subsequently, aromB mRNA was detected in the partial areas of grass carp brain, including the optic tectum, hypothalamus and pituitary. Furthermore, A PCR-based genomic walking strategy was used to isolate the 5’-flanking region of grass carp aromB. The grass carp aromB 5’flanking region (2.3 kb) contained a consensus TATA box, a CCAAT box and some potential transcription factor binding sites including some GATAs, four AP1, an ERE, two CRE, four C/EBP, two NF-1, two Sp1, a PPARalpha/RXR-alpha, a SREBP-1, a GP, a NF-kappaB, an AhR/Arnt, three CRE-BP1/c-Jun and three STATx elements. The transcription activity of gcAromB was evaluated in vitro using luciferase as the reporter gene. In the glioma cells (C6) transfected by constructs with decreasing length of gcAromB promoter (-2290/+164), unexpectively, the basal levels of luciferase activity could not be detected. In contrast, all reporter constructs with intron I transiently transfected into glioma C6 showed differentical basal activity. To test effects of hypothalamus factor and pituitary hormones on the transcription activity of gcAromB, C6 cells transfected by constructs were exposed to PACAP, GTH, GH and activin. In this case, both PACAP and GTH significantly reduced the promoter activity from pGL3-159/+2822 to pGL3+1855/+2822, and this effect was blocked by the following deletion, and then reversed due to the absence of +861/+1855 region. Consistently, activin exhibited similar effects on promoter activity of gcAromB as GH.
引文
[1] D. R. Nelson, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996,6 (1):1-42.
    [2] F. J. Gonzalez, S. Kimura. Study of P450 function using gene knockout and transgenic mice. Archives of biochemistry and biophysics, 2003,409 (1):153-158.
    [3] M. Ingelman-Sundberg. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends in pharmacological sciences, 2004,25 (4):193-200.
    [4] E. R. Simpson, et al. Regulation of estrogen biosynthesis by human adipose cells. Endocrine reviews, 1989,10 (2):136-148.
    [5] S. Sebastian, et al. Cloning and characterization of a novel endothelial promoter of the human CYP19 (aromatase P450) gene that is up-regulated in breast cancer tissue. Molecular endocrinology (Baltimore, Md, 2002,16 (10):2243-2254.
    [6] Y. Kazeto, J. M. Trant. Molecular biology of channel catfish brain cytochrome P450 aromatase (CYP19A2): cloning, preovulatory induction of gene expression, hormonal gene regulation and analysis of promoter region. Journal of molecular endocrinology, 2005,35 (3):571-583.
    [7] J. N. Nocillado, et al. Cytochrome P450 aromatase in grey mullet: cDNA and promoter isolation; brain, pituitary and ovarian expression during puberty. Molecular and cellular endocrinology, 2007,263 (1-2):65-78.
    [8] J. M. Trant, et al. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). The Journal of experimental zoology, 2001,290 (5):475-483.
    [9] G. V. Callard, et al. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. The Journal of steroid biochemistry and molecular biology, 2001,79 (1-5):305-314.
    [10] E. D. Lephart. A review of brain aromatase cytochrome P450. Brain research, 1996,22 (1):1-26.
    [11] J. Balthazart, G. F. Ball. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends in neurosciences, 1998,21 (6):243-249.
    [12] E. Forsgren, et al. Unusually dynamic sex roles in a fish. Nature, 2004,429 (6991):551-554.
    [13] J. Y. Kwon, et al. Masculinization of genetic female nile tilapia (Oreochromis niloticus) bydietary administration of an aromatase inhibitor during sexual differentiation. The Journal of experimental zoology, 2000,287 (1):46-53.
    [14] C. J. Corbin, et al. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells. Proceedings of the National Academy of Sciences of the United States of America, 1988,85 (23):8948-8952.
    [15] G. J. Hickey, et al. Hormonal regulation, tissue distribution, and content of aromatase cytochrome P450 messenger ribonucleic acid and enzyme in rat ovarian follicles and corpora lutea: relationship to estradiol biosynthesis. Endocrinology, 1988,122 (4):1426-1436.
    [16] E. D. Lephart, et al. The structure of cDNA clones encoding the aromatase P-450 isolated from a rat Leydig cell tumor line demonstrates differential processing of aromatase mRNA in rat ovary and a neoplastic cell line. Molecular and cellular endocrinology, 1990,70 (1):31-40.
    [17] M. Terashima, et al. Isolation of a full-length cDNA encoding mouse aromatase P450. Archives of biochemistry and biophysics, 1991,285 (2):231-237.
    [18] P. Shen, et al. Isolation and characterization of a zebra finch aromatase cDNA: in situ hybridization reveals high aromatase expression in brain. Brain research, 1994,24 (1-4):227-237.
    [19] C. Murdock, T. Wibbels. Cloning and expression of aromatase in a turtle with temperature-dependent sex determination. General and comparative endocrinology, 2003,130 (2):109-119.
    [20] M. Tanaka, et al. Cloning and sequence analysis of the cDNA encoding P-450 aromatase (P450arom) from a rainbow trout (Oncorhynchus mykiss) ovary; relationship between the amount of P450arom mRNA and the production of oestradiol-17 beta in the ovary. Journal of molecular endocrinology, 1992,8 (1):53-61.
    [21] S. Fukada, et al. Isolation, characterization, and expression of cDNAs encoding the medaka (Oryzias latipes) ovarian follicle cytochrome P-450 aromatase. Molecular reproduction and development, 1996,45 (3):285-290.
    [22] X. T. Chang, et al. Isolation and characterization of the cDNA encoding the tilapia (Oreochromis niloticus) cytochrome P450 aromatase (P450arom): changes in P450arom mRNA, protein and enzyme activity in ovarian follicles during oogenesis. Journal of molecular endocrinology, 1997,18 (1):57-66.
    [23] P. H. Strobl-Mazzulla, et al. Brain aromatase from pejerrey fish (Odontesthes bonariensis): cDNA cloning, tissue expression, and immunohistochemical localization. General and comparative endocrinology, 2005,143 (1):21-32.
    [24] A. R. Place, et al. Expression of P450(arom) in Malaclemys terrapin and Chelydra serpentina: a tale of two sites. The Journal of experimental zoology, 2001,290 (7):673-690.
    [25] F. Naftolin, K. J. Ryan, Z. Petro. Aromatization of androstenedione by limbic system tissue from human foetuses. The Journal of endocrinology, 1971,51 (4):795-796.
    [26] M. Blazquez, F. Piferrer. Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Molecular and cellular endocrinology, 2004,219 (1-2):83-94.
    [27] H. Sasano, N. Harada. Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocrine reviews, 1998,19 (5):593-607.
    [28] J. D. Townsley, E. J. Rubin, C. D. Crystle. Evaluation of placental steroid 3-sulfatase and aromatase activities as regulators of estrogen production in human pregnancy. American journal of obstetrics and gynecology, 1973,117 (3):345-350.
    [29] C. Zhao, et al. Region-specific expression and sex-steroidal regulation on aromatase and its mRNA in the male rat brain: immunohistochemical and in situ hybridization analyses. The Journal of comparative neurology, 2007,500 (3):557-573.
    [30] M. Pasmanik, G. V. Callard. Aromatase and 5 alpha-reductase in the teleost brain, spinal cord, and pituitary gland. General and comparative endocrinology, 1985,60 (2):244-251.
    [31] L. D. Valle, et al. Cloning of two mRNA variants of brain aromatase cytochrome P450 in rainbow trout (Oncorhynchus mykiss Walbaum). The Journal of steroid biochemistry and molecular biology, 2002,82 (1):19-32.
    [32] R. J. Timmers, et al. Localization of aromatase in the brain of the male African catfish, Clarias gariepinus (Burchell), by microdissection and biochemical identification. The Journal of comparative neurology, 1987,258 (3):368-377.
    [33] G. V. Callard. Autocrine and paracrine role of steroids during spermatogenesis: studies in Squalus acanthias and Necturus maculosus. The Journal of experimental zoology, 1992,261 (2):132-142.
    [34] E. Andersson, B. Borg, J. G. Lambert. Aromatase activity in brain and pituitary of immature and mature Atlantic salmon (Salmo salar L.) parr. General and comparative endocrinology, 1988,72 (3):394-401.
    [35] G. L. Li, X. C. Liu, H. R. Lin. Seasonal changes of serum sex steroids concentration and aromatase activity of gonad and brain in red-spotted grouper (Epinephelus akaara). Animal reproduction science, 2007,99 (1-2):156-166.
    [36] P. M. Forlano, et al. Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. J Neurosci, 2001,21 (22):8943-8955.
    [37] A. Menuet, et al. Distribution of aromatase mRNA and protein in the brain and pituitary of female rainbow trout: Comparison with estrogen receptor alpha. The Journal of comparative neurology, 2003,462 (2):180-193.
    [38] E. Pellegrini, et al. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. The Journal of comparative neurology, 2007,501 (1):150-167.
    [39] M. Fenske, H. Segner. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic toxicology (Amsterdam, Netherlands), 2004,67 (2):105-126.
    [40] S. Ijiri, et al. Characterization of a cDNA encoding P-450 aromatase (CYP19) from Japanese eel ovary and its expression in ovarian follicles during induced ovarian development. General and comparative endocrinology, 2003,130 (2):193-203.
    [41] L. Dalla Valle, et al. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. The Journal of steroid biochemistry and molecular biology, 2002,80 (1):25-34.
    [42] S. Ijiri, C. Berard, J. M. Trant. Characterization of gonadal and extra-gonadal forms of the cDNA encoding the Atlantic stingray (Dasyatis sabina) cytochrome P450 aromatase (CYP19). Molecular and cellular endocrinology, 2000,164 (1-2):169-181.
    [43] E. Pellegrini, et al. Relationships between aromatase and estrogen receptors in the brain of teleost fish. General and comparative endocrinology, 2005,142 (1-2):60-66.
    [44] J. B. Hutchison, et al. Sex differences in the regulation of embryonic brain aromatase. The Journal of steroid biochemistry and molecular biology, 1997,61 (3-6):315-322.
    [45] M. S. Mahendroo, et al. Tissue-specific expression of human P-450AROM. The promoter responsible for expression in adipose tissue is different from that utilized in placenta. The Journal of biological chemistry, 1991,266 (17):11276-11281.
    [46] E. Falkenstein, et al. Multiple actions of steroid hormones--a focus on rapid, nongenomic effects. Pharmacological reviews, 2000,52 (4):513-556.
    [47] M. B. Hawkins, et al. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proceedings of the National Academy of Sciences of the United States of America, 2000,97 (20):10751-10756.
    [48] Y. Kazeto, A. R. Place, J. M. Trant. Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic toxicology (Amsterdam, Netherlands), 2004,69 (1):25-34.
    [49] M. Kishida, G. V. Callard. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology, 2001,142 (2):740-750.
    [50] M. Kishida, et al. Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). Comparative biochemistry and physiology, 2001,129 (2-3):261-268.
    [51] K. Mouriec, et al. Androgens Upregulate cyp19a1b (Aromatase B) Gene Expression in the Brain of Zebrafish (Danio rerio) Through Estrogen Receptors. Biology of reproduction, 2009.
    [52] G. J. Hickey, et al. Aromatase cytochrome P450 in rat ovarian granulosa cells before and after luteinization: adenosine 3',5'-monophosphate-dependent and independent regulation. Cloning and sequencing of rat aromatase cDNA and 5' genomic DNA. Molecular endocrinology (Baltimore, Md, 1990,4 (1):3-12.
    [53] M. P. Steinkampf, C. R. Mendelson, E. R. Simpson. Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells. Molecular endocrinology (Baltimore, Md, 1987,1 (7):465-471.
    [54] H. Kanda, et al. Transcriptional regulation of the rainbow trout CYP19a gene by FTZ-F1 homologue. The Journal of steroid biochemistry and molecular biology, 2006,99 (2-3):85-92.
    [55] Y. Kazeto, et al. The 5'-flanking regions of CYP19A1 and CYP19A2 in zebrafish. Biochemical and biophysical research communications, 2001,288 (3):503-508.
    [56] A. J. Kuhl, S. Manning, M. Brouwer. Brain aromatase in Japanese medaka (Oryzias latipes): Molecular characterization and role in xenoestrogen-induced sex reversal. The Journal of steroid biochemistry and molecular biology, 2005,96 (1):67-77.
    [57] M. Tanaka, et al. Structure and promoter analysis of the cytochrome P-450 aromatase gene of the teleost fish, medaka (Oryzias latipes). Journal of biochemistry, 1995,117 (4):719-725.
    [58] A. Tchoudakova, et al. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. The Journal of steroid biochemistry and molecular biology, 2001,78 (5):427-439.
    [59] T. T. Wong, S. Ijiri, Y. Zohar. Molecular biology of ovarian aromatase in sex reversal: complementary DNA and 5'-flanking region isolation and differential expression of ovarianaromatase in the gilthead seabream (Sparus aurata). Biology of reproduction, 2006,74 (5):857-864.
    [60] V. Giguere. Orphan nuclear receptors: from gene to function. Endocrine reviews, 1999,20 (5):689-725.
    [61] E. R. Simpson, et al. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocrine reviews, 1994,15 (3):342-355.
    [62] K. Gen, et al. Correlation between messenger RNA expression of cytochrome P450 aromatase and its enzyme activity during oocyte development in the red seabream (Pagrus major). Biology of reproduction, 2001,65 (4):1186-1194.
    [63] J. T. Sanderson, et al. Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicology and applied pharmacology, 2002,182 (1):44-54.
    [64] M. D. Sheets, S. C. Ogg, M. P. Wickens. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic acids research, 1990,18 (19):5799-5805.
    [65] J. Y. Kwon, B. J. McAndrew, D. J. Penman. Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Molecular reproduction and development, 2001,59 (4):359-370.
    [66] J. M. Trant. Isolation and characterization of the cDNA encoding the channel catfish (Ictalurus punctatus) form of cytochrome P450arom. General and comparative endocrinology, 1994,95 (2):155-168.
    [67] M. Kozak. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 1986,44 (2):283-292.
    [68] A. Tchoudakova, G. V. Callard. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology, 1998,139 (4):2179-2189.
    [69] D. Gelinas, G. A. Pitoc, G. V. Callard. Isolation of a goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment. Molecular and cellular endocrinology, 1998,138 (1-2):81-93.
    [70] R. Goto-Kazeto, et al. Localization and expression of aromatase mRNA in adult zebrafish. General and comparative endocrinology, 2004,139 (1):72-84.
    [71] G. V. Callard, Z. Petro, A. H. Tashjian, Jr. Identification of aromatase activity in rodent pituitary cell strains. Endocrinology, 1983,113 (1):152-158.
    [72] J. Carretero, et al. Immunohistochemical evidence of the presence of aromatase P450 in the rat hypophysis. Cell and tissue research, 1999,295 (3):419-423.
    [73] V. Toffolo, et al. Tissue-specific transcriptional initiation of the CYP19 genes in rainbow trout, with analysis of splicing patterns and promoter sequences. General and comparative endocrinology, 2007,153 (1-3):311-319.
    [74] M. M. Hinshelwood, et al. A 278 bp region just upstream of the human CYP19 (aromatase) gene mediates ovary-specific expression in transgenic mice. Endocrinology, 2000,141 (6):2050-2053.
    [75] D. Zhou, S. Chen. Characterization of a silencer element in the human aromatase gene. Archives of biochemistry and biophysics, 1998,353 (2):213-220.
    [76] G. L. Rubin, et al. Ligands for the peroxisomal proliferator-activated receptor gamma and the retinoid X receptor inhibit aromatase cytochrome P450 (CYP19) expression mediated by promoter II in human breast adipose. Endocrinology, 2002,143 (8):2863-2871.
    [77] L. Jackson-Hayes, et al. A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. The Journal of biological chemistry, 2003,278 (10):7964-7972.
    [78] R. M. Garcia de Veas Lovillo, et al. Upstream and intronic regulatory sequences interact in the activation of the glutamine synthetase promoter. European journal of biochemistry / FEBS, 2003,270 (2):206-212.
    [79] Y. K. Kang, et al. Prolactin-inducible enhancer activity of the first intron of the bovine beta-casein gene. Molecules and cells, 1998,8 (3):259-265.
    [80] T. Voigtlander, D. Ganten, M. Bader. Transcriptional regulation of the rat renin gene by regulatory elements in intron I. Hypertension, 1999,33 (1 Pt 2):303-311.
    [81] G. L. Wang, M. L. Moore, J. B. McMillin. A region in the first exon/intron of rat carnitine palmitoyltransferase Ibeta is involved in enhancement of basal transcription. The Biochemical journal, 2002,362 (Pt 3):609-618.
    [82] S. T. Smale, J. T. Kadonaga. The RNA polymerase II core promoter. Annual review of biochemistry, 2003,72:449-479.
    [83] K. H. Sze, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP bynuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology, 2007,148 (10):5042-5059.
    [84] J. Torgersen, et al. In silico and in situ characterization of the zebrafish (Danio rerio) gnrh3 (sGnRH) gene. BMC genomics, 2002,3 (1):25.
    [85] Y. Pang, W. Ge. Gonadotropin and activin enhance maturational competence of oocytes in the zebrafish (Danio rerio). Biology of reproduction, 2002,66 (2):259-265.
    [86] S. V. Bhave, P. L. Hoffman. Phosphatidylinositol 3'-OH kinase and protein kinase A pathways mediate the anti-apoptotic effect of pituitary adenylyl cyclase-activating polypeptide in cultured cerebellar granule neurons: modulation by ethanol. Journal of neurochemistry, 2004,88 (2):359-369.
    [87] L. Buscail, et al. Stimulation of rat pancreatic tumoral AR4-2J cell proliferation by pituitary adenylate cyclase-activating peptide. Gastroenterology, 1992,103 (3):1002-1008.
    [88] H. Y. Wang, X. M. Jiang, D. Ganea. The neuropeptides VIP and PACAP inhibit IL-2 transcription by decreasing c-Jun and increasing JunB expression in T cells. Journal of neuroimmunology, 2000,104 (1):68-78.
    [89] P. Melamed, et al. Possible interactions between gonadotrophs and somatotrophs in the pituitary of tilapia: apparent roles for insulin-like growth factor I and estradiol. Endocrinology, 1999,140 (3):1183-1191.
    [90] Y. Yoshiura, et al. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian type) in the ovary of Nile tilapia, Oreochromis niloticus, during vitellogenesis suggests transcriptional interaction. Biology of reproduction, 2003,68 (5):1545-1553.
    [91] G. S. Campbell, et al. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. The Journal of biological chemistry, 1995,270 (8):3974-3979.
    [92] A. Tripathi, A. Sodhi. Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiology, 2009.
    [93] J. Wang, et al. Convergence of protein kinase C and JAK-STAT signaling on transcription factor GATA-4. Molecular and cellular biology, 2005,25 (22):9829-9844.
    [94] K. Gerland, et al. Activation of the Jak/Stat signal transduction pathway in GH-treated rat osteoblast-like cells in culture. Molecular and cellular endocrinology, 2000,168 (1-2):1-9.
    [95] E. R. Norwitz, et al. Direct binding of AP-1 (Fos/Jun) proteins to a SMAD binding element facilitates both gonadotropin-releasing hormone (GnRH)- and activin-mediated transcriptional activation of the mouse GnRH receptor gene. The Journal of biological chemistry, 2002,277(40):37469-37478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700