CYPIIE1与GSTP1多态性及mRNA水平在酒精性肝病中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过度饮酒会导致身体,心理和社会等一系列问题,酒精滥用和依赖是酒精性肝病发病机制中的主要因素,但并不是所有饮酒者均发展为酒精性肝病。细胞色素P450IIE1(CYPIIE1),是存在于肝细胞内的I相物质代谢酶,是微粒体乙醇氧化系统的主要组成部分。谷胱甘肽S-转移酶(GSTP1),是II相物质代谢酶,为重要的外源性化学物质代谢酶,主要催化外源代谢产物的亲电子中心与还原性谷胱甘肽的轭和反应,从而降低外源化合物或(和)致癌化合物的毒性和致癌性。有毒或致癌化合物在肝脏的代谢方向取决于两个酶系统的水平和相互作用。这就提出了一个可能性,即I相物质代谢酶活性增加,同时伴II相物质代谢酶活性减低,可能会使有毒或致癌中间产物增加而导致个体对某些疾病的易感性增加,如酒精性肝病。
     本实验抽取自2006年9月至2007年11月,收集来自黑龙江,吉林,辽宁和内蒙古省几家大医院患者的外周血2ml。患者来自汉族,蒙古族,朝鲜族三个民族,其中包括汉族酒精性肝病患者126人;蒙古族酒精性肝病患者118人;朝鲜族酒精性肝病患者109人。各民族饮酒无肝病患者各100人,各民族健康对照者各120人。实时聚合酶链反应(RT-PCR)用于检测CYPIIE1及GSTP1在每组中的基因多态性分布;聚合酶链反应限制性片段长度多态性(PCR-RFLP)用于检测CYPIIE1及GSTP1在酒精性肝病患者及健康对照人群中mRNA的表达水平。结果发现不论何种民族,携带了CYPIIE1 C2和GSTP1 Val等位基因的患者具有酒精性肝病的遗传易感性。C2和Val的分布频率在汉族酒精性肝病患者中分别为50.00%和26.98%;在蒙古族患者中分别为31.36%和22.87%;在朝鲜族患者中分别为45.87%和22.02%,各民族酒精性肝病患者中C2和Val的分布频率无统计学差别(P>0.05)。而在三个民族中,酒精性肝病患者的C2和Val分布频率均显著高于饮酒无肝病者及健康对照者,且具有统计学差别(P<0.05)。不论何种民族,酒精性肝病患者与健康对照者相比均具有较高的CYPIIE1mRNA表达水平,和较低的GSTP1mRNA表达水平,并具有显著的统计学意义(P<0.001)
     在本研究中,我们看到:不论何种民族,同时携带CYPIIE1 C2和GSTP1 Val等位基因的人群致使体内CYPIIE1mRNA表达水平上调,GSTP1mRNA表达水平下降而儸患酒精性肝病的的几率明显高于单独携带或不携带CYPIIE1 C2或GSTP1 Val基因的人群。
BACKGROUND: Excessive alcohol intake can cause physical, psychological, and social problems. Alcohol abuse and dependence are major factors in the pathogenesis of alcoholic liver disease (ALD). Not all drinkers develop ALD. Approximately 20% of chronic alcoholics develop hepatic cirrhosis, while 20% tolerate the chronic toxic effects without developing any liver pathology.
     Cytochrome P450IIE1 (CYPIIE1), a member of the phase I family of detoxifying liver enzymes, is the main component of the microsomal ethanol oxidizing system. It plays a major role in the metabolic activation of environmental xenobiotics such as ethanol, benzene, and small-molecular-weight procarcinogens, including nitrosamines, or drugs such as acetaminophen, chlorzoxazone, and salicylate. This metabolic activation can give rise to carcinogenic intermediate compounds. However, phase II enzymes, primarily the glutathione S-transferases (GST), normally act on these electrophilic, toxic intermediates by conjugating them to reduced glutathione to produce less toxic or readily excretable metabolites.
     The level and persistence of bioactivated toxic or carcinogenic compounds in the liver thus depends on the interplay of both biotransforming enzyme systems. This raises the possibility that an increase in the activity of the phase I system, coupled with a decrease in phase II activity, might increase the level of toxic or carcinogenic intermediates and predispose an individual to developing diseases such as ALD.
     A likely contributor to such a potential imbalance between phase I and II enzymes is allelic variation in the genes that encode them. The genes encoding both CYPIIE1 and GSTP1 exist in multiple polymorphic forms, causing their expression level to vary widely among individuals.[6] CYPIIE1 is located on 10q2403-qter. It is 1104 kb gene, consisting of 9 exons and 8 introns, that encodes a 493 amino acid protein. CYPIIE1 contains six restriction fragment length polymorphisms (RFLP), of which the PstI/RsaI polymorphism in its 5’-flanking region, has been shown to affect its transcription level. The C2 allele can enhance the transcription and increases the level of CYPIIE1 enzymatic activity. Similarly, polymorphisms of the GSTP1 gene exist, and were first reported by Board and his colleagues. These consist of an A-to-G transition of nucleotide 313 in exon 5 (GSTP1*B) and a G-to-T transition of nucleotide 341 in exon 6 (GSTP1*C), leading to the substitution of two amino acids in the enzyme active site, Ile to Val and Val to Ala. These allele variants appear to reduce GSTP1 activity, potentially leading to genetic damage and increased cancer risk.
     Alcohol abuse is becoming an increasingly severe problem among the Han, Mongol, and Chaoxian nationalities in the northeast of China. The present study was conceived to determine whether variation in the relative frequencies of these polymorphisms might be correlated with the incidence of ALD in patients of these three nationalities.
     Methods: Patients were admitted to the study, between September 2006 and November 2007, from several large hospitals in Heilongjiang, Jilin, Liaoning and Neimenggu provinces. Patients were from the Han, Mongol, and Chaoxian nationalities and included, respectively, 126, 118, and 109 adults with ALD. Also included in the study were 100 patients of each nationality who were alcohol dependent without ALD (alcoholic), and 120 healthy people of each nationality as controls .
     Real-time polymerase chain reaction (RT-PCR) and PCR restriction fragment length polymorphism (PCR-RFLP) was used in this research.
     Results: The respective frequencies of the CYPIIE1 C2 and GSTP1 Val alleles in patients with ALD were: 50.00% and 26.98% in Han patients (Table 2); 31.36% and 22.87% in the Mongol group (Table 3); and 45.87% and 22.02% in the Chaoxian (Table 4). In contrast, the corresponding frequencies in control patients were 10.00% and 8.3% in the Han, 7.50% and 10.00% in the Mongol group, and 11.67% and 9.17% in the Chaoxian. These data revealed an increased frequency of the C2/C2 and Val/Val genotype in ALD patients, as compared to either controls or alcoholics. In each of the three nationalities, the frequency of the C2 allele was significantly higher in the ALD group than in either of the other two groups. The frequency of the C2 allele across all three nationalities included in our study was approximately 35%, which is in agreement with the frequency reported for other Asian populations. The frequency of the C2 and Val alleles did not differ among ALD patients in the three nationality groups. In contrast, for each nationality, the frequency of C2 and Val was higher in ALD patients than in controls.
     The average CYPIIE1 mRNA level was higher in ALD patients (10.05%) than in controls (2.21%) (P<0.001). In contrast, GSTP1 mRNA levels were lower in ALD patients (0.53%) than in controls (2.12%) (P<0.001).
     Discussion: We found that the relative frequencies of the two CYPIIE1 polymorphic alleles in ALD patients were similar in the three nationalities we studied. The relative frequency of the two GSTP1 alleles was also similar in ALD of all three nationalities, although there is little published data to which these can be compared. However, in each nationality, there was a clear and significant difference in the mRNA levels of CYPIIE1 GSTP1 between ALD patients and controls. Although the genetic and pathophysiological factors that lead to the development of ALD have not been definitively established, we believe the findings we have reported here provide a strong indication that polymorphisms in the genes encoding CYPIIE1 and GSTP1 may contribute significantly to these processes. Our findings indicate that individuals who are homozygous for the CYPIIE1 C2 and GSTP1 Val alleles have higher and lower expression, respectively, of the corresponding enzymes, and appear to have an increased incidence of ALD.
     Besides, through our experiment we found that no matter what stages have the ALD developed, the rule of polymorphisms of CYPIIE1 and GSTP1 and the m-RNA expression of the two enzymes are that individuals who are homozygous for the CYPIIE1 C2 and GSTP1 Val alleles have higher and lower expression, respectively. That is to say, there is no difference about polymorphisms of CYPIIE1、GSTP1 and the m-RNA expression of the two enzymes among hepatic adipose infiltration, alcoholic hepatitis, and alcoholic cirrhosis. The difference about polymorphisms of CYPIIE1、GSTP1 and the m-RNA expression of the two enzymes decides whether it is possible that someone who sufferes from ALD or not, and is nothing with what stages of ALD.
     The Han, Mongol, and Chaoxian are nationalities which are good at drinking in north-east of China. So we extensively collected the drinkers from the three nationalities to study the relation between the polymorphisms of CYPIIE1、GSTP1 and the m-RNA expression of the two enzymes and ALD in order to discover the pathogeny of ALD, and the rule of morbidity among different races further. Providing the foundation of molecular biology to prophylaxis. Doing some help to treatment about ALD in clinic.
引文
[1] Lelbach WK. Cirrhosis in the alcoholic and its relation to the volume of alcohol abuse. Ann N Y Acad Sci 1975;252:85-105. PMID:1096716
    [2] Lewis DF, Ioannides C, Parke DV. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen. Environ Health Perspect 1998;106:633-641. PMID: 9755138
    [3] Boyer TD. The glutathione S-transferases: an update. Hepatology 1989;9:486- 496.PMID:2646197
    [4] Nebert DW. Role of genetics and drug metabolism in human cancer risk. Mutat Res 1991;247:267-281.PMID:2011144
    [5] Standop J, Ulrich AB, Schneider MB, Buchler MW, Pour PM. Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas. Pancreatology 2002;2:510-518.PMID:12435863
    [6] Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991;l4:391-407. PMID:1912325
    [7] Umeno M, McBride OW, Yang CS, Gelboin HV, Gonzalez FJ. Human ethanol-inducible P450IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA directed expression. Biochemistry 1988;27:9006-9013.PMID:3233219
    [8] Han XM, Zhou HH. Polymorphism of CYP450 and cancer susceptibility. Acta Pharmacol Sin 2000;21:673-679. PMID:11501173
    [9] Snawder JE, Lipscomb JC. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metalolism and implications in risk assessment. Regul Toxical Pharmacol 2000;32:200-209. PMID:11067776
    [10] Stephens EA, Taylor JA, Kaplan N, Yang CH, Hsieh LL, Lucier GW, Bell DA. Ethnic variation in the CYP2E1 gene: polymorphism analysis of 695 African- Americans, European-Americans and Taiwanese. Pharmacogenetics 1994;4: 185-192. PMID: 7987402
    [11] Watanabe J, Hayashi S, Kawajiri K. Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5'-flanking region. J Biochem 1994;116:321-326. PMID: 7529759
    [12] Hu Y, Hakkola J, Oscarson M, Ingelman-Sundberg M. Structural and functional characterization of the 5'-flanking region of the rat and human cytochrome P450 2E1 genes: identification of a polymorphic repeat in the human gene. Biochem Biophys Res Commun 1999;263:286-293. PMID: 10491286
    [13] Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5'-flanking region change transcriptional regulation of human cytochrome P450IIE1. J Biochem 1991;110:559-565. PMID: 1778977
    [14] Board PG, Webb GC, Coggan M. Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet 1998;53:205-213. PMID: 2596826
    [15] Harries LW, Stubbins M.J, Forman D, Howard GC and Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997;18:641-644. PMID: 9111193
    [16] Ehrig T, Bosron WF, Li TK. Alcohol and aldehyde dehydrogenase. Alcohol Alcohol 1990;25:105-116. PMID: 2198030
    [17] HrubeeZ, Omenn GS. Evidence of genetic Predisposition to alcoholic cirrhosis and Psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans [J]. Alcoholism:Clin Exp Res, 1981,5:207- 215.
    [18] Jorgensen RA, Cluster PD, English J, et al. Chalcone synthase cosuppression Phenotypes in Petunia flowers: comparison of sencevs. Antisense consturcts and single-copy vs. complexT-DNA sequences. Plant Mol Biol, 1996,31 (5):957-973.
    [19] Wrighton SA, Thomas PE, Ryan DE. Purification and characterization of Ethanol-inducible human hepatic cytochromeP-450HLj.Aich Biochem BioPhys. 1987;258(1):292-297.
    [20] Umeno M, McBride OW, Yang CS, Gelboin HV, Gonzalez FJ. Human ethanol - inducible P450 IIE1: complete gene sequence, promoter characterization, chromosome mapping, and cDNA directed expression. Biochemistry, 1988;27:9006-9013.
    [21] Gonzalez FJ, Korzekwa KR. Cytochromes P450 expression system. Annu Rev Pharmacol Toxicol, 1995;35:369-390.
    [22] Koop DR, Oxidative and reductive metabolism by cytochromeP4502E1. FASEBJ, 1992;6:724-730.
    [23] Hayashi S, Watanabe J, Kaname K. Genetic Polymorphism in the 5,-flanking region change transcription regulation of the human cytochrome p-45OllEI gene [J]. Biochem, 1991,110:559-65.
    [24] Hirvonen A, Husgafvel-Pursianinen K, Anttila S, Karjalainen A, Vainio H. The human CYPIIE1 gene and lung cancer: DraI and RsaI restriction fragment length polymorphisms in a Finnish study population [J]. Carcinogenesis, 1993,14:85-88.
    [25] I, Johansson I, Bergling H, et al. Genetic polymorphism of cytochromeP-4502E1 in a Swedish population:relationship to Incidence of lung cancer [J]. FEBS Lett, 1993,319:207-211.
    [26] Uematsu F, Ikawa S, Kikuchi H, et al. Restriction fragment length po1ymorphism of the human CYP2E1 ( cytochrome P-450llEI)gene and susceptibility to lung cancer: Possible relevance to low smoking exposure [J]. Pharmacogenetics, 1994,4:58-63.
    [27] Watanabe J, Hayashi S, Kawajiri K. Different regulations and Expression of the human CYPIIE1 gene due to the RsaI Polymorphism in The 5,-flanking region[J]. Biochem, 1994,116:321-6.
    [28] Wong NA, Rae F, et al. Polymorphisms of the gene for microsomal epoxide Hydrolase and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a Caucasian population [J]. Toxicol Lett, 2000,10:115(1):17-22.
    [29] Rossit AR et al. Polymorphisms in th cDNA repair geneXRCCI and Susceptibility to alcoholic liver cirrhosis in older Southeastern Brazi1ians [J]. Cancer Lett, 2002 Jun 28:180(2):173-82.
    [30] Grove J, Daly AK, et al. Association of a tumor necrosis factor Promoter Polymorphism with susceptibility to alcoholic steatohepatitis [J]. Hepatology, 1997Jul;26(l):143-6.
    [31] Hayashi SL, Watanabe J, Kawajiri K, et al. Genetic Polymorphisms in 5,-flanking region change transeriptional regulation of the human cytochrome PIIE1gene [J]. Bionchem (Tokyo), 1991,110(4):559.
    [32] StePhens EA, Taylor JA, KaPlan N, et al.Ethnic variation in the CYP2E1 gene: Polymorphism analysis of 695 Afriean-Americans, European -Americans And Taiwanese. Pharmaco genetics, 1994:4:185-192.
    [33] Kim RB, 0’Shea D and Wilkinson GR. Interindividual variability of Chlorzoxazone 6- hydroxylation in men and women and it srelationship to CYPIIE1 Genetic Polymorphisms. Clin Pharmacol Ther, 1995;57:645-655.
    [34] Ometa CM, Simanowski UA, Martinez M, et al. The fist Pass metabolism of ethanol is strikingly influenced by speed of gastric emptying. Gut, 1998,43(5):2612-2619.
    [35] Kharaseh ED, Thummel KE, Mhyre J, et al. Single-dose ram Inhibition of chlorzoxazon emetabolism: a clinical Probe for P450IIE1. Clin Pha Rmaeol Ther, 1993;53:643-650.
    [36] Hu Y, Mishin V, Johanssonl, et al. Chlormethiazole as an effet inhibitor of Cytoehrome P4502E1 expression in rat liver. J Pharmacol Exp Ther, 1994;269:1286-1291.
    [37] Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxida- tive stress: studies with CYP2E1. Mutation Research, 2005:569:101.
    [38] Tsutsumi M, LskerJ M, Shimizu M, et al. The intralobular distribution of Ethanol- inducible P450IIE1 in rat and human liver. Hepatology, 1989;10:437-446.
    [39] Lieber CS. Cytochrome P-450IIE1: its physiological and pathological role. Pathological Rev. 1997;77:517-544.
    [40] Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol, 2004,34:9-19.
    [41] Haufroid V, Ligocka D, BuysschaertM, et al. Cytochrome P450IIE1 (CYPIIE1) expression in peripheral blood lymphocytes: evaluation in hepatitisC and diabetes. Pharmacokinetics and disposition, 2003,59:29-33.
    [42] Peixoto F, Vicente J,Madeira MC. A comparative study of plant and animal mitochondria exposed to paraquat reveals that hydrogen per-oxide is not related to the observed toxicity. Toxicology in vitro, 2004,18:733-39.
    [43] Niemela O, Parkkila S, Juvonen RO, et al. Cytochromes P450 2A6,2El, and 3A and production of protein aldehyde adducts in the liver of patients with alcoholic and non alcoholic liver diseases. Journal of Hepatology, 2000,33:893-901.
    [44] Ronisa MJ, Buturac A, Sampeyd BP, et al. Effects of Na cetylcys teine on ethanol- induced hepatotoxicity in rats fed via total enteral nutrition. Free Radical Biology &Medicine, 2005,39:619-30.
    [45] Morimoto M, Hagbjork AL, Wan YJY. et al. Modulation of experimental alcohol- induced liver disease by cytochrome P450IIE1 inhibitors.Hepatology, 1995:21:1610-1617.
    [46] Nieto N, Friedman SL, Greenad P, and et al. CYPIIE1 mediated Oxidative stress induces CYPIIE1 expression in rat hepatic cells. Hepatology, 1999;30(4):987-996.
    [47] KooP DR, Tierney DJ. Multiple mechanisms in the regulation of ethanol-inducible cytoehromeP-450llEI.Bio Essays. 1990:9:429-435.
    [48] Yang CS, Yoo JS, Ishizaki H, Hong J. Cytoehrome P450llEI:roles in Nitrosamine metabolism and mechanisms of regulation. Drug Metab Rev. 1990:22:147-159.
    [49] Koop DR, Oxidative and reductive metabolism by cytochrome P4502EI. FASEBJ, 1992;6:724-730.
    [50] TSukada1 H, Wang PY, Kanekol T, et al.Dietary carbohydrate intake Plays an important role in preventing alcoholic fatty liver in the rat. Journal Hepatol. 1998;29:715-724.
    [51] Korourian S, Hakkak R, Ronis MJ, et al.Diet and risk of ethanol-induced hepatotoxicity: carbohydrate-fat relationships in rats. Toxicol. Sci, 1999,47:110-117.
    [52] Andres AC and Aithur IC.Synergistic Toxieity of Iron and Arachidonic Acid in Hep G2 Cells Over expressing CYPIIE1. Mol Pharmacol. 2001,60(4):742-752.
    [53] Raucy JL, Lasker JM, Kraner JC, et al. Induction of cytochrome P450IIEl In the obese overfed rat. Mol. Pharmacol, 1991,39:275-280.
    [54] Miller KW and Yang CS.Studies on the mechanisms of induction of N- nitrosodimethylamine demethylase by fasting,acetone,and ethanol.Arch Biochem. BioPhys, 1984,229:483-491.
    [55] Song BJ, Matsunaga T, Hardwieh JP, et al. Stabilization of cytochrome P450 messenger ribonucleic acid in the diabetic rat.Mol Endoerinol, 1987,l(8):542-547.
    [56] Johansson I, Lindros KO, Eriksson H, et al.Biochem Biophys ResCommun, 1990,173,331-338.
    [57] Johansson I, Ekstrom G, Seholte B, et al. Ethanol-, fasting-, and acetone-inducible cytochromesP450 in rat liver: regulation and characteristics of enzymes belonging to the IIB and IIE gene subfamilies. Biochemistry, 1988,27,1925-1934.
    [58] Tadic SD, ELM MS, Ll HS, et al. Sex differences in hepatic gene Expression in a rat model of ethanol-induced liver in jury. JAPPI Physiol. 2002.93:1057-1068.
    [59]徐芸.RNA干扰抑制细胞色素P4502E1表达及降低减低诱导剂肝细胞毒性的研究[D].郑州:郑州大学医学院,2005.
    [60] Jones BM, Jones MK. Male and female intoxication levels for three Alcohol doses or do women really get higher than men?Alcohol Tech Rep. 1976:5:544-583.
    [61] Frezza M, DIPadova C, Pozzato G, TerPin M, Baraona E, Lieber CS. High Blood alcohol levels in women: role of decreased gastric alcohol dehydrogenase activity and first pass metabolism.New Engl J Med1990:322:95-99.
    [62] Mishra L, Sharma S, Potter JJ, Mezey E. More rapid elimination of Alcohol in Women as compared to their male siblings. Aleohol Clin Exp Res1989:13:752-754.
    [63] Shevchuk O, Baraona E, Ma XL, Pignon JP, Lieber CS. Gender differences in the response of hepatic fatty acids and cytosolic fatty acid-binding capacity to alcoho- l consumption in rats.Proc Soc Exp Biol Med1991:198:584--590.
    [64] Ma XL, Baraona E, Lieber CS. Alcohol consumption enhances fatty acidω-oxidation, with a greater increase in male than in female rats. Hepatology. 1993:18:1247-1253.
    [65] Tsutsumi M, MatsudaY, Takada A. Role of ethanol inducible cytochromeP450IIEI in the development of hepatocellular carcinoma by the chemical carcinogen N- nitorsodimethylamine Hepetology, 1993,18(6):1483-1489.
    [66] Wilson JA, Jayasena S, Khvorova A, et al. RNA interefrence blocks gene Expression and RNA synthesis from hepatitis C replicons Porpagated in human Liver cells. PNAS, 2003,100(5):2783-2788.
    [67] Lewis DL, Hagstrom JE, Loomis AG et al. Efficient delivery of siRNA for Inhibition of gene expression in Postnatal mice. Nat Genet. 2002,32(l):107-108.
    [68] Leirdal M, Sioud M. Gene silencing in mammalian cells by Preoformed Small RNA duplexes. Bioehem BioPhys Res Commun. 2002.19,295(3):744-748.
    [69] Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochromeP-450(P-45OllEI) [J]. Biochem Pharmacol, 1989,15:38(8):1313-9.
    [70] Koop DR. Oxidative and reproductive metabolism by cytochrome P4502E1 [J]. FASEB, 1992,6:724-730.
    [71] Lieber CS, Leo MA, et al. Poly Phosphatidyl choline decreases alcohol -induced oxidative stress in the baboon [J]. Aleohol Clin Exp ReS, 1997 Apr, 21(2):375-9.
    [72]方允中,郑荣梁.自由基生物学的林论与应用[M].北京:科学出版社, 2002.7.
    [73]甘华.氧自由基损伤与抗氧化剂对肾小球疾病的防治[J].国外医学-内科学分册, 1991,18(2):73-76,
    [74] Mimnaugh EG, Gram TE, Trush MA. Stimulation of mouse heart and liver Microsomal lipid peroxidation by anthraeyeline anticancer drugs: Characterization and effcets of reactive oxygen scavengers [J]. Pharmacol Expther. 1983 Sep,226(3):806-16.
    [75]杜泽吉.自由基介导的组织损伤机制[J].国外医学-卫生学分册, 1992 (2):79-83.
    [76]李如深.氧自由基致病机理与抗氧化物(-) [J].日本医学介绍, 1995,16 (6):281-283.
    [77] Clot P, Albano E, Eliasson E, et al. Cytochrome P4502E1 hydroxyethy1 Radical adduct as the majorantigen in autoantibody formation amony Alcoholics [J]. Gastroenterology, 1996,111:206-216.
    [78] Maher JJ. Alcoholic liver disease. In: Feldman M, Seharsehmidt BF, Sleisenger MH. Sleisenger & Fordtran, Gastrointestinal and Liver Disease ED. Philadephia: W.B.Sounders Company, 1998,1199-1214.
    [79] Takahashi T, Lasker J M, Rosman A S. Induction of cytochrome P-4502E1 in the human 1iver by ethanol is caused by a Corresponding increase messenger RNA [J]. Hepatology, 1993,17:236-245.
    [80] Tsutsumi M, Takada A, et al. Genetic Polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. Gastoenterology [J]. 1994,107:1430-1435.
    [81]戴宁,曾民德,邱德凯,等.酒精性脂肪肝肝细胞色素P45OZEI表达与氧化抗氧化的关系[J].中华消化杂志. 1999,19(5):312-314.
    [82]张铣,刘瘤谷.毒理学[M].第四版,北京:北京医科大学北京协和医科大学联合出版社, 1997 :61-83.
    [83] Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998;19:275-280. PMID: 9498276.
    [84] Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YL, Lu ML, et al. GSTP1 polymorphisms and gastric cancer in a high-risk Chinese population. Cancer Causes Control 2001;12:673-681. PMID: 11562107.
    [85] Fernandez-Checa JC, Hirano T, Tsukamoto H, Kaplowitz N.Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol 1993;10:469-475. PMID: 8123202.
    [86] Nebert DW. Role of genetics and drug metabolism in human cancer risk. Mutat Res 1991;247:267-281. PMID: 2011144.
    [87] Standop J, Ulrich AB, Schneider MB, Buchler MW, Pour PM. Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas. Pancreatology 2002;2:510-518.PMID:12435863.
    [88] Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991;l4:391-407. PMID: 1912325.
    [89] Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1.Mutation Research, 2005:569:101.
    [90] Jimenez JM, Cederbaum AI. Green tea polyphenol epigallocatechin-3-gallate protects Hep G2 cells against CYP2E1-dependent toxicity.Free Radical Biology & Medicine, 2004,36:359-70.
    [91] YoshijiOhta, Mutsumi Kongo-Nishimura, Yoichiro Imai, et al.α-Tocopherol protects againstα-naphthylisothiocyanate-induced hepa-totoxicity in rats less effectively than melatonin. Chemico-Biological Interactions, 2006,161:115- 24.
    [92] Xu YQ, LeoMA, Lieber CS. Lycopene attenuates arachidonic acid toxicity in Hep G2 cells over expressing CYP2E1. Biochemical and Biophysical Research Communications, 2003,303:745-50.
    [93]张铣,刘瘤谷.毒理学[M .第四版,北京:北京医科大学北京协和医科大学联合出版社, 1997 :61-83.
    [94] Nebert DW. Role of genetics and drug metabolism in human cancer risk. Mutat Res 1991;247:267-281. PMID: 2011144
    [95] Standop J, Ulrich AB, Schneider MB, Buchler MW, Pour PM.Differences in the expression of xenobiotic-metabolizing enzymes between islets derived from the ventral and dorsal anlage of the pancreas. Pancreatology 2002;2:510-518. PMID:12435863
    [96] Guengerich FP, Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 1991;l4:391-407. PMID: 1912325
    [97] Board PG, Weber GC, Coggan M. Isolation of a cDNA clone and localization of the human glutathion s-transferase 3 genes to chromosome bands 11q13 and 12q13-14.Ann Hum Genet,1989,53:205-213.
    [98] Gonzalez FJ, Korzekwa KR. Cytochromes P450 expression system. Annu Rev Pharmacol Toxicol, 1995;35:369-390.
    [99] Koop DR,Oxidative and reductive metabolism by cytochrome P4502E1. FASEBJ, 1992;6:724-730.
    [100] Hayashi S, Watanabe J, Kaname K. Genetic Polymorphism in the 5,-flanking region change transcription regulation of the human cytochrome p-45OllE1 gene [J]. Biochem, 1991,110:559-65.
    [101]聂立红,胡毅玲,王声涌.广东地区汉族人群的hGSTP1 Ile105Val基因多态性的研究.中国病理生理杂志, 2002,18:480-482.
    [102] Watson MA, Stewart RK, Smith GB, et al.Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis, 1998,19:275-280.
    [103] Harris MJ, Coggan M, Langton L, et al. Polymorphism of the Pi class glutathione S-transferase in normal populations and cancer patients. Pharmacogenetics, 1998,8:27-31.
    [104] Wilson JA, Jayasena S, Khvorova A, et al. RNA interefrence blocks gene Expression and RNA synthesis from hepatitis C replicons Porpagated inhuman Iiver cells. PNAS, 2003,100(5):2783-2788
    [105] Lewis DL, Hagstrom JE, Loomis AG et al. Efficient delivery of siRNA for Inhibition of gene expression in Postnatal mice. Nat Genet. 2002,32(l):107- 108.
    [106] Leirdal M, Sioud M. Gene silencing in mammalian cells by Preoformed Small RNA duplexes. Bioehem BioPhys Res Commun. 2002.19,295(3):744-748.
    [107] Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450(P-45OllEI)[J]. Bioehem Pharmaeol, 1989,15:38(8):1313-9.
    [108] Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998;19:275-280. PMID:9498276
    [109] Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YL, Lu ML, et al. GSTP1 polymorphisms and gastric cancer in a high-risk Chinese population. Cancer Causes Control 2001;12:673-681. PMID:11562107
    [110] Wu XF, Shi HH, Jiang H, et al. Associations between cytochrome P5402E1 genotype, mutagen sensitivity, cigarette smoking and susceptibility to lung cancer. Carcinogenesis, 1997,18:967-973.
    [111]王怀碧,叶明福,王亚丽,等. GSTP1在病变前列腺组织中的表达及意义[J].局解手术杂志, 2004,13(2):73-75.
    [112]柳忠美,邬凌燕,李彦文.谷胱甘肽S-转移酶在人体肿瘤组织中表达及意义[J].华南国防医学杂志. 2003,17(2):9-11.
    [113]王健,任金红,林斌,等.谷胱甘肽S-转移酶π研究进展[J].中国药物化学杂志. 2005 ,14 (6) :251-256.
    [114] Kolfschoten GM, Hulscher TM, Pinedo HM, et al. Drug resistancefeatures and S-phase fraction as possible determinants for drug response in a panel of human ovarian cancer xenografts[J]. Br J Cancer, 2000,83(7):921-927.
    [115]张冬,刘广贤,宋三泰.乳腺癌药物耐药与药物代谢酶的相关性[J].国际肿瘤学杂志, 2006,33(2):135-138.
    [116]秦芳,秦霞,张霞,等. P糖蛋白、谷胱甘肽S-转移酶和拓扑异构酶在胃癌组织中的表达[J].癌症, 2002,21(2):167-170.
    [117] Hsu CH , Chen CL , Hong RL , et al. Pnegnostic value of multidrug resistancel, glutathione s-transferase-p1 and p53 in advanced nosopharyngeal carcinoma treated with systemic chemotherapy[J]. Oncol ,2001,62(4):305-312.
    [118] Nelson WG, De Marzo AM, Deweese TL, et al. The molecular pathogenesis of prostate cancer: Implications for prostate cancer prevention[J]. Urol ,2001,57(4 suppl 1):39-45.
    [119] Tchou JC, Lin X, Freije D, et al. GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas[J] .Int J Oncol ,2000,16(4):663-676.
    [120] Kang GH, Lee S, Lee HJ, et al. Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia1[J]. Pathol, 2004,202(2):233-240.
    [121] Antognelli C, Mearini L, Talesa VN, et al. Association of CYP1, GSTP1 ,and PON1 polymorphisms with the risk of prostate cancer[J]. Prostate, 2005,63(3):240-251.
    [122] Srivastava DS, Mandhani A, Mittal B, et al. Genetic polymorphism of glutathione S-transferase genes (GSTM1, GSTT1 and GSTP1) and susceptibility to prostate cancer in Northern India[J]. BJU Int, 2005,95(1):170-173.
    [123]王亚林,江军.谷胱甘肽巯基转移酶基因多态性与前列腺癌风险相关性[J].临床泌尿外科杂志, 2005,20(2):123-126.
    [124]王敏,李延青,袁孟彪.代谢酶基因多态性与结直肠癌易感性[J].国外医学肿瘤学分册, 2004,31(2):148-151.
    [125] Roizen R, Kerr WC, Fillmore KM. Cirrhosis mortality and per capita consumption of distilled spirits, United States, 1949-1994: trend analysis. West J Med 1999,171:83-87.
    [126] Kerr WC, Fillmore KM, Marvy P. Beverage-specific alcohol consumption and cirrhosis mortality in a group of English speaking beer-drinking countries. Addiction 2000,95:339-346.
    [127]王宝恩,尹珊珊.酒精性肝病的流行病学[J].中华肝脏病杂志, 2001,9(5):312.
    [128]王辉,王江滨.肝炎病毒感染与酒精性肝硬化关系的研究(附182例酒精性肝病临床病例报告) [J].白求恩医科大学学报,1998,24(6):652-653.
    [129] Bellentani S, Saccoccio G, Costa G, et al. Drinking habits as cofactors of risk for alcohol induced liver damage. Gut, 1997,41:845-850.
    [130] Lieber CS. Alcohol and the liver. Gastroenterology 1994;106:1085-105. PMID:8143977
    [131] Ekstrom G, Ingelman-Sundberg M.Rat liver microsomal NADPH-supported oxidase activity and lipid Peroxidation dependent on ethanol-inducible eytochrome P-450 (P45OllEI) [J]. Bioehem Pharmaeol, 1989,15:38(8):1313-9.
    [132] Koop D R. Oxidative and reproductive metabolism by cytochrome P4502E1[J]. FASEB, 1992,6:724-730.
    [133] Rouaeh H, Fataccioli V,Genti1 M, et al, Effect of chronic ethanol Feeding in lipid peroxidation and protein oxidation in relation to 1iver pathology[J]. Hepatology,1997,65:351-355.
    [134] Kaplowitz N, Tsukamoto H.Oxidative stress and liver disease [J]. ProgLiver Dis, 1996,14:131-159.
    [135] Lieber CS, Leo MA, et al.Polyeny1 Phosphatidy l choline decreases alcohol-induced oxidative stress in the baboon[J]. Alcohol Clin Exp ReS, 1997Apr,21(2):375-9.
    [136]方允中,郑荣梁.自由基生物学的林论与应用[M].北京:科学出版社,2002.7.
    [137]甘华.氧自由基损伤与抗氧化剂对肾小球疾病的防治[J].国外医学-内科学分册, 1991,18(2):73-76.
    [138] Clot P,Albano E,Eliasson E,et al.Cytochrome P4502E1 hydroxyethyl Radical adduct as the majorantigen in auto antibody formation amony Alcoholics[J]. Gastroenterology, 1996,111:206-216.
    [139] Mahe JJ .Alcoholic liver disease.In:Feldman M,Scharsechmidt BF,S1eisenger MH.Sleisenger & Fordtran, Gastrointestinal and Liver Disease 6th ED. Philadephia: W.R. Saunders Company, 1998,11 99-1214.
    [140] Takahashi T, LaskerJ M,Rosman A S .Induction of cytochrome P-4502E1 in the human 1iver by ethanol is caused by a corresponding increase in encoding messenger RNA[J]. Hepatology, 1993,17:236-245.
    [141] Tsutsumi M, Takada A, et al.Genetic Polymorphisms of cytochrome P4502E1 related to the development of alcoholic liver disease. Gastroenterology[J]. 1994,107:1430-1435.
    [142]戴宁,曾民德,邱德凯,等.酒精性脂肪肝肝细胞色素P45OZEI表达与氧化抗氧化的关系[J].中华消化杂志. 1999,19(5):312-314。
    [143] McClain CJ, Barrve S, Deaciue I, et al. Cytokines in alcoholic liver[J]. Semin Liver Dis,1999,19(2):205-219.
    [144] Nanji AA, Jokelainen K, Fotouhinia severity of alcoholic liver injury In female rats: role of oxidative stress,endotoxin,and chemokines[J]. Am J Physiol Gastrointest liver Physiol, 2001,281:G1348-1356.
    [145] Chikano S, Sawda K, Shimuyama T, et al.Fourth IL-8 and IL-12 inducedintestinal inflammation and fatty liver in mice in an INF-gamma Dependent manner[J]. Gut,2000,47:779-786.
    [146] Nakanmra S, Otani T,Ijiri T, Motota R,et al.INF-gamma-dependent and independent mechanisms in adverse effects caused by conromitant Administration of IL-8 and IL-12[J]. Immunol, 2000,164:3:330-3336.
    [147] Szabo G, Catalano D, Bellerose G, et al.Interferon a1pha and alcoho1 augument nuclear regulatory.Factor-kappaB activation in hep G2 cell,and interferon alpha increases Pro-inflammatory cytokine production[J]. Alcohol Clin Exp Res, 2001,25:1188-1197.
    [148] Daniluk J, Szuster-Ciesielska A, Drabka J.Serum cytokine levels in a1cohol-related liver cirrhosis[J]. 2001,23:29-34.
    [149] Lieber CS. Alcohol and the liver. Gastroenterology 1994;106:1085-105. PMID: 8143977
    [150] Wacke R, Kirchner A, Prall F, Nizze H, Schmidt W, Fischer U, et al. Up-regulation of cytochrome P450 1A2, 2C9 and 2E1 in chronic pancreatitis. Pancreas 1998;16:521-528. PMID:9598815
    [151] Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 2000;378:259-268. PMID:10860543
    [152] Ingelman-Sundberg M, Ronis MJ, Lindros KO, Eliasson E, Zhukov A. Ethanol-inducible cytochrome P4502E1: regulation, enzymology and molecular biology. Alcohol Alcohol Supl 1994;2:131-139. PMID:8974327
    [153] Maher J. The CYP2E1 knockout delivers another punch: first ASH, now NASH. Alcoholic steatohepatitis. Nonalcoholic steatohepatitis. Hepatology 2001;33:311-312. PMID:11124851
    [154] Clot P, Albano E, Eliasson E, Tabone M, Arico S, Israel Y, et al. Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology1996;111:206-216. PMID:8698201
    [155] Albano E, French SW, Ingelman-Sundberg M. Hydroxyethyl radicals in ethanol hepatotoxicity. Front Biosci 1999;4:533-540. PMID:10369806
    [156] Britton RS, Bacon BR. Role of free radicals in liver diseases and hepatic fibrosis. Hepatogastroenterology 1994;41:343-348. PMID:7959569
    [157] Ketterer B. A bird's eye view of the glutathione transferase field. Chem Biol Interact 2001;138:27-42.PMID:11640913
    [158] Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 2001;360:1-16. PMID:11695986
    [159] Nelson HH, Wiencke JK, Christiani DC, Cheng TJ, Zuo ZF, Schwartz BS, et al. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis 1995;16:1243-1245. PMID:7767992
    [160] Alves-Silva J, da Silva Santos M, Guimaraes PE, Ferreira AC, Bandelt HJ, Pena SD, et al. The ancestry of Brazilian mtDNA lineages. Am J Hum Genet 2000;67:444-461. PMID:10873790
    [161] Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998;19:275-280.PMID:9498276
    [162] Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YL, Lu ML, et al. GSTP1 polymorphisms and gastric cancer in a high-risk Chinese population. Cancer Causes Control 2001;12:673-681.PMID:11562107
    [163] Fernandez-Checa JC, Hirano T, Tsukamoto H, Kaplowitz N. Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol 1993;10:469-475.PMID: 8123202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700