股骨头坏死组织中Caspase-3调控成骨细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨半胱氨酸天冬氨酸蛋白酶(Caspase)-3在无菌性股骨头坏死(Avascular/Aseptic Necrosis of Femoral Head,ANFH)进展过程中的表达及意义。
     方法:股骨头坏死患者22例(22髋)取股骨头病灶周围骨松质,其中早期组(6髋),中期组(8髋),晚期组(8髋),另取19例(19髋)新鲜股骨颈骨折的股骨头对应部位骨松质为对照组。采用原位末端标记(TUNEL)法、空骨陷窝计数法检测细胞凋亡水平,比色法检测股骨头组织Caspase-3活性,茜素红染色检测成骨细胞成骨能力。另用不同浓度的Caspase-3特异性抑制剂z-DEVD-FMK处理早期ANFH成骨细胞,RT-PCR检测Caspase-3活性抑制对成骨通路调节因子及成骨标志物mRNA水平的影响。
     结果:骨陷窝空虚率、骨细胞凋亡率等凋亡指标均随ANFH临床分期进展而显著升高,Caspase-3活性在ANFH各组均显著高于骨折对照组,但并不随着ANFH病变进展而增强;钙结节染色面积代表的成骨能力在早期ANFH组织高于对照组,同时Caspase-3活性水平升高,成骨能力及Caspase-3活性在中、晚期均进行性下降,组间差异均有统计学显著性(P<0.05);Caspase-3活性与成骨能力指标具有统计学相关性(R2=0.119,P<0.05)。用z-DEVD-FMK高度抑制Caspase-3活性致成骨指标表达显著下调,轻度抑制会提高成骨指标的表达,抑制Caspase-3活性对成骨分化调节因子Dlx5、Msx2及成骨标志物BGP的mRNA表达水平的影响较显著。
     结论:1)在ANFH进展过程中,Caspase-3对细胞凋亡有一定的促进作用;2)Caspase-3还能促进ANFH成骨细胞的成骨分化,可能通过影响成骨分化调节因子Dlx5、Msx2的表达,进而调控成骨分化;3)Caspase-3具有执行凋亡和促进成骨的双重作用,ANFH的病变进展是成骨修复先增强后减弱,而凋亡持续增强的过程,适当上调Caspase-3活性的药物或制剂可能成为早期ANFH一种新的治疗手段。
Objective To investigate the expression and role of Caspase-3 during the development of non-traumatic avascular/aseptic necrosis of femoral head(ANFH).
     Methods The femoral heads from 22 ANFH patients were devided into groupⅠ(6 cases)、Ⅱ(8 cases)、Ⅲ(8 cases)according to the progress of the disease, those from 19 patients in the acute stage of femoral neck fracture were involved as the control. The level of apoptosis was compared in terms of the percentages of TUNEL positive osteocytes and empty osteocyte lacunae,the activity of Caspase-3 was detected by colorimetric method, the capacity of osteogenesis was established by means of staining cultured osteoblasts with alizarin red S. Furthermore, the osteoblasts from the groupⅠfemoral heads were treated with the specific inhibitor of Caspase-3, and mRNA expression level of both some regulators and an osteogenesis indicating molecule were detected by means of RT-PCR.
     Results Both the pecentages of empty osteocyte lacunae and the pecentages of TUNEL positive osteocytes increased significantly with the developing of ANFH. The activity of Caspase-3 in ANFH groups were higher than in the fracture gourp significantly, but did not increase with the progress of the disease. The osteogenetic capacity in terms of the percentage of area stained by aliarin red S was even higher in groupⅠthan in control, so was the expressing level and activity of Caspase-3, both of the two index decreased with further developments of ANFH, with significant statistical differences among groups(P<0.05). Caspase-3 activity was statistically significantly related with the capacity of osteogenesis (P<0.05). Deep suppression of Caspase-3 activity led to significant down-regulation of the index of osteogensis, while modest suppresion was in favor of osteogenesis. It was the expressing level of Dlx5 and Msx2 that changes in Caspase-3 activity could affect more significantly.
     Conclusion 1) During the development of ANFH, Caspase-3 is involved in apoptosis in some degree. 2) Furthermore, Caspase-3 could also promote osteogenesis in ANFH, modulating the expression and activity of Dlx5 and Msx2 may be a pathway of regulation on osteogenesis by Caspase-3. 3) Caspase-3 acts as not only the executor of apoptosis, but also a crucial supporter of osteogenesis and repairments, the development of ANFH means the Caspase-3-activity-affected firstly increasing and secondly decreasing of osteogenetic capacity, and progressive rising of apoptosis level.
引文
1. Weinstein R.S., Nicholas R.W.,Manolagas S.C., Apoptosis of Osteocytes in Glucocorticoid-Induced Osteonecrosis of the Hip. [J]J. Clin. Endocrinol. Metab., 2000, 85(8):2907-2912.
    2. 何宇, 杨述华,梁袁昕, 创伤性股骨头坏死中骨细胞凋亡初探. [J]中国矫形外科杂志, 2005, 13(16):1238-1240.
    3. 熊明月, 王坤正,党晓谦, 早期激素性股骨头坏死骨细胞凋亡的实验研究. [J]中国修复重建外科杂志, 2007, 21(3):262-265.
    4. 郭坤亮, 安洪, 蒋电明, et al., 早期酒精性股骨头缺血坏死骨细胞凋亡的实验研究. [J]重庆医科大学学报, 2003, 28(3):313-315.
    5. Suh K.T., Kim S.W., Roh H.L., et al., Decreased Osteogenic Differentiation of Mesenchymal Stem Cells in Alcohol-induced Osteonecrosis. [J]Clin Orthop Relat Res, 2005(431):220-225.
    6. Hernigou P., Beaujean F.,Lambotte J.C., Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. 1999, 81-B(2):349-355.
    7. Mogi M.,Togari A., Activation of Caspases Is Required for Osteoblastic Differentation. [J]J Biol Chem, 2003, 278(48).
    8. Miura M., Chen X.D., Allen M.R., et al., A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. [J]J ClinInvest, 2004, 114(12):1704-1713.
    9. 金武丕, 权修权, 孟繁平, et al., 大鼠酒精性肝病细胞凋亡与细胞色素P4502E1 和 氧 化 应 激 的 关 系 . [J] 世 界 华 人 消 化 杂 志 , 2007, 15(20):2181-2185.
    10. 蒋杞英, 胡艳秋, 程相树, et al., 孕期酒精接触对子鼠视皮质神经元凋亡的影响. [J]解剖学报, 2007, 38(4):400-404.
    11. 何 宇., 杨述华,梁袁昕, 创伤性股骨头坏死中骨细胞凋亡初探. [J]中国矫形外科杂志, 2005, 13(16):1238-1240.
    12. 包倪荣, 赵建宁, 王与荣, et al., 地塞米松诱导成骨细胞凋亡. [J]南京医科大学学报(英文版), 2004, 18(5):256-261.
    13. Chua C.C., Chua B.H., Chen Z., et al., Dexamethasone induces caspase activation in murine osteoblastic MC3T3-E1 cells. [J]Biochim Biophys Acta, 2003, 1642(1-2):79-85.
    14. Liu Y., Porta A., Peng X., et al., Prevention of glucocorticoid-induced apoptosis in osteocytes and osteoblasts by calbindin-D28k. 2004, 19(3):479-490.
    15. 张 洪., 张阳德, 王大平, et al., Caspase-3、XIAP 在骨关节炎中的表达及意义. [J]中国现代医学杂志, 2008, 18(3):325-327.
    16. D'Lima D., Hermida J., Hashimoto S., et al., Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. [J]Arthritis Rheum, 2006, 54(6):1814-1821.
    17. 程涛, 戴闽, 韦金忠, et al., 无菌性松动全髋关节假体周围界膜组织中Caspase-3 表达和细胞凋亡的研究. [J]中国修复重建外科杂志, 2007, 21(8):810-813.
    18. 暴淑英, 激素性股骨头坏死的早期预测和早期联合药物的干预效应及机制研究 [D]吉林大学, 2007
    19. Shintani T.,Klionsky D.J., Autophagy in Health and Disease: A Double-Edged Sword. [J]Science, 2004, 306(5698):990-995.
    20. 张军,胡大海, AIF 诱导细胞凋亡. [J]医学分子生物学杂志, 2008, 5(1):87-90.
    21. Sperandio S., Poksay K., de Belle I., et al., Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. [J]Cell Death Differ, 2004, 11(10):1066-1075.
    22. Castedo M., Perfettini J.L., Roumier T., et al., Cell death by mitotic catastrophe: a molecular definition. [J]Oncogene, 2004, 23(16):2825-2837.
    23. Fernando P., Kelly J.F., Balazsi K., et al., Caspase 3 activity is required for skeletal muscle differentiation. [J]PNAS, 2002, 99(17):11025-11030.
    24. Okuyama R., Nguyen B.C., Talora C., et al., High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. [J]Dev. Cell, 2004, 6(4):551-562.
    25. Oomman S., Strahlendorf H., Dertien J., et al., Bergmann glia utilizeactive caspase-3 for differentiation. [J]Brain Res, 2006, 1078(1):19-34.
    26. Asakura Y., Atsumi T., Hiranuma Y., et al., Shrinkage of the necrotic lesion in stage 1 avascular necrosis of the femoral head. [J]J Bone Joint Surg Br, 2006, 88-B(SUPP_II):309.
    27. 吕,智, 刘小丽, 卫小春, et al., 股骨头坏死修复过程的动物实验. [J]实用骨科杂志, 2001, 7(6):430-433.
    28. Rasulov R.M., Kornilov N.V., Bol'shakov O.P., et al., Morphologic and morphometric characteristics of the femoral head in experimental necrosis and after incomplete occlusion of the femoral artery. [J]Morfologiia, 2004, 125(1):83-87.
    29. 李鸿帅, 张长青,曾炳芳, 酒精灭活性股骨头坏死犬模型中松质骨骨矿密度和三维结构的变化. [J]中国修复重建外科杂志, 2008, 22(3):281-289.
    30. 王江泳, 王保芝, 崔慧先, et al., 改良液氮冷冻法制备家兔股骨头坏死模型的形态学研究. [J]河北医科大学学报, 2008, 29(1):5-7.
    31. Nhan T.Q., Liles W.C.,Schwartz S.M., Physiological Functions of Caspases Beyond Cell Death [J]Am. J. Pathol., 2006, 169(3):729-737.
    32. Alliston T., Choy L., Ducy P., et al., TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. [J]EMBO J, 2001, 20(9):2254-2272.
    33. Hassan M.Q., Javed A., Morasso M.I., et al., Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2,Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. [J]Mol Cell Biol, 2004, 24(20):9248-9261.
    34. Hassan M.Q., Rahul S.T., Suk H.L., et al., BMP2 Commitment to the Osteogenic Lineage Involves Activation of Runx2 by DLX3 and a Homeodomain Transcriptional Network. [J]J. Biol. Chem, 2006, 281(52):40515-40526.
    35. Lee M.H., Kim Y.J., Yoon W.J., et al., Dlx5 specifically regulates Runx2-II expression by binding to homeodomain response elements in the Runx2 distal promoter. [J]J. Biol. Chem., 2005, 280(42):35579–35587.
    36. Ichida F., Nishimura R., Hata K., et al., Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. [J]J Biol Chem, 2004, 279(32):34015-34022.
    1. Urist M.R., Bone: formation by autoinduction. [J]Science, 1965, 150(698):893-9.
    2. Wang E.A., et al., Purification and characterization of other distinct boneinducing factors. [J]Proc. Natl. Acad. Sci. U. S. A., 1988, 85:9484-9488.
    3. Wozney J.M., et al., Novel regulators of bone formation: molecular clones and activities. [J]Science, 1988, 242:1528-1534.
    4. 杨淑野,查振刚, 转基因骨髓间充质干细胞在软骨组织工程中的研究与应用. [J]临床骨科杂志, 2007, 10(4):362-365.
    5. 林在俊, 朱振安, 孟凡琳, et al., 透明质酸对 BMP-2 转染的羊 BMSCs增殖分化的影响. [J]临床骨科杂志, 2007, 10(4):344-347.
    6. 陈东, 张鹏,刘国辉, 人工骨生物材料的研究进展. [J]临床骨科杂志, 2007, 10(4):366-369.
    7. 孙强,邱勇, BMPs 信号通路调控骨髓间质干细胞的成骨分化. [J]临床骨科杂志, 2005, 8(5):471-474.
    8. 唐德志, 王拥军,施杞, 调控骨形态发性蛋白诱导成骨的相关转录因子. [J]脊柱外科杂志, 2006, 4(6):377-380.
    9. Hassan M.Q., Javed A., Morasso M.I., et al., Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. [J]Mol Cell Biol, 2004, 24(20):9248-9261.
    10. Hassan M.Q., Rahul S.T., Suk H.L., et al., BMP2 Commitment to the Osteogenic Lineage Involves Activation of Runx2 by DLX3 and a Homeodomain Transcriptional Network. [J]J. Biol. Chem, 2006, 281(52):40515-40526.
    11. Lee M.H., Kim Y.J., Yoon W.J., et al., Dlx5 specifically regulates Runx2-II expression by binding to homeodomain response elements in the Runx2 distal promoter. [J]J. Biol. Chem., 2005, 280(42):35579–35587.
    12. Roca H., Phimphilai M., Gopalakrishnan R., et al., Cooperative Interactions between RUNX2 and Homeodomain Protein-binding Sites Are Critical for the Osteoblast-specific Expression of the Bone Sialoprotein Gene. [J]J. Biol. Chem, 2005, 280(35):30845-30855.
    13. Ichida F., Nishimura R., Hata K., et al., Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. [J]J Biol Chem, 2004, 279(32):34015-34022.
    14. Cheng S.L., Shao J.S., Charlton-Kachigian N., et al., MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. [J]J Biol Chem, 2003, 278(46):45969-45977.
    15. Hassan M.Q., Tare R., Lee S.H., et al., HOXA10 Controls Osteoblastogenesis by Directly Activating Bone Regulatory and Phenotypic Genes. [J]Molecular and Cellular Biology, 2007, 27(9):3337-3352.
    16. Torrungruang K., Alvarez M., Shah R., et al., DNA binding and gene activation properties of the Nmp4 nuclear matrix transcription factors. [J]J Biol Chem, 2002, 277(18):16153-16159.
    17. Shen Z.J., Nakamoto T., Tsuji K., et al., Negative Regulation of Bone Morphogenetic Protein/Smad Signaling by Cas-interacting Zinc Finger Protein in Osteoblasts. [J]J. Biol. Chem., 2002, 277(33):29840-29846.
    18. Morinobu M., Nakamoto T., Hino K., et al., The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein–induced bone formation. [J]J. Exp. Med., 2005, 210(6):961 - 970.
    19. Hino K., Nakamoto T., Nifuji A., et al., Deficiency of CIZ, a nucleocytoplasmic shuttling protein, prevents unloading-induced bone loss through the enhancement of osteoblastic bone formation in vivo. [J]Bone, 2007, 40(4):852-860.
    20. 潘秋辉, 杨松海, 董群伟, et al., BMP2/7 异源二聚体调控 CIZ 的表达与自身活性的关系. [J]中国生物工程杂志, 2007, 27(9):14-18.
    21. Yang L., Cai C.L., Lin L., et al., Isl1Cre reveals a common Bmp pathway in heart and limb development. [J]Dev., 2006, 133(8):1575-1585.
    22. Renard C.A., Labalette C., Armengol C., et al., Tbx3 Is a Downstream Target of the Wnt/?-Catenin Pathway and a Critical Mediator of ?-Catenin Survival Functions in Liver Cancer. [J]Cancer Res, 2007, 67(3):901-910.
    23. Kristen E.G., Seong K.L.,Robert B.C., Whole genome microarray analysis of growth hormone-induced gene expression in bone: T-box3, a novel transcription factor, regulates osteoblast proliferation. [J]Am J Physiol Endocrinol Metab, 2006, 291:128-136.
    24. Lee H.S., Cho H.H., Kim H.K., et al., Tbx3, a transcriptional factor, involves in proliferation and osteogenic differentiation of human adipose stromal cells. [J]Mol Cell Biochem, 2007, 296(1-2):129-136.
    25. Fan W.W., Huang X., Chen C., et al., TBX3 and its isoform TBX3 + 2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. [J]Cancer Res, 2004, 64:5132–5139.
    26. Hay E., Lemonnier J.,Marie P.J., Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent , protein kinase C-dependent signaling pathway. [J]J Biol Chem, 2001, 276(31):29028-29036.
    27. Hay E., Lemonnier J., Fromigue O., et al., Bone morphogenetic protein receptor IB signaling mediates apoptosis independently of differentiation in osteoblastic cells. [J]J Biol Chem, 2004, 279(3):1650-1658.
    28. 刘敏, 廖二元, 周后德, et al., 核结合因子促进骨髓间质细胞 MBA-1凋亡. [J]中南大学学报(医学版), 2006, 31(1):14-18.
    29. Mogi M.,Togari A., Activation of Caspases Is Required for Osteoblastic Differentiation. [J]J. Biol Chem, 2003, 278(48):47477–47482.
    30. Miura M., Chen X.D., Allen M.R., et al., A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. [J]J ClinInvest, 2004, 114(12):1704-1713.
    31. Fernando P., Caspase 3 activity is required for skeletal muscle differentiation. [J]Proc. Natl. Acad. Sci. U. S. A., 2002, 99:11025–11030.
    32. Okuyama R., High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. [J]Dev. Cell, 2004(6):551-62.
    33. Oomman S., Strahlendorf H., Dertien J., et al., Bergmann glia utilize active caspase-3 for differentiation. [J]Brain Res, 2006, 1078(1):19-34.
    34. Rohn T.T., Cusack S.M., Kessinger S.R., et al., Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. [J]Exp Cell Res, 2004, 295(1):215-25.
    35. Nhan T.Q., Liles W.C.,Schwartz S.M., Physiological Functions of Caspases Beyond Cell Death [J]Am. J. Pathol., 2006, 169(3):729-737.
    36. Ryoo H.D., Bergmann A., Gonen H., et al., Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. [J]Nat Cell Biol, 2002, 4(6):432-438.
    37. Kuo C.T., Zhu S., Younger S., et al., Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. [J]Neuron, 2006, 51(3):283-290.
    38. Huh J.R., Vernooy S.Y., Yu H., et al., Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. [J]PLoS Biol,, 2004, 2(1):0043-0053.
    39. Guo M., Baehrecke E.H.,Hay B.A., The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process [J]Development, 2006, 133:3305-3315.
    40. Arama E., Bader M., Srivastava M., et al., The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. [J]EMBO, 2006, 25(1):232-243.
    41. Arama E., Agapite J.,Steller H., Caspase activity and a specificcytochrome C are required for sperm differentiation in Drosophila. [J]Dev. Cell, 2006, 4(5):687-697.
    42. KuranagaE., Kanuka H., Tonoki A., et al., Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. [J]Cell, 2006, 126(3):583-596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700