修饰和表面改性啤酒废酵母吸附金属离子的作用及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展,大量重金属废水的排放严重污染了环境,因此急切需要一种高效的水处理方法。微生物吸附法作为一种新型的水处理方法,具有原材料来源丰富、处理成本低、效率高、不会造成二次污染等优点,受到广泛的关注。
     在众多的生物吸附剂中,选用了啤酒废酵母作为吸附剂的原材料,其表面富含羟基、氨基、羧基等官能团,并且分布广、繁殖快,原材料廉价、易得,这可以大大的降低实际水处理的成本。另一方面,啤酒废酵母作为一种生物吸附剂也面临着机械强度差、吸附容量较低、吸附干扰大、吸附选择性差、再生较困难等多种问题。
     很多文献报道了用酸化、碱化、交联等简单的物理化学方法来改善酵母性能,结果均不理想。针对以上问题,本论文对失活的微生物表面修饰或改性制备成新的吸附剂对金属离子的吸附开展了以下研究:
     1、以胱氨酸和戊二醛制备了聚合物包裹的啤酒废酵母,用显微镜、红外、XPS对废酵母进行了表征,同时用滴定法测定了废酵母表面的氨基含量。研究了修饰废酵母和未修饰废酵母对Hg(Ⅱ)和Cd(Ⅱ)两种重金属离子的吸附行为,包括吸附溶液的不同酸度,吸附动力学,金属离子溶液浓度等。其中重点考察了它对这两种金属离子的吸附模式,结果表明,Langmuir最适合模拟修饰废酵母对两种金属离子的吸附模式。依据Langmuir等温式,修饰废酵母对Hg(Ⅱ)和Cd(Ⅱ)的吸附容量分别为42.34 mg·g-1和15.15 mg·g-1,明显的高于未修饰废酵母。而且滴定分析结果表明:啤酒废酵母表面氨基的量是0.54mmol·g-1,修饰啤酒废酵母表面氨基的量为0.89mmol·g-1,修饰后细胞表面的氨基提高了1.6倍。胱氨酸修饰的啤酒废酵母处理含Hg(Ⅱ)模拟水样,Hg(Ⅱ)去除率达86.60%。
     2、将胱氨酸修饰啤酒废酵母应用于氧化铝负载钴基催化剂样品中贵金属Pt(Ⅳ)的吸附。通过修饰废酵母对Pt(Ⅳ)吸附前后的XPS能谱N谱图分析表明,吸附主要依赖于氨基。研究了溶液pH、吸附时间、Pt(Ⅳ)的初始浓度以及溶液中存在Al(Ⅲ)和Co(Ⅱ)等主要因素对吸附剂选择性吸附Pt(Ⅳ)的影响。结果表明,在pH1.0的条件下,吸附平衡时间为60min,Pt(Ⅳ)的浓度为86.60mg·L-1,溶液中250倍的Al(Ⅲ)和75倍的Co(Ⅱ)不影响Pt(Ⅳ)的吸附与测定,可选择性的吸附Pt(Ⅳ)。最大吸附量为20.36 mg·g-1,是啤酒废酵母(5.08 mg·g-1)的4倍。
     3、啤酒废酵母等吸附剂因其表面细胞的电负性而对重铬酸根等金属阴离子吸附效果不好,采用酸化和Fe(Ⅲ)改性啤酒废酵母表面电负性的方法制得对Cr(Ⅵ)吸附容量大,机械强度高的改性废酵母表面的吸附剂。研究了用于改性废酵母的金属离子的选择,改性废酵母对Cr(Ⅵ)吸附的不同影响因素。从啤酒废酵母、酸化废酵母、改性废酵母的对比可以看出,pH2.0~6.0的溶液中,吸附剂的吸附能力没有很大的改变;吸附时间在50min基本达到吸附平衡,吸附过程符合准二级动力学方程;Langmuir适合模拟改性废酵母对Cr(Ⅵ)的吸附模式,吸附量达12.98 mg·g-1。Fe(Ⅲ)改性啤酒废酵母对电镀废水中Cr(Ⅵ)的去除率达97.90%。
With the development of the industry, the environment was contaminated by heavy metal ions, so it is urgent to find an efficient method to deal with it. Biosorption, as a new method is a potential method for the removal of heavy metal ions due to the low cost, abundant source, high efficiency and no second pollution.
     Among the biosorbents, waste beer’s yeast was used to be researched. It has abundant functional groups such as: hydroxyl, amide, carboxyl etc. Additionally, waste beer’s yeast was wide-spread and easy availability. Due to the poor mechanical strengthen, low adsorption ability, bad selectivity and difficult regeneration, the practical use was limited.
     Many literatures had reported that treating the biomass with the simple physical chemistry method such as acid, alkali or crosslinker treatments could improve the performance of the biomass, but the results were not satisfied. According to these problems, the main work about the biosorbent for metal ions are summarized as follows:
     1、The surface of dried biomass of waste beer’s yeast was modified by crosslinking cystine with glutaraldehyde. X-ray photoelectron spectroscopy, FTIR and microscope were used to characterize the modified biomass. The factors, including pH, initial metal ions concentration and adsorption time, which can influence the adsorption capacity for Hg(Ⅱ) and Cd(Ⅱ) , were studied. The adsorption behavior especially, the adsorption isotherms of the modified and unmodified biomass were investigated, and Langmuir, Fruendlich, Temkin and Dubinin-Radushkevich models were used to fit the isotherm, and Langmuir model gave the best fitness. According to Langmuir model, the adsorption capacities of the modified biomass for Hg(Ⅱ) and Cd(Ⅱ) were 42.34 mg·g-1 and 15.15 mg·g-1, respectively, which is higher than the unmodified biomass. The result of amount of–NH3 indicated that the surface of modified biomass of–NH3(0.89mmol ? g-1) was about 1.6 times higher than that of the unmodified biomass(0.54mmol ? g-1). By reaching the request of simulated wastewater the adsorption rate of Hg(Ⅱ) was 86.60%.
     2、The modified cystine of waste beer’s yeast was used to adsorption the Pt(Ⅳ), which was from Co/Al2O3 catalyst. Through the adsorbent on the Pt(Ⅳ) before and after adsorption, spectroscopy XPS analysis showed that the adsorption mainly depended on the amino. The major affect factors of Pt(Ⅳ) selective absorded on sorbent were investigated, including pH, original concentration of Pt(Ⅳ) , adsorption time , Al(Ⅲ) and Co(Ⅱ) existed in solution and so on. The results show that the optimal adsorption conditions as follows: the solution pH was at 1.0, the adsorption time was for 60 min, and the concentration of Pt(Ⅳ) was 86.60 mg·L-1, and Al(Ⅲ) and Co(Ⅱ) could not influence on adsorption. The highest adsorbing capacity is 20.36 mg·g-1 under the conditions. It is about 4 times higher than that of the unmodified biomass (5.08 mg·g-1).
     3、Because of effect of anionic charge on the biomass surface, the adsorption of waste beer’s yeast for Cr(Ⅵ) is bad. In this study, the surface of waste beer’s yeast with higher mechanical strength and changing electronegative was prepared by using acid and Fe(Ⅲ) solution through a simple method. The factors, including choosing of metal ions,the amount of the modified biomass, which can influence the adsorption capacity for Cr(Ⅵ), were studied. Compared with the non-modified biomass, acid biomass, and modified biomass, the adsorption behaviour was affected little by pH. It applied use to waste water in the range from pH2.0 to pH6.0. The completion of the adsorption process needed for 50 min. The adsorption process followed the pseudo second-order kinetics. The adsorption for Cr(Ⅵ) fitted Langmuir monolayer model. The highest adsorbing capacity was 12.98 mg·g-1 under the conditions. The adsorption rate for Cr(Ⅵ) in electroplating wastewater of modified Fe(Ⅲ)–modified waste beer’s yeast was 97.90%.
引文
[1] Banat,I.M.,Nigam,P.,Marchant,R.,Microbial decolorization of textile-dyecontaining effluents: a review, Biores. Technol., 1996, 58:217-27.
    [2] Brown, B., Absanullah, M., Effects of heavy metals on mortality and growth, Mar. Pollut. Bull., 1971, 2: 182-187.
    [9] Augustoda, C. A. C., de Franca F., P., Cadmium uptake by Spinlina maxima: toxicity and mechamism, World J. Microb. Biot., 1998, 14:579-581.
    [10] Raize, O., Argaman, Y., Yannai, S., Mechanisms of Biosorption of Different Heavy Metals by Brown Marine Macroalgae, Biotechnol. Bioeng., 2004, 87: 451-458.
    [11] Puranik P. R., Paknikar, K. M., Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM, B-181: Characterization Studies, Biotechnol. Prog., 1999, 15: 228-237.
    [12] Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., Marhaba, T. F., Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresource Technol., 2006, 97:2321-2329.
    [13] Lu, W. B., Shi, J. J., Wang, C. H., Chang, J. S., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance, J. Hazard. Mater., 2006, 134:80-86.
    [14] Hawari, A. H., Mulligan, C. N., Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass, Bioresource Technol., 2006, 97:692-700.
    [15] Sheng, P. X., Ting, Y. P., Chen, J. P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interf. Sci., 2004, 275:131-141.
    [16]许旭萍,沈雪贤,陈宏靖.球衣菌吸附重金属Hg2+的理化条件及其机理研究.环境科学学报, 2006.26 (3) : 453–458
    [17]苏秀娟,朱一民,沈岩柏,魏德洲,韩聪.悬浮酵母菌对重金属Hg(Ⅱ)的吸附机理.安全与环境学报,6(6):67-70
    [18]徐雪芹,李小明,杨麒.丝瓜瓤固定简青霉吸附废水中Pb2+和Cu2+的机理.环境科学学报, 2008,(01):95-100
    [19]夏彬彬,仲崇斌,魏德州,程静,王秀兵.胶质芽孢杆菌对Zn2+、Cd2+的生物吸附.生物技术, 2008,(03):80-84
    [20]马卫东,顾国维,海洋巨藻生物吸附对Hg2+吸附性能的研究.上海环境科学.2001,20(10):489-494
    [21]张宁,张璟,欧仕益,汪,勇,包惠燕,麦麸发酵副产物清除重金属离子汞的研究.食品与发酵工业.2004.30(12):52-54
    [22]杜宝山,张玉玲.JYZ0315菌吸附水体中Cr(Ⅵ)、Cd(Ⅱ)共存重金属离子.2007,30(12):14-15
    [23]石杰,张宗培,韩润平.酵母菌对Cr (Ⅵ)的生物吸附作用的二苯卡巴肼光度法研究.分析测试学报.2007.20(4):22-25
    [24]张慧,李宁,戴友芝,唐受印,固定化Aspergillussp.吸附Cr(Ⅵ)的实验研究.化工进展,2005,24(3):322-328
    [25]周鸣,刘云国,李欣.地衣芽孢杆菌(Bacillus licheniformis)对Cr6+的吸附动力学研究.应用与环境生物学报.2006, 12(1):84~87
    [26]陈小霞,梁世中,吴振强.固定化小球藻去除Cr6+的研究.海洋通报,2002,21(5): 32-37
    [27]王永强,藻类清除水中微量Cr+6的研究.污染防治技术,1992,01:39-41
    [28]陈尔余,用新型改性沸石处理含Ni2+电镀废水的研究.材料保护,2007,40(2):55-61
    [29]郑礼胜,王士龙,颜世柱,用陶粒处理含镍废水的试验研究.农业环境保护1999 , 18 (5) : 231~233
    [30]刘峙嵘,韦鹏,曾凯,pH和离子强度对泥煤吸附镍的影响.煤炭学报,2007,32(8): 854-859
    [31]张东,苏会东,高虹.火焰原子吸收法研究纳米钛酸锶钡粉体对铅的吸附性能[J].光谱学与光谱分析, 2008,(01):218-221
    [32]胡巧开,揭武,翟荣,用粉煤灰和鸡蛋壳处理酸性含镉废水.粉煤灰综合利用2006,6: 41-42
    [33]周利民,刘峙嵘,黄群武,用粉煤灰吸附废水中的金属离子.化工环保,2006,26(6):506-509
    [34]郜瑞莹,王建龙.酿酒酵母生物吸附Cu2+的动力学及吸附平衡研究[J].应用与环境生物学报, 2007,(06):848-852
    [35]黄民生,郑乐平,朱莉,微生物对重金属的吸附与解吸,化工装备技术,2000,21:17-22.
    [36]刘文群,真菌对微量元素铁、锌、硒生物富集作用的研究,环境与开发, 2000, 15: 3-4.
    [37] Matheickal, J. T., Yu, Q. M., Biosorption of cadmium from aqueous solutions by pretreated biomass of marine alg durvillaaea potaiorum, Water Res., 1999, 33: 335-342.
    [38] Gomes Serrano, V., Macias Garcia, A., Adsorption of mercury, cadmium and lead from aqueous on heat treated and sulphunzed activated carbon, Water Res., 1998, 31: 1-4.
    [39]谢冬瑾,卢永.吸附法固定化白腐真菌的研究.化学与生物工程, 2008,(01):40-42
    [40] Golab, Z., Breitenbach, M., Sites of copper binding in Streptomyces pilosus, Water Air Soil Pollut., 1995, 82: 713-721.
    [41]潘响亮,王建龙,张道勇,硫酸盐还原菌群胞外聚合物对Cu2+的吸附和机理,水处理技术, 2005, 31: 35-39.
    [42] Hosea, M., Greene, B., Mcpherson, R., Bacterial sorption of heavymetals, Environ. Sci. Technol., 1986, 20: 627-632.
    [43] Kuyucek U,Volesky,B,Biorechnol,Bioeng,1989,33:823,831
    [44] Mashnah,M,D,zulfadhly,Z,Bhatia,S,al,cells,Blood,Subs,andimmob,Brorech, 1999,27,58,61:441-448
    [45] Kapoor,A,Viraraghavan,T,Biotechnol,,Prog,1995,13: 60-70
    [46] Matheickal, J. T., Yu, Q.Dev,Chem, Eng,Miacall,Process,1997, 30: 101-114.
    [47] Brady J M,Tobia,J M,Enzy,Microbial Technol,1995,17:791-796
    [48]王中华,庄源益,余颖,改性树脂NKZ对水溶性染料的吸附特性研究,安全与环境学报, 2002, 2: 27-32.
    [49] Zhao, B. X., Wang, P., Zheng, T., Chen C., Shu J., Preparation and adsorption performance of a cellulosic-adsorbent resin for copper (II), J. Appl. Polym. Sci., 2008, 99: 2951-2956.
    [50]余颖,庄源益,谷文新,树脂NKY对染料活性艳蓝KN–R的吸附特性,离子交换与吸附, 2000, 16: 432-440.
    [51] Sciban, M. B., Klasnja, M. T., Adsorption isotherms of chromium ions (Cr6+) from water on some natural materials, Acta Periodica Technologica, 2000, 79: 298.
    [52] Nasir, K., Shujaat, A., Seema, N. K., Jamil, A., Removal of Lead from aqueous using rice husk, Sep. Sci. Technol., 1998, 33: 2349-2350.
    [53]王格慧,宋湛谦,多氨型螯合棉纤维的制备与吸附性能研究,林产化学与工业, 2002, 6: 9-12.
    [54] Delval, F., Crini, G., Janus, L., Vebrel, J., Morcellet, M., Novel crosslinked gels with starch derivatives. Polymer-water interactions, Applications in waste water treatment, Macromol. Symp., 2001, 166: 103-108.
    [55] Crini, G., Morin-Crini, N., Badot, P.M.,. Adsorption of toxic aromatic derivatives on polysaccharide gels, Hydrosciences, 2002, 133: 58-61.
    [56] Delval, F., Crini, G., Vebrel, J., Knorr, M., Sauvin, G., Conte, E., Starch-modifiedfilters used for the removal of dyes from waste water, Macromol. Symp., 2003, 203: 165-171.
    [57]李杰,王志盈,毛玉红.固定化微生物抗Cr6+毒性能力及其去除特性研究.中国给水排水, 2008,(01): 98-101
    [58]季靓,相波,李倩倩,改性玉米淀粉对重金属捕集性能的研究,工业水处理, 2006, 12: 41-43.
    [59]邹新喜,二性淀粉螯合剂吸附性能的研究,功能高分子学报, 1996, 9: 468.
    [60]胡中爱,张伏龙,羧基淀粉接枝聚合物对重金属离子的吸附速率方程,高等学校化学学报, 1993, 12: 1752-1755.
    [61]范建凤,王保鱼,壳聚糖对化学镀镍废液中Ni2+的吸附,工业水处理, 2007, 27: 46-48.
    [62]朱媛媛,蒋新元,胡迅.生物质材料在重金属废水处理中的应用.环境保护科学, 2008,(01): 9-12
    [63]沈萍,微生物学,2007年7月第一版,高等教育出版社,38页.
    [64]黄淑惠,细菌固定金属的作用机制,环境科学学报,1992,19: 173-208.
    [65]张云松,王仁国,陈沿利,童冬梅,雷三忠.乙醇和氢氧化钠预处理对面包酵母菌吸附Cu2+的影响.环境化学, 2008,(02): 206-209
    [66] Augustoda, C. A. C., de Franca F., P., Cadmium uptake by Spinlina maxima: toxicity and mechamism, World J. Microb. Biot., 1998, 14: 579-581.
    [67] Raize, O., Argaman, Y., Yannai, S., Mechanisms of Biosorption of Different Heavy Metals by Brown Marine Macroalgae, Biotechnol. Bioeng., 2004, 87: 451-458.
    [68] Iyer, A., Mody, K., Jha, B., Biosorption of heavy metals by a marine bacterium, Mar. pollut. Bull., 2005, 50: 340-343.
    [69] Sevgil, S., Donmez, G., Bioaccumulation of reactive dyes by thermophilic cyanobacteria, Process Biochem., 2006, 41: 836-841.
    [70]黄民生,施华丽,郑乐平,曲霉对水中重金属的吸附去除,上海环境科学, 2002, 21: 89-92.
    [71] Ruchi, G., Saxena, R. K., Rani, G.., Fementation waste of aspergillus terreus, a potential copper biosorption, World J. Microb. Biot., 2002, 18: 397-401.
    [72]吴涓,李清彪,白腐真菌吸附铅的研究,微生物学报,1999, 39: 87-90.
    [73]王喜,甘树应,废啤酒酵母吸附水溶液中Cu2+的性能及机理研究.中国生物工程杂志, 2008,(03): 64-68
    [74]代淑娟,魏德洲,周冬琴,水洗预处理对啤酒废酵母吸附电镀废水中镉的影响.有色金属,2008,(01):120-124
    [75]孙伟峰,周素梅,王强.废啤酒酵母综合利用研究进展.化工进展,2008,(07):990-1000
    [76]徐慧,刘建军,赵祥颖.啤酒废酵母的资源化利用.中国酿造, 2008,(12): 4-7
    [77]张云松,王仁国,代先祥.修饰作用对面包酵母细胞形貌及其吸附Cu2+性能的影响比较.环境科学学报, 2008,(05): 897-901
    [78]吴涓,李清彪,黄孢原毛平革菌吸附铅离子机理的研究,环境科学学报, 2001, 21: 291-295.
    [79] Lucas, M.S., Amaral, C., Sampaio, A., Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila, Enzyme Microb. Tech., 2006, 39: 51-55.
    [80] Inbaraj, B. S., Chiu, C. P., Ho, G. H., Removal of cationic dyes from aqueous solution using an anionic poly-γ- glutamic acid- based adsorbent, J. Hazard. Mater., 2006, 137: 226-234.
    [81]李延斌,高保娇,安富强.表面接枝聚乙烯亚胺硅胶微粒对铬酸根的吸附特性.环境化学, 2008,(04): 463-467
    [82] Da Costa,A. C .A., De Franca, F. D., The behavior of the microalgae Tetraselis chuii in cadmium contaminated solution, Aquacult. Internat., 1998, 6: 57-66.
    [83] Schiewer, S., Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass, J. Appl. Phycol., 1999, 11: 79-87.
    [84] Esteves, A. J. P., Valdman, E., Leite, S. G. F., Repeated removal of cadmium and Zinc from and industrial effluent by waste biomass Sargassum. Sp., Biotechnol. Lett., 2000, 22: 499-502.
    [85]张建策,毛立新,表面改性对活性炭吸附重金属性能的影响,化工时刊, 2005, 19: 28-29.
    [86]王桂芳,包明峰,韩泽志,活性炭对水中重金属离子去除效果的研究,环境保护科学,2004,122: 26-29.
    [87] Kobya, M., Demirbas, E., Senturk, E., Ince, M., Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Biores. Technol., 2005, 96: 1518-1521.
    [88] El-Ashtoukhy, E. S. Z., Amin, N. K., Abdelwaha, O., Removal of lead (II) and copper (II) from aqueous solution, using pomegranate peel as a new adsorbent, Desalination, 2008, 223: 162-173.
    [89] Wang, S., Terdkiatburana, T., Tad′e M. O., Single and co-adsorption of heavy metals and humic acid on fly ash, Sep. Purif. Technol., 2008, 58: 353-358.
    [90] Papandreou, Stournaras, A., C. J., Panias, D., Copper and cadmium adsorption on pellets made from fired coal fly ash, J. Hazard. Mater., 2007, 148: 538-547.
    [91] Alinnor I. J., Adsorption of heavy metal ions from aqueous solution by fly ash, Fuel, 2007, 86: 853-857.
    [92] Al-Ghoutia, M. A., Khraishehb, M. A.M., Tutuji, M., Flow injection potentiometric stripping analysis for study of adsorption of heavy metal ions onto modified diatomite, Chem. Eng. J., 2004, 104: 83-91.
    [93] Ouki, S. K., Kavannagh, M., Treatment of metals-contaminated waste waters by use of natural zeolites, Wat. Sci. Tech., 1999, 39: 115-122.
    [94] Kocaoba, S., Orhan, Y., Akyüz, T., Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite, Desalination, 2007, 214: 1-10.
    [95]陈洁,鲁安怀,姚志健,天然铁的硫化物处理含Pb(Ⅱ)废水的实验研究,岩石矿物学杂志, 1999, 18: 323-328.
    [96]赵宝秀,王鹏,郑彤,舒静,新型重金属吸附树脂的微波合成及性能研究,材料科学与工艺, 2006, 14: 432-435.
    [97] Arslanoglu, H., Altundogan, H. S., Tumen, F., Preparation of cation exchanger from lemon and sorption of divalent heavy metals, Bioresource Technol., 2008, 99: 2699-2705.
    [98] Chen, C. Y., Lin, M. S., Hsu, K. R., Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups, J. Hazard. Mater., 2008, 152: 986-993.
    [99] Meesri, S., Praphairaksit, N., Imyim, A., Extraction and preconcentration of toxic metal ions from aqueous solution using benzothiazole-based chelating resins, Microchem. J., 2007, 87: 47-55.
    [100] Gurgel, L. V. A., Junior, O. K., Gil, R. P. F., Gil, L. F., Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride, Bioresource Technol., 2008, 99: 3077-3083.
    [101] Zhou, D., Zhang, L., Zhou, J., Guo, S., Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Res., 2004, 38: 2643-2650.
    [102] Okieimen, F. E., Sogbaike, C. E., Ebhoaye, J. E., Removal of cadmium and c opper ions from aqueous solution with cellulose graft copolymers, Sep. Purif. Technol., 2005, 44: 85-89.
    [103] Chen, A. H., Liu, S. C., Chen, C. Y., Chen C. Y., Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater., 2008, 154: 184-191.
    [104] Trimukhe, K. D., Varma, A. J., Complexation of heavy metals by crosslinked chitin and its deacetylated derivatives, Carbohyd. Polym., 2008, 71: 66-73.
    [105]胡慧玲,苏敏刚,徐江萍,改性壳聚糖的制备及对Cu2+ Pb2+的吸附研究,离子交换与吸附, 2007, 23: 274-251.
    [106] Ariff, A. B., Mel, M., Hasan, M.A., Karim, M.I.A., The kinetics and mechanism of lead(II) biosorption by powderized Rhizopus oligosporus, World J. Microbiol. Biotechnol., 1999, 15: 292-298.
    [107] Matheickal, J.T., Yu, Q., Biosorption of lead (II) and copper (II) from aqueous solutions by pre-treated biomass of Australian marine algae, Bioresour. Technol., 1999, 69: 223-229.
    [108] Veglio, F., Beolchini, F., Gasbarro, A., Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp., Process Biochem., 1997, 32: 99-105.
    [109] Pagnanelli, F., Esposito, A., Toro, L., Veglio, F., Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model, Water Res., 2003, 37: 627-633.
    [110] Puranik P. R., Paknikar, K. M., Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM, B-181: Characterization Studies, Biotechnol. Prog., 1999, 15: 228-237.
    [111] Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., Marhaba, T. F., Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresource Technol., 2006, 97: 2321-2329.
    [112] Lu, W. B., Shi, J. J., Wang, C. H., Chang, J. S., Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance, J. Hazard. Mater., 2006, 134: 80-86.
    [113] Hawari, A. H., Mulligan, C. N., Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass, Bioresource Technol., 2006, 97: 692-700.
    [114] Sheng, P. X., Ting, Y. P., Chen, J. P., Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interf. Sci., 2004, 275: 131-141.
    [115] Wang, S., Li, H., Xu, L., Application of zeolite MCM-22 for basic dye removal from wastewater, J. Colloid Interf. Sci., 2006, 295: 71-78.
    [116] Wang, S., Zhu, Z.H., Effects of acidic treatment of activated carbons on dye adsorption, Dyes Pigments 2007, 75: 306-314.
    [117] Bhatnagar, A., Jain, A. K., A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, J. Colloid Interf. Sci., 2005, 281: 49-55.
    [118] S., Wang, M., Soudi, Li, L., Zhu, Z. H., Coal ash conversion into effective a dsorbents for removal of heavy metals and dyes from wastewater, J. Hazard. Mater., 2006, 133: 243-251.
    [119] Tsai, W. T., Hsien, K. J., Yang, J. M., Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution, J. Colloid Interf. Sci., 2004, 275: 428-433.
    [120] Shawabkeh, R. A., Tutunji, M. F., Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 2003, 24: 111-120.
    [121] Al-Ghouti, M. A., Khraisheh, M. A. M., Allen, S. J., Ahmad, M. N., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth, J. Environmen. Manage., 2003, 69: 229-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700