酸王(Malus domestica cv.‘Avrolles’)自然休眠解除后生理生化变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验于2006年~2009年在山东泰安小津口苹果园和山东农业大学园艺实验站进行,以能避过晚霜危害,比金冠、富士、瑞林等晚萌发20天左右的酸王苹果(Malus domestica cv.‘Avrolles’)为试材,以瑞林(Malus domestica cv.‘Judeline’)作对照,探讨了酸王自然休眠解除至萌发过程中的生态学(光照和温度)和生理生化变化(内源激素、呼吸代谢、抗氰呼吸、活性氧代谢和酚类物质等),主要结果如下:
     1、利用光照培养箱清水扦插法和水分状态法界定酸王自然解除休眠的时间为1月底(泰安),瑞林为12月底,酸王比瑞林晚一个月左右,用0~7.2℃模型估算酸王解除自然休眠的需冷量为1200~1500 h,瑞林为600~850 h,酸王是瑞林的2倍左右。物候观察表明,酸王在泰安4月中下旬萌发,瑞林在3月中下旬萌发,以5℃作为苹果休眠解除积累有效积温的起始温度,估算酸王萌发所需有效积温(∑T,℃)为320~380℃,瑞林(∑T)为100~150℃,酸王是瑞林的3倍左右;以生长度小时(GDH℃)计算需热量,酸王萌发时(露绿)需热量为7800~9300 GDH℃,瑞林为4500~5500 GDH℃,酸王是瑞林的1.7倍左右,表明酸王萌发不但需要较高的需冷量,而且需要较高的热量。补充酸王的需冷量,能减少萌发的需热量,但并非对等关系,补充5d和10d需冷量仅能替代80%、60%的需热量,日照长短对萌发的影响不大。
     2.内源激素测定结果表明,随着自然休眠的解除,芽内生长促进型激素GA3、IAA和ZR逐步升高,生长抑制型激素ABA逐步下降。在整个萌发过程中,酸王芽内GA3的浓度显著高于同时期的瑞林,萌发前GA3及GA3/ABA分别是瑞林的1.55和2.08倍;酸王芽内ZR的浓度积累上升时间比瑞林长26d, ZR及ZR/ABA分别是瑞林的2.12倍和1.55倍,(GA3 + IAA + ZR)/ABA是瑞林的1.59倍,表明酸王萌发需要较高浓度的GA3、ZR等生长促进型激素;萌发时较高浓度的GA3和ZR使酸王的GA3/ABA、ZR/ABA、(GA3 + IAA + ZR)/ABA比值显著高于瑞林。
     3、酸王的总呼吸和EMP途径呼吸强度低于瑞林,最高点分别是瑞林的84.6%和84.7%;PPP途径增加的时间比瑞林长21d,且运行活性高于瑞林,上升幅度是瑞林的2.02倍;随着芽自然休眠解除和萌发的进行,作为呼吸底物的可溶性糖含量升高,淀粉含量下降,酸王芽内可溶性糖含量显著低于同时期的瑞林。
     4、加入电子传递途径的抑制剂KCN和SHAM,芽内呼吸减弱,表明芽内同时存在细胞色素途径和抗氰呼吸途径,且细胞色素途径呼吸及细胞色素途径呼吸对总呼吸的贡献率(ρ’Vcyt/Vt)始终高于抗氰呼吸,表明细胞色素途径仍是电子传递的主要途径。酸王芽内抗氰呼吸的速率、抗氰呼吸对总呼吸的贡献率(ρValt/ Vt)及抗氰呼吸的实际运行系数(ρ)在整个萌发过程中始终高于瑞林,表明酸王芽的萌发需要较高活性的抗氰支路传递电子并提供抵御外界低温的能量。
     5、在萌发的过程中,酸王芽内O2-的产生速率及H2O2的水平均低于瑞林,抗氧化酶活性及抗氧化物质含量也低于瑞林,表明酸王芽内活性氧代谢水平低于瑞林。萌发过程中O2-.主要来自于线粒体呼吸电子渗漏,POD主要在萌发前期清除H2O2,而CAT主要在萌发后期;抗氧化物质谷胱甘肽(GSH)和抗坏血酸(AsA)在萌发过程中逐步上升,表明在清除活性氧的过程中启动了抗坏血酸-谷胱甘肽循环。
     6、随着休眠的加深,芽内总酚含量及PAL酶活性上升;随着休眠解除总酚含量下降,PAL酶活性下降,PPO酶活性上升,表明总酚是芽萌发的抑制物。酸王芽内的总酚含量比瑞林高25%左右,在萌发过程中PAL和PPO酶活性高于瑞林,表明酸王的晚萌发与总酚的代谢有关。利用液相色谱检测到六种单酚:没食子酸,表儿茶素、槲皮素、根皮素、阿魏酸和绿原酸,其中槲皮素含量最高,其次是(-)表儿茶素,没食子酸含量最少,酸王芽内(-)表儿茶素含量是瑞林的1.31倍,根皮素含量是瑞林的76.8%。阿魏酸随着休眠的加深而升高,并随萌发而降低,是萌发的抑制物。
This experiment was carried out in‘xiaojinkou’apple orchard of Tai’an and Horticultural experiment station of Shandong Agricultural University from 2006 to 2009. Avrolles (Malus domestica), which germinates 20d later than some other apple varieties (such as Golden Delicious, Fuji, Judeline(Malus domestica), etc.) and can avoid late frost damage, was used to research the ecological features (light and temperature) and physiological and biochemical changes (endogenous hormones, respiratory metabolism and phenolic substances, etc.) from natural dormancy releasing to germination. Taking Judeline for control, the main results were as follows:
     1. Methods of water cultivation in the artificial lighting incubator and water state determination were used to test the dormancy state of Avrolles and Judeline. The date of bud dormancy releasing of Avrolles was at the end of January, while Judeline at the end of December, one-month difference between the two varieties. Using 0~7.2℃model to estimate the chilling requirement of natural dormancy releasing, Avrolles’chilling requirement (1200~1500 h) was, about two times higher than that of Judelin (600~850 h). The phenological observation showed that Avrolles geminated at mid-and-late April, while Judeline at mid-and-late March. 5°C was usually treated as the initial temperature to calculate the efficiently accumulative temperature of germination. The sum of efficiently accumulative temperature (∑T) was 320~380°C and 100~150℃for Avrolles and Judeline, respectively. When growth degree hours (GDH℃) was used to calculate the heat requirement of germination, Avrolles was 7800~9300 GDH℃at the green opened in buds, which was 1.7 times higher than that in Judeline. These showed that Avorlles required not only higher chilling requirement, but also higher heat requirement. The heat requirement of germination in Avrolles reduced when the chilling requirement was added, but the relation was not reciprocity, adding more 5d and 10d chilling requirement, the heat requirement only replaced 80% and 60%, respectively. The length of sunshine had little effect on germination.
     2. The content of endogenous hormone in buds showed that growth-promoting hormones, such as GA3, IAA and ZR, increased while growth-inhibiting hormones, such as ABA, declined, with the natural dormancy released. During the procedure of germination, GA3 concentration of Avrolles was significantly higher than that of Judeline at the same period. In addition, GA3 concentration and the ratio of GA3/ABA were 1.55 and 2.08 times higher than that of Judeline before germination, respectively. The time for ZR concentration increasing in Avrolles was 26d longer than in Judeline. The value of ZR and ZR/ABA were 2.12 and 1.55 times higher than that of Judeline, respectively, while the ratio of GA3 + IAA + ZR)/ABA was 1.59 times as large as that of Judeline. That indicated that a relatively higher concentration of growth-promoting hormones (GA3, ZR etc. ) was required in the germination process of Avrolles, which led to the high ratio of GA3/ABA, ZR/ABA and (GA3 + IAA + ZR)/ABA, compared with Judeline
     3. The total and EMP respiration intensity of Avrolles were less than that of Judeline, only 84.6% and 84.7% at the highest point, respectively. PPP accumulation in Avrolles was 21 days longer than that in Judeline. Furthermore, the running activity was higher and the increased amplitude was 2.02 times than that in Judeline. With the bud dormancy releasing and germination proceeding, the content of soluble sugar which as the substrate of respiration, increased, while starch content declined for transforming into soluble sugars. Soluble sugar content of Avrolles was significantly lower than that of Judeline at the same period.
     4. The respiration rate of buds declined with adding inhibitor of electron transfer (KCN and SHAM), which implied the existence of both cytochorome pathway and cyanide-resistant pathway in the buds. In contribution rate to total respiration (ρ’Vcyt/Vt), the cytochorome pathway was always higher than cyanide-resistant pathway, which indicated that cytochorome pathway was the main electron transfer pathway. During the whole germination process, the respiration rate of cyanide-resistant pathway,ρValt/Vt and the coefficient of running(ρ)in buds of Avrolles were always higher than that of Judeline, which indicated that the germination of Avrolles required high activity of electron transfer in cyanide-resistant pathway to supply energy to resist the low external temperature.
     5. Compared with Judeline, Avrolles had the low O2-. production and H2O2 level, and the activity of antioxidase and content of substance resisting oxidation in the process of germination, which indicated that the metabolism rate of active oxygen in the buds of Avrolles was lower than that of Judeline. O2-. mainly comes from the electron leak of mitochondrion respiration. POD played an important role in eliminating H2O2 at the early stage of germination, while CAT at the late stage of germination. Content of GSH and AsA increased in the process of germination which indicated that the AsA-GSH Cycle had been started in the process of the elimination of active oxygen.
     6. With the dormancy deepening, content of total phenolics and activity of PAL rised. As the dormancy released, content of total phenolics and activity of PAL declined while activity of PPO increased, which indicated that total phenolics was a germination inhibitor. Compared with Judeine, Avrolles had the high the content of total phenolics, the activity of PAL and PPO, of which the total phinolics content was 25% higher. That indicated that the late-germination of Avrolles was related to metabolism of total phenolics. By HPLC, the content of six monophenols, i.e. gallic acid, epicatechin, meletin, phloretin, ferulic acid and caffetannic acid, were measured. The content of meletin followed by epicatechin was the highest, while the content of gallic acid was the lowest. The content of epicatechin in the buds of Avrolles was 1.31 times higher than that of Judeline, the content of phloretin was 76.8% lower than that of Judeline. The content of ferulic acid increased as the dormancy strengthened while it declined in the process of germination, which indicated that ferulic acid was an inhibitor of germination.
引文
毕磊.梨休眠特性及解除休眠的研究[D].保定:河北农业大学.2006
    程建军,王震新,于静海.苹果梨和鸭梨酶促褐变机理的研究[J].食品科学. 2000, 21 (2):71-73
    陈登文.杏品种的低温需求量研究[J].西北植物学报.1999, (2 ): 297-331
    陈登文,王飞,高爱琴,李嘉瑞.休眠期间低温累积对杏枝芽生理生化的影响[J].西北植物学报.2000,20(2):212-217
    段成国.甜樱桃花芽自然休眠期内源激素发生及调控研究[D].泰安:山东农业大学. 2004
    段成国,李宪利,高东升,刘焕芳,李萌.剥鳞和激素处理对大樱桃花芽休眠解除及内源激素变化的影响[J].西北植物学报. 2004b, 24(4):615-620
    段成国,李宪利,刘焕芳,高东升,李萌.摘叶对大樱桃休眠花芽内源激素及活性氧代谢的调控[J].中国农业科学.2005, 38 (1):203-207
    傅爱根,王爱国,罗广华.大豆萌发过程的活性氧代谢[J].热带亚热带植物学报. 1997, 5 (4):32-38
    高东升.落叶果树自然休眠生物学研究[D].泰安:山东农业大学. 2001
    高东升,束怀瑞,李宪利.几种适宜设施栽培果树需冷量的研究[J].园艺学报.2001,28 (4): 283-289
    高东升,束怀瑞,李宪利.几种落叶果树H2O2含量变化与自然休眠关系的研究[J].园艺学报. 2002, 29 (3):209-213
    高东升,束怀瑞,李宪利,陈学森.桃自然休眠过程中外源激素对花芽碳水化合物的调控效应[J].果树学报.2002,18(2):104-107
    高东升,李宪利,束怀瑞.化学脱叶对桃自然休眠的调控效应[J].果树学报. 2002, 19 (4):269-271
    高俊凤.植物生理学实验指导[M].北京:高等教育出版社. 2006
    葛会波,李青云,陈贵林,张广华,李世一.草萄休眠过程中内源激素含量的变化[J].园艺学报.1998,25(1):89-90
    郭先峰,张玉龙,刘和.丹霞苹果树体器官中酚类物质含量的年变化[J].果树学报. 2004, 21(6):606-608
    韩碧文.《植物生长与分化》[M].北京:中国农业大学出版社. 2003:198-219
    韩浩章,姜卫兵,费宪进,曹晶,李刚.石灰氮和水杨酸对油桃金山早红花芽休眠的影响[J].江苏农业学报.2007a,23(1):58-62
    韩浩章,姜卫兵,费宪进,曹晶,李刚.葡萄和油桃自然休眠解除过程中H2O2含量和抗氧化酶活性的变化[J].南京农业大学学报.2007b,30(1):50-54
    何军贤,韦振泉,梁厚果.水分胁迫对小麦抗氰呼吸途径发生、运行及基因表达的影响[J].中国科学(C辑).1999a,29(4):407-412
    何军贤,韦振泉,林宏辉,梁厚果.水分胁迫对小麦幼苗抗氰呼吸和交替氧化酶基因表达的影响[J].植物学报. 1999b, 41(3):340-342
    胡瑞兰,贾永祥.影响温室桃成熟期的因子研究[J].山西果树. 2002, 89 (3): 4-5
    黄亚辉,粟本文,郑红发,曾贞,刘霞林.茶树春梢萌动期间内源激素含量的变化(简报) [J].植物生理学通讯. 2001,37(4):306-307
    黄骥,候夫云,王建飞,张红生.高等植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因的不同进化起源[J].植物学通报. 2005, 22 (2): 138-146
    黄骥,王建飞,张红生.植物戊糖磷酸途径及其两个关键酶的研究进展[J].植物学通报. 2004,21(2):139-145
    姜云天,曲柏宏,陈艳秋.果树冻害机理及防寒农业措施研究进展.吉林师范大学学报(自然科学版) [J]. 2006,1:38-40
    江泽平.栓皮栎叶芽休眠解除过程的模拟[J].地理研究. 1994,13(1):43-50
    江泽平.温带木本植物芽休眠的解除与温度[J].林业学.1995,31(2):160-168
    鞠志国.酚类物质与梨果实质量的研究进展[J].莱阳农学院学报.1988a , 5 (3): 59-65
    鞠志国.莱阳茌梨酚类物质合成的调节及其对果实质量的影响[J].中国农业科学. 1993,26(4):44-48
    鞠志国,朱广廉.莱阳茌梨苯丙氨酸解氨酶基本特性的研究[J].莱阳农学院学报. 1988 b, 5(1):1-5
    孔英珍,周功克,崔凯荣,王亚馥,李红玉.盐逆境下转基因耐盐小麦与其受体呼吸途径的动态变化[J].应用生态学报. 2000,11(6):873-877
    孔英珍,周功克,崔凯荣,王亚馥.盐胁迫下导入外源DNA小麦新品系生理特性与呼吸途径的变化[J].植物学报. 2001,43(3):249-255
    冷平,张国军,吴晓芸,齐建勋.秋冬季节柿属植物树体内酚类物质含量的变化[J].中国农业大学学报. 2001,6(1):63-67
    雷韬,袁澍,刘文娟,梁厚果,林宏辉.交替氧化酶结构和功能研究进展[J].西北植物学报. 2006,26(3):0649-0654
    李德全,高辉远,孟庆伟.植物生理学[M].北京:中国农业出版社.1999
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社. 2000
    李红玉,周功克,胡铁强,孟雪琴,万东石,沈喜,毕玉蓉,郭进魁,梁厚果,张立新.抗氰交替途径参与马铃薯软腐病菌对马铃薯块茎的侵染[J].西北植物学报. 2000, 20 (6): 997-1002
    李红玉,周功克,郭进魁,梁厚果.抗氰交替途径对寄主植物感病性的调节[J].生物物理学报. 1999,15(3):565-572
    李焕秀,王乔春,李春秀.犁芽和茎尖多酚氧化酶活性和总酚含量的初步研究[J].四川农业大学学报. 1994,2(2):218-222
    李宏博,刘延吉,李天来. GA3对辽东楤木种子解除休眠中信号分子变化的影响[J].园艺学报. 2006, 33(2):414-416
    李霞.呼吸代谢对甜樱桃自然休眠的调控及破眠技术研究[D].泰安:山东农业大学2004
    李霞,李宪利,高东升.落叶果树芽休眠期的呼吸变化[J]..山东农业大学学报(自然科学版). 2003,34(2):185-188
    李晓东.休眠“蔡家坡”蒜内源激素水平的变化规律[J].园艺学报. 1996, 23(2): 150-154
    李岩,王少敏.果树晚霜冻害的特点及预防措施[J].河北果树. 2002,2:30-31
    李政红,高东升,李宪利.桃芽自然休眠与两条主要电子传递途径变化的关系[J].植物生理与分子生物学学报. 2006,32(2):156-162
    李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社. 1996
    林植芳,李双顺,张东林,林桂珠,李月标,刘淑娴,陈绵达.采后荔枝果皮色素、总酚及有关的酶活性的变化[J].植物学报. 1988,30(1):40-45
    林植芳,李双顺,林桂株,郭俊彦.衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系[J].植物生理学报. 1988, 14(1): 16-22
    刘艳萍.百合鳞茎低温解除休眠过程中生理生化变化研究[D].哈尔滨:东北林业大学. 2007
    乜兰春,孙建设,辛蓓,吕新琼.苹果果实酶促褐变底物及多酚氧化酶活性的研究[J].园艺学报. 2004,22(4):36-39
    宁伟,范文丽,李宏博,刘延吉,葛晓光.变温及GA3处理对辽东楤木种子解除休眠过程中代谢调控的影响[J].园艺学报. 2006, 33(3):649-652
    潘换来,潘小刚,范婷.果树晚霜冻害的防御[J].果农之友. 2008,1:26-26
    潘根生,沈生荣,吴伯千,钱利生.茶树新梢生育过程内源激素水平的变化[J].茶叶科学. 1997,17(增刊):86-91
    潘根生,沈生荣,吴伯千,钱利生.茶树新梢生育的内源激素水平及其调控机理(第一报)茶树新梢生育过程激素水平的季节变化[J].茶叶. 2000a,26(3): 139-143
    潘根生,沈生荣,吴伯千,钱利生.茶树新梢生育的内源激素水平及其调控机理(第二报)茶树休眠与内源激素的关系[J].茶叶. 2000b,26(4):200-204
    庞发虎,杜俊杰,刘飞.杏树休眠期枝芽内抗氧化系统酶活性变化的研究[J].湖北民族学院学报(自然科学版). 2004,22(4):27-30
    浦心春.结篓草种子休眠过程中呼吸途径的研究[J].草业学报. 1996 (3): 56-60
    邵浩,马锋旺.梨树花芽休眠解除与活性氧代谢的关系[J].植物生理与分子生物学学报. 2004,30 (6):660-664
    申小丽,杨昌军,杨尤玉,冯道霞.赤霉素抑制草莓休眠和促进开花实验[J].贵州农学院学报. 1996,15 (3):43-45
    沈元月,郭家选,祝军.早熟桃品种需冷量和需热量的研究初报[J].中国果树. 1999,2:20-21
    宋凤鸣,郑重,葛秀春.酚类物质在棉花对枯萎病抗性中的作用[J].应用与环境生物学报.1997,01:23-26
    宋烨.苹果加工品种生物学特性研究[D]泰安:山东农业大学. 2006
    孙海峰,吕海涛,周莎莎,代庆海,周亚平,戴洪义. HPLC法测定苹果浓缩汁中的多酚类物质[J].食品科学. 2008,29 (4):314-317
    孙红梅,李天来,李云飞.低温解除休眠过程中百合鳞茎不同部位内源激素的变化.中国观赏园艺研究进展.北京:中国林业出版社. 2004a:403-409
    孙红梅,李天来,李云飞.低温解除休眠过程中兰州百合鳞茎酚类物质含量及相关酶活性变化[J].中国农业科学. 2004b,37(11):1777-1782
    孙红梅,李天来,李云飞.百合鳞茎发育过程中碳水化合物含量及淀粉酶活性变化[J].植物研究.2005,25(1):59-63
    孙红梅,李天来,李云飞.内源ABA对兰州百合鳞茎顶芽内物质变化的调节作用[J].林业科学. 2006,42(10):19-23
    孙红梅,张月,王春夏,赵波,陈丽静,王锦霞.低温贮藏过程中百合鳞茎内酚类物质的高效液相色谱法测定[J].河北农业大学学报. 2008,31(1):65-69
    谭志一,董毅敏,高秀英,房耀仁.毛白杨冬芽休眠解除过程中脱落酸及赤霉素含量的变化[J].植物学报. 1985, 27(4):381-386
    汤佩松.高等植物呼吸代谢途径的调节控制和代谢与生理功能间的相互制约[J].植物学报. 1979,21(2):93-104
    田莉莉,方金豹,顾红,陈锦永.化学物质打破葡萄休眠的应用效果初报[J].西北植物学报. 2003, 23(6):997-1000
    涂炳坤,丁小飞.香椿芽休眠萌发期间内源激素和碳水化合物的变化[J].林业科学. 2003,39(4):159-161
    涂炳坤,丁小飞.化学药剂对香椿休眠解除的影响及其机理[J].园艺学报. 2003, 30 (5):606-608
    王爱国,关云凌,刘淑娴,邵从本,罗广华.水稻萌发过程的呼吸途径与器官生长关系[J].植物生理学通讯. 1981(1):31-34
    王爱国,罗广华.植物的超氧物自由基与羟氨反应的定量关系[J].植物生理学通讯. 1990(6):55-57
    王海波.桃芽自然休眠诱导与短时间高温破眠机制研究[D].乌鲁木齐:新疆农业大学. 2006
    王海波,高东升,王孝娣,李疆.短时间高温处理下桃芽淀粉和可溶性糖含量变化与自然休眠解除的关系[J].果树学报. 2005, 22(6):615-619
    王海波,李疆,王孝娣,短时间高温处理下桃芽酚类物质及相关酶活性与休眠解除的关系[J].果树学报. 2006a, 23(3):365-369
    王海波,高东升,王孝娣,李疆.赤霉素和脱落酸与桃芽自然休眠诱导[J].果树学报. 2006b, 23(4):599-601
    王海波,王孝娣,高东升,李疆.油桃芽高温处理后酚和活性氧与休眠解除的关系[J].园艺学报,2006c,33(5):963-958
    王建,王九龄,魏刚.银杏种子生长、脱落及其与激素含量变化的关系[J].林业科学研究. 2001, 14(1):106-109
    王力荣,朱更瑞,左覃元.中国桃需冷量研究[J].园艺学报. 1997, 24(2):194-196
    王力荣,朱更瑞,方伟超,左覃元.桃品种需冷量评价模式的探讨[J].园艺学报. 2003, 30 (4): 379-383
    王勇,宋宇琴,韩玉虎,田建保,程恩明.核桃枝条中总酚、黄酮类化合物含量研究[J].果树学报. 2007,24(5):626~629
    王忠.植物生理学[M]北京:中国农业出版社2000
    魏海蓉.甜樱桃芽酚类物质变化规律及其对自然休眠的调控[D].泰安:山东农业大学. 2005
    魏海蓉,高东升,李宪利.甜樱桃芽酚类物质含量及相关酶活性变化与自然休眠的关系[J].园艺学报. 2005, 32(2):197-201
    吴步科,桃休眠过程中活性氧代谢及其信号转导作用研究[D].兰州:甘肃农业大学. 2006
    吴强,李红玉,张立新,梁厚果.环境胁迫与植物抗氰呼吸[J] .西北植物学报. 2003, 23 (1):164-170
    吴强,冯汉青,李红玉,万东石,贾秋珍,李敏权,粱厚果.条锈病侵染对小麦抗氰呼吸和活性氧代谢的影响[J].植物病理学报. 2006,36(1):49-56
    吴月燕,吴秋峰.温室葡萄休眠期不同阶段保温的生化反应[J]..果树学报. 2003, 20 (1):31-34
    吴月燕.化学药剂与GA3对休眠期葡萄内源激素及碳水化合物分布和萌芽的影响[J].浙江大学学报(农业与生命科学版). 2004, (2):197-201
    夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国农业科学. 1988, 21(5):39-43
    肖纯,张凯农. Folin试剂测定茶中酚类化合物[J].茶叶通讯. 1995, 3: 29-31
    徐向荣,王文华,李华斌.比色法测定Fenton反应产生的羟自由基及其应用[J].生物化学与生物物理进展. 1999, 26(1): 67-69
    薛应龙,欧阳光察.植物抗病的物质代谢基础[M].余叔文主编.植物生理与分子生物学.北京:科学出版社. 1998, 770-783
    晏婴才.不同温度胁迫与水杨酸处理对烟草愈伤组织抗氰呼吸的影响及其交替氧化酶基因表达的分子生物学研究[D].成都:四川大学. 2002
    杨晓玲,张培玉,郭明军,项殿芳,齐永顺.山楂种子酚类物质含量与休眠的关系[J].园艺学报. 1997, 24(24):393-394
    杨晓玲,张建文,刘永军,郭守华,刘贵荣,程秀娟.马铃薯块茎发芽过程中酚类物质含量及相关酶活性的变化[J].植物生理学通讯. 2002, 38(4):347-348
    袁敏,张铭光,康经武,李菊白.植物生长激素的毛细管胶束电动色谱法分离[J].色谱. 1997,15 (6):482-485
    张昂.葡萄冬芽打破休眠过程中抗氧化机制及次生代谢的研究[D].杨凌:西北农林科技大学. 2008
    张年辉,韦振泉,何军贤,梁厚果.小麦幼苗叶片抗氰呼吸对轻度水分胁迫的回应[J].西北植物学报. 2001, 21(1):21—25
    赵会杰,林学梧,史宏旨.酚类化合物对大豆的生理调节作用和增产效应[J].作物学报. 1995, 21(3):351-354
    赵世杰.植物生理学实验指导[M].北京:中国农业科技出版社, 1998
    赵永华,杨世林,刘惠卿,刘铁城.西洋参种子休眠解除与磷酸戊糖途径关系的研究[J].中草药. 2001, 32(3):259-261
    郑冰,杨海新,何金兰.毛细管电泳定量分析植物激素[J].分析化学研究简报. 1999, 27 (6): 704 -707
    周功克,文江祁,梁厚果.低温胁迫下植物线粒体膜与抗氰呼吸的关系[J].生命科学. 2000, 12 (1):7-9
    周功克,李红玉,文江祁,孔英珍,梁厚果.低温胁迫下甘肃黄花烟草愈伤组织的抗氰呼吸[J].植物学报. 2000a, 42 (7):679-683
    周功克,孔英珍,李红玉,文江祁,梁厚果.烟草愈伤组织继代培养期间呼吸途径与活性氧水平动态变化[J].应用生态学报. 2000b, 11(6):885-888
    周功克,孔英珍,李红玉,文江祁,梁厚果.烟草愈伤组织在热胁迫过程中活性氧与抗氰呼吸变化的关系[J].植物生理学报. 2000c, 26(3):241-246
    朱永亮,吴贯明.杨树芽休眠及其解除过程中内源激素的动态分析[J].南京林业大学学报, 1990,14(1):7-15
    Alexopoulosa A A., Aivalakis G , Akoumianakisa K A., Passama H C. Effect of gibberellic acid on the duration of dormancy of potato tubers produced by plants derived from true potato seed. Postharvest Biology and Technology, 2008, 49: 424-430.
    Anderson J L. Modelling strategy in pomology: development of the Utah Models. Acta. Hort. 1992, 313: 297-306
    Anderson J V, Gesch R W, Jia Y, Chao W S, Horvath D P. Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ. 2005, 28: 1567–1578
    Angela Sauter, Suzanne R Abrams, Wolfram Hartung. Structural requirements of abscisic acid and its impact on water flow during radial transport of ABA analogues through Maize roots. Journal of Plant Growth Regulation. 2002, 21(1) : 50-59
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress and signaling transduction. Annu.Rev. Plant Biol. 2004, 55:373-399
    Arora R, Rowland L J, Tanino K. Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience.2003,38(5): 911- 921
    Aue H L, Lecomte I, Gendraud M and Petel G. Change in plasma membrane ATPase activity during dormancy release of vegetative peach-tree buds. Physiologia Plantarum. 1999, 106:41-46
    Bandel M and Schütz W. Temperature effects on dormancy levels and germination in temperate forest sedges (Carex). Plant Ecology. 2005, 176:245-261
    Banda T, Schwartz M W, Caro T. Effects of fire on germination of Pterocarpus angolensis. Forest Ecology and Management. 2006, 233:116–120
    Bartoli C G, Gomez F, Gergoff G, Guiamet J J, Puntarulo S. Up-regulation of the mitochondrial alternative oxidase pathway enchances photosynthetic electron teansport under drought conditions. J Exp Bot. 2005, 56:1269-1276
    Bartolini S, Vitagliano C, Cinelli F. Effect of hydrogen cyanamide on apricot bud break and catalase activity. Acta Hort. 1997,4(11):159-166
    Baz A L O. Some physiological studies on endodormancy in Mitchamr peach cultivarⅡ. Determination of some endogenous growth substances in relation to bud endodormancy and burst. Ann. Agric. Sci., 1984, 22(1) : 297-306
    Benkeblia V. Low Temperature and Breaking of Dormancy Effects on Respiration Rate, Sugars, Phenolics and Peroxidase Activity Changes in Inner Buds of Onion Allium cepa L[J]. Act Agriculturae Scandinavica. B. 2003, 53 (1): 16-20
    Benkeblia V, Shiomi N. Chilling effect on soluble sugars, respiration rate, total phenolics reroxidase activity and dormancy of onion bulbs. Sci Agric. 2004, 61 (3):281-285
    Blanpied G D. A study of ethylene in apple, red raspberry and cherry [J]. Plant Physiol. 1972,49:627-630
    Brady S M and McCourt P.Hormone Cross-Talk in Seed Dormancy. J Plant Growth Ragul. 2003, 22:25-31
    Bogatek R, Come D, Corbineau F, Ranjan R, Lewak S. Jasmonic acid affects dormancy and sugar catabolism in germinating apple embryos. Plant Physiol. Biochem. 2002, 40: 167–173
    Brain D Baldwin, Manjula S. Bandara, Karen K, Tanino. Role of bud scales and phytohormones in the maintenance and release of endodormancy in field-grown Saskatoon berry floral buds. Acta Hort. 2000, 520:209-218.
    Coseteng M Y, Lee C Y. Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. Journal of Food Science, 1987, 52(4): 985-989.
    Couvillon B A, and Erez A. Effect of level and duration of high temperatures on rest in the peach. J. Amer. Soc. Hort. Sci. 1985,110(4): 579-581
    Crisoto C H, Lombard P B, Fuchigami L H. Fall echelon delays bloom in‘Redheaven’peach by delaying flower differentiation and development during dormancy [J]. J. Amer. Soc. Hort. Sci. 1989,114:881-884
    Cvirkova M, Sukhova L, Eder J. Possible involvement of abscissic acid ethylene and phenolic acids in potato tuber dormancy. Plant Physiology and Biochemmistry. 1994, 32:685-691
    Erez A. and Lavee S. The effect of climate condition on dormancy development of peach buds.Ⅰ: Temperature. J. Amer. Soc. Hort. Sci.,1971,112(4):677-680
    Erez A., Couvillon G.A., and Hendershott C H. The effect of cycle length on chilling negation by high temperature in dormant peach leaf buds. J. Amer. Soc. Hort. Sci. 1979,104: 573-576
    Erez A and Couvillon G A. A characterization of the influence of moderate temperatures on rest completion in peach, J. Amer. Soc. Hort. Sci. 1986,112(4) : 677-680
    Egea J, Ortega E, Martinez-Gomez P and Dicenta F. Chilling and heat requirements of almond cultivars for flowering. Environmental and Experimental Botany .2003, 50:79-85
    Faust M, Erez A, Rowland L J, Wang S Y. and Norman H A. Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance, and release. HortScience, 1997, 32(4): 623-629
    Faust M, Liu D, S.Y. Wang and Stutte G W. Involvement of apical dominance in winter dormancy of apple buds. Acta Hort. 1995, 395:47~56
    Faust M., Liu D, Millard M.M. and Stutte G.W. Bound versus free water in dormant apple buds-A theory for endodormancy.HortScience,1991,26:887-890
    Faust M., Liu D, Line M J, and Stutee G W. Conversion of bound to free water in endodormant buds of apple is an incremental process. Acta. Hort. 1995, 395: 113-118
    Fernández H, Pérez1 C, Revilla M.A, Pérez-García1 F. The levels of GA3 and GA20 may be associated with dormancy release in Onopordum nervosum seeds. Plant Growth Regulation. 2002,38:141-143
    Fishman S, Erez A. and Couvzillon G A.The temperate dependence of dormancy breaking in plants: computer simulation of process studied under controlled temperature. J. Theor. Biol.1987,126(3): 309-321
    Fuchigami L H and Nee C C. Degree growth stage model and rest-breaking mechanisms in temperate woody perennials. HortScience,1987,22(5)836-845
    Fukai S, Kanechika R, Hasegawa A. Effect of low temperature on breaking dormancy and flowering of Arisaema sikokianum (Araceae). Scientia Horticulturae. 2006, 111:97–100
    Fumio T, Kenji T, Akiniro I. Protein changes in the flower buds of Japanese pear during breaking of dormancy by chilling or high-temperature treatment. J Amer. Soc. Hort. Sci. 1998,123(4): 532-536
    Garcia-Gusano Marta, Martinez-Gomez P, Dicenta F. Breaking seed dormancy in almond (Prunus dulcis (Mill.) D.A. Webb). Scientia Horticulturae. 2004, 99: 363–370
    Gariglio N, Gonzalez R D E., Mendow M, Reig C, Agusti M. Effect of artificial chilling on the depth of endodormancy and vegetative and flower bud break of peach and nectarine cultivars using excised shoots. Scientia Horticulturae. 2006, 108:371–377
    Gubler F, Millar A A and Jacobsen J V. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology, 2005, 8:183-187
    Halaly T, Pang X Q, Batiko V T, Crane O, Keren A, Venkateswar J, Ogrodovitch A, Sadka A, Lavee S, Venkateswar E O. Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta. 2008, 228:79-88
    Hanninen H. Modeling bud dormancy release in trees from cool and temperature regions. Acta Forest Fennica. 1990,213: 1-47
    Heide O M and Prestrud A K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology. 2005, 25: 109-114
    Horvath D P., Anderson J V, Chao W S, Foley M E. Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science. 2003,8:534-540
    Howe G.T., Davis J., Jeknic Z., Chen T.H.H., Frewen B., Bradshaw H.D and Saruul P. Physiological and genetic approaches to studying endodormancy - releated traits in Populus. HortScience , 1999, 34: 1174-1184
    Juszcuk I M, Rychter A M, Alternative oxidase in higher plants. Acta Biochinica Polanica. 2003, 50(4):1257-1271
    Kamenetsky R, Barzilay A, Erez A, Halevy A H. Temperature requirements for floral development of herbaceous peony cv.‘Sarah Bernhardt’. Scientia Horyiculturae. 2003, 97: 309-320
    Kamenesky R, Zemah H, Ranwala A P, Vergeldt F, Ranwala N K, Miller W B, As H V and Bendel P. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytologist. 2003, 158:109-118
    Kepczyn′ski J, Kepczyn′ska E. and Bihun M. The involvement of ethylene in the release of primary dormancy in Amaranthus retroflexus seeds. Plant Growth Regulation. 2003,39: 57–62
    Kermode A R. Role of Abscisic Acid in Seed Dormancy. Journal of Plant Growth Regul, 2005. 24:319-344
    Kiener C M, Beramlage W J. Temperature effects on the activity of the alternative respiratory pathway in chill-sensitive Curcumas sativus. Plant Physiol. 1981, 68:1474-1478
    Koornneef M, Alonso-Blanco C, Blankestijnde Vries H, Genetic interactions among late-flowering mutants of Arabidopsis. Genetica. 1998, 148 (2):885-892
    Koornneef M, Bentsink L, Hilorst H. Seed dormancy and germination. Curr Opin Plant Biol. 2002, 5:33-36
    Kuroa H, Sugiura T, Ito D. Changes in hydrogen peroxide content in flower buds of Japanese pear (Pyrus pyrifolia Nakai.) in relation to breaking of endodormancy. J Jpn Soc Hortic Sci. 2002,71(5):610-616
    Kubota N,Yamane Y,Toriu K. Identification of active substances in garlic responsible for breaking bud dormancy in grapevines[J].J Jpn Soc Hort Sci.1999,68(6):1111-1117
    Lang G A et al. Endo-, para- and ecodormancy: physiological terminology and classification for dormancy research. Hort Science,1987,22(3):371-377
    Langens-Gerrits M M, Miller W B M, Croes A F and Klerk G J. Effect of low temperature on dormancy breaking and growth after planting in lily bulblets regenerated in vitro. Plant Growth Regulation. 2003, 40: 267–275
    Lavee S and May P. Dormancy of grapevine buds facts and speculation. Australian Journal of Grape and Wine Research. 1997, 3: 31-46.
    Leslie, H. Fuchigami and Cheng-Chu Nee. Degree growth stage model and rest-breaking mechanisms in temperature woody perennials. HortScience. 1987, 22(5):836-845
    Li B and Foley M E. Genetic and molecular conteol of seed dormancy. Trend in plant science. 1997, 2(10):384-389
    Liu D, Faust M, Millard M M and Stutte G W. States of water in summer -dormant apple buds determined by proton magnetic resonance imaging. J. Amer. Soc. Hort. Sci. 1993, 118: 632-637
    Marquat C, Vandamme M, Gendraud M. Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Scientia Horticulture, 1999,79:151-162
    Melo-Abreu J P D, Barranco D, Cordeiro A M., Tous J, Rogado B M., Villalobos F J. Modelling olive flowering date using chilling for dormancy release and thermal time. Agricultural and Forest Meteorology 2004, 25 : 117–127
    Millenar F F, Jenschop J J, Wagner AM, Lambers H. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiquinone pool and the activation state of the alternative oxidase. Plant Physiol.1998,118:599-607
    Mizuno M, Tada Y, Uchii K, Kawakami S, Mayama S. Catalase and alternative oxidase cooperatively regulate programmed cell death induced by betaglucan elicitor in potato suspension cultures. Planta. 2005, 220:849-853
    Muthalif M M and Rowland L.G. .Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry(Vaccinium, section Cyanococcus). Plant Physiol. 1994, 104:1439-1447
    Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Mol Biol.1998,49:249-279
    Nir G, Shulman Y, Fanbersein L. Changes in the activity of Catelase(EC1.11.1.6) in relation to the dormancy of grapevine (Vitis Vinifera L.) buds. Plant Physiol. 1986, 81: 1140-1142
    Nir G, Lavee S. Metabolic changes during Cyanamide induced dormancy release in grape vine [J]. Acta Hort.1992,329:271-274
    Nomura K, Ikegami A, Koide A, Yagi F. Glutathione transferase, but not agglutinin, is a dormancy-related protein in Castanea crenata trees. Plant Physiology and Biochemistry. 2007, 45:15-23
    Olsen J E. Mechanisms of dormancy regulation. Acta Horticulturae. 2006, 727: 157-165
    Ortter C J, Goussand PG. Effects of hot water treatments on bud burst and rooting of grapevine cuttings. Vitis.1980,10:1-3
    Parmentier Cecile M., Rowland Lisa J., and Line Michael J. Water status in relation to maintenance and release from dormancy in blueberry flower buds. J. Amer. Soc. Hort. Sci. 1998,123(5): 762-769
    Parry T O, Dormancy of trees in winter. Science, 1971,171: 23-36
    Perez F J, Vergara R, Rubio S. H2O2 is involved in the dormancy-breaking effect of hydrogen cyanamide in grapevine buds. Plant Growth Regul. 2008 55:149–155
    Pe′rez F J, Lira W. Possible role of catalase in post-dormancy bud-break in grapevines. J Plant Physiol. 2005,162:301–308
    Peng J R and Harberd N P. The role of GA-mediated signaling in the control of seed germination. Current Opinion in Plant Biology. 2002, 5:376–381
    Piola F, Label P, Vergne P. Effects of endogenous ABA levels and temperature on cedar (Cedrus libani Loudon) bud endodormancy in vitro. Plant Cell Reports.1998, (18):279-283
    Popov V N, Simonian R A, Skulachev V P, Starkov A A. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett. 1997,415:87-90
    Powell, L E. Hormonal aspects of bud and seed dormancy in temperate-zone woody plants. HortScience 1987,22(5):845-850
    Reigosa M J, Souto X C, Gonzalez L. Effects of phenolic compounds on the germination of six weeds species. Plant Growth Regulation. 1999, 28(2):83-88.
    Richardson E.A., Seeley S D and Walker D.R. A model for estimating the completion of rest for ‘Redhaven’and‘Elberta’peach trees. HortScience,1974, 9(4): 331-338
    Rinne P.,Hanninen H. Freezing exposure releases bud dormancy in Betula pubescens and B.pendula. J. Plant Cell and Enviroment,1997,20:1199-1204
    Rinne P L H., Kaikuranta P M and Schoot V C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. 2001, 26:249-264
    Rinne P.L.H., and Schoot V C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development,1998, 125: 1477 - 1485
    Robson C A, Vanlerberghe G C, Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and–independent pathway of programmed cell death. Plant Physiol, 2002, 129: 1908 -1920
    Rodrigo J. Spring frosts in deciduous fruit tress-morphological damage and flower hardiness. Scientia Horticulturae 2000, 85: 155-173
    Rohde A and Bhalerao R P. Plant dormancy in the perennial context. Trends in Plant Science. 2007, 12:217-223
    Rowland L J, Ogden E L, Arora R, Lim C C, Lehman J S, Levi A and Panta G R.. Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. HortScience, 1999, 34: 1185-1191
    Rudnicki R., Saniewski M, and Millikan D F. The effect of exogenous plant hormones upon the stratification of apple seeds. Proc. Res. Inst. Pomo. Ser. E. 1973, 3: 539-552
    Saure MC. Dormancy release in deciduous fruit trees. Hort. Rew, 1985,7:239-300
    Shulman Y, Nir G and Lavee, S. Oxidative processes in bud domancy and the use of hydrogen cyanamide in breaking dormancy. Acta Hort. 1986, 179: 141-147
    ShaltoutA D and Unrath C R. Rest completion prediction model for‘Starkrimson Delicious’apple.J. Amer. Soc. Hort. Sci. 1983,108: 958-961
    Simons B H, Millenaar F F, Mulder L, et al. Enhanced expression and activation of the alternative oxidase during infection of Arabidopsis with Pseudomonas pv. tomato. Plant Physiol.,1999,120(2):529-538
    Siller-cepeda J H, Fuchigami L H. and Chen T H. Glutathione content in peach buds in relation to development and release of rest. Plant Cell Physiol. 1991, 33:867-872
    Sorensen F C. Geographic variation in growth and phenology of seedlings of the Abia procera/A. magnific complex. For. Ecol. Manag. 1990, 36: 205-235
    Sparks D. Chilling and heating model for pecan bud break. J. Amer. Soc. Hort. Sci.,1993, 118(1):29-35
    Sonsteby A, Heide O M. Dormancy relations and flowering of the strawberry cultivars Korona and Elsanta as influenced by photoperiod and temperature. Scientia Horticulturae 2006, 110:57–67
    Stirk W A., Gold J D, Nova′k Ondrˇei, Strnad M and Staden J V. Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regulation. 2005,47:1–7
    Sugiura T, Yoshida M., Magoshi J and Ono S. Changes in water status of peach flower buds during endodormancy and ecodormancy measured by differential scanning calorimetry and nuclear magnetic resonance spectroscopy. J. Amer. Soc. Hort. Sci., 1995,120: 134-138
    Sugiura T, Kuroda H, Honjo H and Ito D. Temperate dependence of endo -dormancy development in flower buds of‘Kousui’Japanese pear and a model for estimating the completion of endodormancy. Acta Hort. 2002,587(2):345~352
    Suttle J. Dormancy-related changes in cytokinin efficacy and metabolism in potato tubers during postharvest storage. Plant Growth Regulation. 2001,35: 199-206.
    Suttle J C. Postharvest changes in endogenous cytokinins and cytokinin efficacy in potato tubers in relation to bud endodormancy. Physiol.Plant, 1998a,103:59-69
    Suttle J C. Involvement of ethylene in potato micro-tuber dormancy. Plant physiology, 1998b,118:843-848 Suttle J C. Involvement of endogenous gibberellins in potato tuber dormancy and early sprout growth: a critical assessment. Journal of Plant Physiology, 2004. 161: 157-164
    Swartz H J and Powell. The effect of long chilling requirement on time of bud break in apple .Acta Hort. 1981,120: 173-178
    Swartz H J, Geyer A S, Powell L E .The role of bud scales in the dormancy of apples. J.Amer.Soc.Hort.Sci.1984,109:745-749
    Tamura,F.,Tanabe K.,and Itai A. Regulation of endodormancy in Japanese pear Acta. Hort. 2002, 587 (2):325-336
    Theologis A, Laties G G. Relative contribution of cytochrome-mediated and cyanide-resistant electron transport in fresh and aged potato slices. Plant Physiol. 1978,62:232-237
    Thompson W.K., Jones D.L., and Nichols D. G. Effects of dormancy factors on the growth of vegetative buds of young apple trees. Austral. J Agr. Res. ,1975, 26: 989-996
    Tinklin I.G, and Schwabe W W. Lateral bud dormancy in the black currant, Ribes nigrum (L.). Ann. Bot., 1970, 34: 691-707
    Toorop P E, Barroco R M, Gilbert E, Steven P C, Groot H W M H. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds. Planta. 2005, 221: 637–647
    Vanghaan. Influence of Phenolie acids on morphological changes in roots of Pisum Sativum. Journal Science Food Agriculture. 1990,52:289-299
    Vanlerberghe G C, Mcintosh L. Alternative oxidase:from gene to function. Ann. Rev. Plant Physiol. Plant Mol., 1997,48:703-734
    Vanlerberhe G C, McIntosh L. Low growth temperature increase alternative pathway capacity and alternative oxidase protein in tobacco Plant Physiol, 1992, 100:115-119
    Vanlerberghe G C, McIntosh L .Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria .Plant Physiol, 1996, 111:589-595
    Vanlerberghe G C, Robson C A, Yip J Y. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulation the Cytochrome pathway to prevent programmed cell death. Plant Physiol. 2002,129:1829-1842
    Walser R H, Walker D R and Seeley S D. Effect of temperature, fall defoliation, and gibberellic acid on the rest period of peach leaf buds. J. Amer. Soc. Hort. Sci., 1981,106: 91-94
    Wang S Y, Jiao H J, Faust M. Changes in ascorbate, glutathione and related enzyme activities during thidiazuron-induced bud break of apple. Plant Physiol. 1991a,82:231-236
    Wang S Y, Jiao H J, Faust M. Changes in activities of catalase, peroxidase and polyphenol-oxidase in apple buds during bud break induced by thidiazuron. J Plant Growth Regulat.1991b, 10:33-39.
    Wang S Y, Faust M. Changes in the antioxidant system associated with bud break in‘Anna’apple (Malus domestisca Borkh.) buds. J. Amer. Soc. Hort. Sci. 1994, 119:735-741
    Wang SY and Faust M. Changes in membrane polar lipids associated with bud break in apple induced by Nitrogwanidines. J Plant Growth Regul,1989,8:133-161
    Welling A, Kaikuranta P and Rinne P. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol. Plant. 1997, 100: 119-125
    Weidner S, Amarowicz R, Karamac M, Phenolic acids in caryopses of two cultivars of wheat rye and triticale that display different resistance to pre-harvest sprouting.European Food Research and Technology. 1999,210:109-113
    Weinberger J H. Chilling requirements of peach varieties. Proc. Amer. Soc. Hort. Sci., 1950,56:122-128
    Weinberger J H. Effects of high temperatures during the breaking of the rest of Sullivan Elberta peach buds. Proc. Amer. Soc. Hort. Sci., 1954,63: 157-162
    Weiser CJ. Cold resistance and injury in woody plants .J. Science, 1970, 169: 1269-1278
    Wisnieski M E, Sauter S J, Fuchigami L H and Stepien V. Effects of near-lethal heat stress on bud break, heat shock proteins and ubiquitin in dormant poplar. Tree Physiology. 1997,17:453-460
    Xu R Y, Niimi Y, Han D S. Changes in endogenous abscisic acid and soluble sugars levels during dormancy-release in bulbs of Lilium rubellum. Scientia Horticulturae, 2006,111: 68-72
    Yang Q H, Ye W H, Yin X J. Dormancy and germination of Areca triandra seeds. Scientia Horticulturae. 2007, 113:107–111
    Yooyongwech S, Horigane A K, Yoshida M, Yamaguchi M, Sekozawa Y, Sugayaa S and Gemma H. Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiologia Plantarum. 2008, 134: 522–533.
    Yamaguchi S, Kamiya Y, Nambara E. Regulation of ABA and GA levels during seed development and germination in Arabidopsis. In: Bradford K, Nonogaki H (eds). Seed Development, Dormancy and Germination. Annual Plant Reviews Vol 27. Oxford: Blackwell Publishing, 2007:224-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700