玉米C型细胞质雄性不育系及保持系microRNA克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(简称miRNA)作为真核生物体内的一类负调控因子,在生物体内所起的调节作用几乎涉及到所有的细胞水平。从2002年首次发现植物miRNA以来,在短短六年时间里关于植物miRNA方面的研究报道层出不穷,但是迄今为止在各物种中所鉴定的miRNA数量还远远不及理论上的饱和值,而对miRNA相关功能研究更是该领域面临的一大挑战。作为非模式植物的玉米,在miRNA方面的研究自然落后于拟南芥和水稻,目前仅仅有96条玉米miRNA序列被登陆到miRNA数据库中。因此玉米miRNA的分离鉴定及功能分析在今后的很长一段时间内依然将是该领域的一个研究热点。本研究将玉米c型细胞质雄性不育系C48-2及其保持系N48-2作为研究对象,通过组织分离克隆的方法鉴定在花药中表达的miRNA,进一步对这些miRNA的靶基因进行了预测,并结合miRNA在不育系和保持系之间的表达差异和靶基因的相关功能分析,初步推断这些miRNA与玉米C型细胞质雄性不育特性之间的关系。现将本研究的结果小结如下:
     1.克隆获得了81条大小在18~26bp的小分子RNA,主要富集在20~24bp范围内,去除tRNA、rRNA以及降解序列之后,通过mfold分析序列在基因组上是否形成符合miRNA前体标准的二级结构,结果得到10条符合标准的序列。
     2.这10条序列的长度在21~24nt范围内,且其中5'端第一个核苷酸为“U”的有5条,这些特点和其它已鉴定的植物miRNA一致。进一步对它们进行物种间保守性分析发现,其中6条在水稻、小麦和拟南芥中存在不同程度的保守性,总体趋势表现为在单子叶水稻和小麦中的保守性高于双子叶植物拟南芥。
     3.通过加尾-引物延伸RT-PCR法,对以上10条候选miRNA在C48-2和N48-2花药中的表达进行真实性验证,结果发现它们在两个材料的花药均有表达,证明了这10个miRNA是真实存在的,将其鉴定为新的玉米miRNA,归属于10个新的miRNA家族。
     4.通过miRU植物miRNA靶基因预测软件和CSRDB、NCBI数据库以及Pfam氨基酸功能域分析软件,预测到其中9个miRNA作用的10靶序列。在这些靶序列中,有3个是包括MADS-box在内的转录因子,3个属于花药代谢过程中的关键酶,分别是NADH脱氢酶、细胞色素单P450单加氧酶和二氢黄酮醇-4-还原酶,1个为22KD的α-醇溶蛋白,2个分别是某种不确定的膜内在蛋白和具备抗氧化作用的特殊分子伴侣,另外一个功能不明。在这些靶基因中,NADH脱氢酶、细胞色素P450单加氧酶和二氢黄酮醇-4-还原酶已经被证明参与花药的能量代谢和物质代谢过程,并与植物雄性不育有着紧密联系;而MADS-box基因则是近年来被受关注的一类与植物育性相关的转录因子。
     5.用实时荧光定量PCR法对这10个miRNA在C48-2和N48-2不同发育时期花药中的表达量进行检测,结果表明,在四分体期,10个miRNA在两个材料之间表达量均存在显著差异,表现为在C48-2中的表达量低于N48-2。此外,其中3个miRNA的表达量在两个材料的单核期也表现出明显差异,miR-1在C48-2中的表达量低于N48-2,而miR-6和miR-10与之相反。
     6.结合miRNA在不育系、保持系间的表达量和其靶基因的相关功能分析,对miRNA调控与花药发育以及玉米细胞质雄性不育之间的关系有了初步的认识,总结如下:
     第一,从四分体期到单核期,可育材料中10个miRNA的下调表达可能是花药正常发育的重要条件,也可能是花药正常发育后产生的结果,而miRNA在可育材料中有规律的时序性表达,证明了miRNA参与了花药发育的调控。
     第二,miR-1、miR-2和miR-6在四分体时期与单核期可育系和保持系中的表达量均存在明显差异,暗示着这3个miRNA在四分体时期和单核期都参与了雄性败育过程。而miR-3、miR-4、miR-5、miR-7、miR-8、miR-9、miR-10对雄性不育的调控在单核期的表现得更明显一些。
     第三,miRNA调控可能是引起不育的原因:miRNA在不育系中的异常表达导致了花药代谢过程中的关键酶以及相关转录因子的异常表达,进一步造成花药能量代谢和物质代谢的紊乱,从而使花粉得不到正常的发育;
     第四,miRNA表达的异常可能是雄性不育产生的结果:受玉米细胞质雄性不育特性的影响,参与miRNA剪切过程的相关蛋白和调控miRNA基因表达的转录因子等表达量发生变化,从而在细胞内miRNA的含量相应变化,进而使受miRNA调控的基因表达发生异常。
As a class of negative regulators in eukaryote organism,miRNA(abbreviated to "miRNA")regulations almost reach to all cellular levels of organism.It has only been about six years from the first plant miRNA was found in 2002,a great deal of research findings about plant miRNAs have been reported.However the identified plant miRNAs are still far from saturation,and understanding about miRNA founction is being faced with some formidable problem.Being a non-model plant,Zea mays fall behind Arabidopsis and Oryza sativa on miRNA research accordingly.And only 96 identified miRNAs from Zea mays were submitted to miRNA database so far.For this reason,cloning and characterization of miRNA in maize is being a hot academic domain in the future.In the research,miRNAs were abstracted and cloned from C-type cytoplasmic male sterile line 48-2 and its maintainer in maize,and target genes of miRNA were subsequently predicted.As a result,some conclussions were made concerning relationship between miRNA regulation and C-type cytoplasmic male sterility in maize by assay of miRNA content differentiation and relative function of miRNA targets.The findings of the research are as follows:
     1.Eighty one sequences sized from 18 to 26nt were cloned,of which the majority has the length ranging from 20 to 24nt.The sequences,excluding tRNA, rRNA and degraded fragments,were analyzed by m-fold program for stem-loop.The results showed that ten small RNAs could form stem-loop when joined with flanking sequence in genomes.
     2.The lengths of the ten sequences range from 21 to 24nt,and five of the sequences began with "U" from 5' terminatio.The trend is similar to what have been reported in other plant miRNAs.By "blast" genomes of other plants including rice, wheat and Arabidopsis,conservation of miRNA was identified among them.As a result,six miRNA sequences exhibit conservation to a large extent.On the other hand, there is a trend that these miRNAs were more conservative among maize,rice and wheat than between maize and Arabidopsis.
     3.By RNA-tailing and primer-extension RT-PCR,the ten small RNAs were detected in both anthers of line C48-2 and anthers of line N48-2,which indicates their reality in maize.In according to above reasons,the ten sequences were identified to be new microRNAs in plants,and attributed respectively to 10 new miRNA families.
     4.Then targets were respectively predicted for 9 of the miRNAs by a series of methods including using of miRU program,searching CSRDB and NCBI,analyzing fuctional domain of amino acid by "Pfam".Resultantly,the targets are involved in 3 such transcription factors as MADS-box,3 important enzymes ralative to anther metabolism,named respectively NADH dehydrogenase,cytochrome P450 monooxygenase and dihydroflavonol-4-reductase,1 zein-alpha,1 integral membrane protein and 1 antioxyen molecular chaperones.Among them,NADH dehydrogenase, cytochrome P450 monooxygenase and dihydroflavonol-4-reductase have been confirmed to participate in the process of energy or substance metabolism of anther, and be tightly related to plant male sterility.As to MADS-box genes,they are regarded as a class of transcription factors concorning plant male sterility,and have got close attention in recent year.
     5.The contents of the ten miRNA in anthers of both C48-2 and N48-2 were assayed by real-time PCR.The result showed the miRNA contents in N48-2 was significantly larger than that in C48-2 at tetrad stage.In addition,3 of the ten miRNAs also displayed distinct expression at monocaryon stage between the two lines.Namely, the content of miR-1 in line C48-2 was smaller than that in line N48-2,but it is the adverse case for miR-6 and miR-10.
     6.By analyzing both distinction of miRNA contents between sterile line C48-2 and N48-2 and function of target genes,the relationship between miRNA regulation and cytoplasmic male sterility in maize got explaination to some extent,as follows:
     First,from tetrad stage to monocaryon stage,expression of the ten miRNA in line N48-2 downregulated,which is essential for fertility of line N48-2 probably.On the other hand,it may be the result of normal development for anther.By the regular downregulation of the ten miRNA in line N48-2,it can be conclude they get involved in the progress of anther development.
     Second,as to miR-1,miR-2 and miR-6,their regulation is responsible for male sterility both at tetrad stage and in monocaryon period for expression disparity between the two lines is exhibited at both the two stages.With regard to miR-3, miR-4,miR-5,miR-7,miR-8,miR-9 and miR-10,pathways of C-type cytoplasmic male sterility mediated by their regulation occur dominately in tetrad period;
     Third,miRNA regulation may be the reason of male sterility,namely,dramaticly abnormal contents of miRNAs in sterile line make significantly different conents of mRNA of important enzymes and transcription factors ralative to anther metabolism, lead to disorder of substance and energy of anther subsequently,and result in abnormal development of pollen at last;
     Finally,inordinate of miRNAs in male sterility has the chance to be the result from male sterility.In other words,in the effect of male sterility,expression of some protein is disturbed,including enzyme and transcription factors responding for biosynthesis of miRNA.Accordingly,normal expression of miRNAs is inhibitted. Furthermore,the gene regulated by miRNAs fails to normal expression.
引文
1. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell, 1993, 75(306), 843-846.
    
    2. Eckstein F, Small non-coding RNAs as magic bullets. Trends Biochem Sci, 2005, 30(8): 445-452.
    
    3. Shiraishi H, Non-coding RNA: gene expresson and evolution. Tanpakushitsu Kakusan Koso, 2004, 49(16): 2510-2520.
    
    4. Lee Y, Ahn C, Han, J, et al. The nuclear Rnase III Drosha initiates microRNA processing . Nature, 2003, 425 (4): 415-419.
    
    5. Lund E, Guttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science, 303(2): 95-98.
    
    6. Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants.Genes Dev, 2002,16(13): 1616-1626.
    
    7. Park W, Li J J, Song R T, et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 2002,12(17): 1484-1495
    
    8. Park M Y, Wu G, Gonzalez-sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA, 2005,102(10):3691-3696.
    
    9. Bollman K M, Aukerman M J, Park M Y, et al. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development, 2003, 130(8): 1493-1504.
    
    10. Mourelatos Z, Dostie J, Paushkin S, et al. A novel class of rebonucleoproteins containing numerous microRNAs .Genes Dev, 2002, 16(6): 720-728.
    
    11. Schwarz D S, Hulvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115: 209.
    
    12. Khvorova A, Reynolds A, Jayasena S D. Funcional siRNAs and miRNAL exhibit strand bias. Cell,2003, 115:209.
    
    13. Lai E C. Micro RNAs are complementary to 38 UTR sequence motifs that mediate negative posttranscriptional regulation. Nature Genet, 2002,30(256):363-364.
    
    14. Tang G, Reinhart B J, Bartel D P, et al.A biochhemical framework for RNA silencing in plants. Genes &Development, 2003, 17:49-63.
    15. David P, Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and fution. Cell, 2004, 116(2): 281-297.
    
    16. Catherine A, Kidnerl, Robert A, Martienssen. The developmental role of microRNA in plants. Curr Opin Plant Biol, 2005,8(1):38-44.
    
    17. Zeng Y, Cullen B R. Sequence requirements for micro RNA processing and function in human cells. RNA, 2003,9(1): 112-123.
    
    18. Dostie J, Mourelatos Z, Yang M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA,2003,9(2): 180-186.
    
    19. Caudy A A, Myers M, Hannon G J, et al. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev, 2002,16(19):2491-2496.
    
    20. Kasschau K D, Xie Z, Allen E, et al. P1/HC-Pro, a viral suppressor of RNA function. Dev Cell, 2003,4(2):205-217.
    
    21. Reinhart B J, Bartel D P. Small RNAs correspond to centromere heterochromatic repeats. Science, 2002, 297(5588): 1831.
    
    22. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116: 281-297.
    
    23. Millar A A,Waterhouse P M. Plant and animal microRNAs: similarities and differences. Funct Integr Genomics., 2005,5(3): 129-135.
    
    24 Reihart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes. Dev., 2002, 16:1616-1626.
    
    25. Lim L P, Glasnerm E,Yekta S, et al. Vertebrate microRNA genes. Science, 2003, 299(5612):1540.
    
    26. Pasquinelli A E, Ruvkun G. Control of developmental timing by microRNAs and their targets. Amu. Rev. Cell Dev, Biol., 2002, 18: 495-513.
    
    27. Sunkar R, Girke T, Jain P K, et al. Cloning and characterization of microRNAs from rice. The Plant Cell, 2005,17(5): 1397-1411.
    
    28. Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 2004: 787-799.
    
    29. Sunkar R, Zhu J K. Novel and stress-regulated microRNA and other small RNAs from Arabidoposis. The Plant Cell, 2004,16: 2001-2019.
    30. Arazi T, Talmor-Neiman M, Stav R, et al. Cloning and characterization of microRNAsfrom moss. Plant Journal, 2005,43(6): 837-848.
    
    31 Flod S K, Bowman J L. Gene regulation: ancient microRNA target sequences in plants. Nature, 2004, 428: 485-486.
    
    32. Axtell M J, Bartel D P. A. Antiquity of microRNAs and their targets in land plants. The Plant Cell, 2005,17(6): 1658-1673.
    
    33. Lu S, Sun-Lu S, Sun H, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 2005, 17(8): 2186-2203.
    
    34. Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-\ike target genes. The Plant Cell, 2003,15:2730-2741.
    
    35. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004,303: 2022-2025.
    
    36 Reihart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes. Dev., 2002, 16:1616-1626.
    
    37.Bartel B, Bartel D P. MicroRNA: at the root of plant development?. Plant Physiology,2003,132:707-717.
    
    38. Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J]. Cell, 2002, 110(4): 513-520.
    
    39. Llave C, Kasschau K D, Rector M A, et al. Endogenous and silencing-associated small RNAs in plant. The Plant Cell, 2002,14:1605-1619.
    
    40. Llave C, Xie Z, Kasschau K D, et al. Cleavage of Scarrecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002,297: 2053-2056.
    
    41. Chuck G, Hake S. Regulation of developmental transitions. Current Opinion in Plant Biology, 2005,8:67-70.
    
    42. Lauter N , Kampani A, Carlson S, et al. microRNA 172 down-regulates glossy 15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. USA, 2005, 102 (29): 9412-9417. 43. Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol., 2002, 53: 247-273.
    
    44. Adai A J, Mlotshwa S, Archer E, et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res.,2005,15(1):78-91.
    45. Chellappan P, Vanitharanir R, Fauquet C M. MicroRNA-binding viral protein interferes with Arabidopsis development. Proc. Natl. Acad. Sci. USA, 2005,102(29): 10381-10386.
    
    46. Bonnet E, Wuyts J, Rouze P, et al. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.Proc.Natl. Acad. Sci. USA,2004,101(3):11511-11516.
    
    47. Millar A A, Gubler F, WU X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003,425: 257-263.
    
    48. Mallory A C, Bartel D P, Bartel B. MicroRNA-Directed regulation of Arabidopsis Auxin Response Factor 17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell, 2005, 17(5):1360-1375.
    
    49. Achard P, Herr A, Baulcombe D C, et al. Modulation of floral development by a gibberellin-regulated genes that redundantly facilitate anther development.The Plant Cell, 2005,17:705-721.
    
    50. Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003,421: 740-743.
    
    51. Yoo B C, Kragler F, Varkonyi-Gasic E, et al. A systemic small RNA signaling system in plants. The plant cell, 2004,16: 1979-2000.
    
    52. Gomez G, Torres H, Pallas V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system[J]. Plant Journal, 2005,41: 107-116.
    
    53. Kapranov P, Cawley S, Drenkow J, et al. Large-scale transcriptional activity of the human genome revealed in chromosomes 21 and 22. Science, 2002,296: 916-919.
    
    54. Wang X, Zhang J, Li F. MicroRNA identification based on sequence and structure alignment[J]. Bioinformatics, 2005, Published online.
    
    55. Billoud B, Paepe R, Baulcombe D, et al. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie., 2005,87: 905-910.
    
    56. Zhang B H, Pan X P. Wang Q L. Identification and characterization of new plant microRNAs using EST ananlysis. Cell Res., 15(5): 336-360.
    
    57. Lai E C, Tomancak P, Williams R W, et al. Computational identification of Drosophila microRNA genes. Genome Biol, 2003,4:1-20.
    58. Murchison E P, Harmon G J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol, 2004, 16(3): 223-229.
    
    59. Lagos-Qyubtana M, Rauhut R, Meyer J, et al. New microRNAs from mouse and human. RNA,2003,9: 175-179.
    
    60. Sempere L F, Freemantle S, Pitha-Rowe L, et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol, 2004,5: R13.
    
    61. Castoldi M, schmidt S Benes V, et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids(LNA). RNA,2006, 12:913-920.
    
    62. Nelson P T, baldwin D A, Scearce L M. microarrary-based, high-throughput gene expression profiling of microRNAs. Nat Methods, 2004,1:155-161.
    
    63. Shi R, Chiang V L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005,39: 519-525.
    
    64. Zhang Q, He X J, Pan X Y. Real-time quantification of microRNAs by RNA-tailing and primer-extension RT-PCR. Journal of Peking University, 2007, 39(1): 87-91.
    
    65. Wang M, Li S G, Luo Y P. The methods in Identifying and Predicting novel MicroRNAs. Chinese Journal of Cell Biology, 2007, 29: 503-507.
    
    66. Enright A J, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol, 2003, 5:R1
    
    67. Kiriakidou M, Nelson P T, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev, 2004, 18:1165-1178.
    
    68. Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA, 2004, 10: 1507-1517.
    
    69. Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets. Cell, 2003, 115:787-798.
    
    70. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120:115-20.
    
    71. Saetrom O, Ola Snove J, Saetrom P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA, 2005,11:995-1003.
    
    72. Kim S K, Nam J W, Rhee J K, et al. MiTarget: microRNA target gene prediction using a support vector machine. BMC Bioinform, 2006,7: 411.
    73.Zhang Y J.miRU:an automated plant miRNA target prediction server.Nucleic Acids Research,2005,33:701-704.
    74.Thomson J M,Parker J,Perou C M,et al.A custom microarray platform for analysis of microRNA gene expression.Nature Methods,2004,1(1):1-7.
    75.Tang G,Reinhart B J,Bartel D P,et al.A biochemical framework for RNA silencing in plants.Genes Dev.,2003,17:49-63.
    76.McCormick S.Male gametophyte development.Pl ant Cell,1993,5:265-1275.
    77.Mascarenhas N T,Bashe D,Ei senberg A,et al.Messenger RNAs in cor n poll en and prot ein synthesis during germinat ion and pollen tube growth.Theor.Appl.Genet.,1984,68:323-326.
    78 利容千.几种农作物雄性不育的细胞学研究.武汉大学学报,1978,(1):83-96.
    79.Kaul,M L H.Male sterility in higher plants.Springer-Verlag,Berlin,Germany:1998.
    80.李竟雄等.玉米雄性不育生物学.北京,中国农业出版社,1995,1-15.
    81.郑用链.若干玉米细胞质雄性不育类型育性机理的研究.华中农学院学报,1982,1(1):44-68.
    82.许珂,曹墨菊,朱英国等.玉米C型细胞质雄性不育系C48-2及其保持系线粒体差异蛋白分析.作物学报,2008,34(2):232-237.
    83.王兆龙.玉米花粉物质积累的研究.江苏农学院学报,1998,19(2):30-34.
    84.刘忠松.植物雄性不育机理的研究及应用.北京:中国农业出版社,2001.
    85.夏涛,刘纪麟.玉米细胞质雄性不育与组织抗氰呼吸关系的研究.中国农业科学,1988,21(1):39-43.
    86.夏涛,刘纪麟.玉米雄性不育细胞质细胞色素氧化酶活性及ATP含量的研究.华北农学报,1994,9(4):33-37.
    87.陈贤丰,梁承邺.水稻细胞质雄性不育性与组织抗氰呼吸关系的研究.中国水稻科学,1990,4(2):92-94.
    88.王秀珍,腾晓月,阎龙飞等.玉米及高粱花药中的ATP含量与细胞质雄性不育的关系.作物学报,1986,12(3):177-191.
    89.张明永,梁承邺,黄毓文等.水稻细胞质雄性不育系与保持系的呼吸途径比较.植物生理学报,1998,24(1):55-58.
    90.Leving C S Ⅲ.The texas cytoplasm of maize:cytoplasmic male sterility and disease susceptibility.Science,1990,250:942.
    91. Dewey R E, Levings C S III, Timothy D H. Novel recominations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell, 1986.44(3): 439-449.
    
    92. Pruitt K D, Hanson M R. Transcription of the Petunia mitochondrial CMS-associated Pcf locus in male sterile and fertility-restored lines. Molecular and General Genetics, 1991, 227(3): 348-335.
    
    93. Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics, 1997, 147(2): 847-860.
    
    94. Kohler R H, Horn R, Lossl A, et al. Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Molecular and General Genetics, 1991,227(1): 369-376.
    
    95. Nowak C, Kuck U. RNA editing of the mitochondrial atp9 transcript from wheat. Nucleic Acids Research, 1990,18(23): 7164.
    
    96. Hernould M, Suharsono S, Litvak S, et al. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proceedings of the National Academy of Sciences of the United States of America, 1993,90 (6): 2370-2374.
    
    97. Iwabuchi M, Kyozuka J, Shimamoto K. Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male sterile rice. EMBO Journal,1993, 12(4): 1437-1446.
    
    98. Stahl R, Sun S, L'Homme Y, et al. RNA editing of transcripts of a chimeric mitochondrial gene associated with cytoplasmic male-sterility in Brassica. Nucleic Acids Research, 1994,22(11): 2109-2113.
    
    99. Young E G, Hanson M R. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell,50:41-49.
    
    100. Horn R, Hustedt J E G, horstmeyer A et al. The CMS-associated 16kDa protein encoded by orfH522 in the PETl cytoplasm is also present in other male-sterile cytoplasms of sunflower.Plant Molecular Biolohy, 1996,30(3): 523-538.
    
    101. Smart C J, Moneger F, Leaver C J. Cell-specific regulation of gene exprssion in mitochondria during anther development in sunflower. Plant Cell, 1994,6(6): 811-825.
    102.Levings C S Ⅲ,Siedow J N.Molecular basis of disease susceptibility in the Texas cytoplasm of maize.Plant Molecular Biology,1992,19(1):135-147.
    103.Ambros V,Bartel B,Bartel D P,et al.A uniform system for microRNA annotation.RNA,2003,9:277-279.
    104 Kidner C A,Martienssen R A.The developmental role of microRNA in plants.Curr Opin Plant Biol,2005,8:38-44.
    105.Sunkar R,Girke T,Zhu J K.Identification and characterization of endogenous small interfering RNAs from rice.Nucleic Acids Res,2005,33:4443-4454.
    106.Schwab R,Palatnik J F,Riester M,et al.Specific effects of microRNAS on the plant transcriptome.Dev cell,2005,8:517-527.
    107.Yao Y Y,Gou G G,Ni Z F,et al.Cloning and characterization of microRNAs from wheat (Triticum aestvum L.).Genome Biology,2007,8(6):1-13.
    108.Bonnet E,Wuyts J,Rouze P,et al.Evidence that microRNA precursors,unlike other non-coding RNAs,have lower folding free energies than random sequences.Bioinformatics 2004,20:2911-2917.
    109.Zhang B,Pan X,Cannon C H,et al.Anderson TA:Conservation and divergence of plant microRNA genes.Plant Journal,2006,46:243-259.
    110.Mathews D H,Sabina J,Zuker M,et al.Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.J Mol Biol,1999,288:911-940.
    111.Eddy S R.Non-coding RNA genes and the modern RNA world.Nat.Rev.Genet.,2001,2:919-929.
    112.孙飞,周强军,孙吉,等.线粒体呼吸链膜蛋白复合体的结构.生命科学,2008,20(4):565-578.
    113.Carroll J,Fearnley I M,Shannon R J,et al.Bovine complex I is a complex of 45 different subunits J.Bio.Chem,2006,281:32724-32727.
    114.Ducos E,Touzet P,Boutry M.The male sterile G cytoplasm of wild beet displays modified mitochondrial respiratory complexes.Plant J,2001,26(2):171-180.
    115.Sabar M,de Paepe R,de Kouchkovsky Y.Complex I impairment,respiratory compensations,and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris.Plant Physiol,2000,124(3):1239-1249.
    116.Kitashiba H,Kitazawa E.Partial male sterility in transgenic tobacco carrying an antisense gene for alternative oxidase under the control of a tapetum-specific promoter.Mol Breed,1999,5(3):209-218.
    117.Yui R,Iketani S.Antisense inhibition of mitochondrial pyruvate dehydrogenase E1 αsubunit in anther tapetum causes male sterility.Plant J,2003,34(1):57-66.
    118.Bernard Meunier,Samuel P.de Visser,Sason Shaik.Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes.Chemical Reviews,2004,104(9):3947-3980.
    119.Thomas L.Poulos,Barry C.Finzel,Andrew J.Howard.High-resolution crystal structure of cytochrome P450_(cam).Journal of Molecular Biology,1987,195(3):687-700.
    120.Sligar S G,Cinti,D L,Gibson G G,et al.Schenkman.Spin state control of the hepatic cytochrome P450 redox potential.Biochemical and Biophysical Research Communication,1979,90(3):925-932.
    121.Rodney G,Winkler,Tim Helentiaris.The Maize Dwarf3 Gene Encodes a cytochrome P450-Mediated Early Step in Gibberellin Biosynthesis,The Plant Cell,1995,7:1307-1317.
    122.Luo A L,Qian Q,Yin H F,et al.EUI1,Encoding a Putative Cytochrome P450Monooxygenase,Regulates Internode Elongation by Modulating Gibberellin Responses in Rice.Plant and Cell Physiology,2006,47(2):181-191.
    123.季兰,杨淑琴,马洪丽等.细胞质雄性不育特性对eui基因表达的影响,2008,28(2):132-135.
    124.贺安娜.花粉育性与长穗颈水稻抽穗性状的相关性研究及eui基因的克隆初探[D].湖南师范大学;2006年.
    125.Mo Y,Nagel C,Taylor L P.Biochemical complementation of chalcone synthase mutants defines a role for flavonols in fuctional pollen.Proc Natl Acad Sci USA,1992,89:7213-7217.
    126.van der Meer I M,Stam M E,van Tunen A J,et al.Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility.Plant Cell,1992,4:253-262.
    127.Chi P Y,Chu X Z,Sze Y Z,et al.Expression of a microsporocyte-specific gene encoding dihydroflavonol 4-reductase-like protein is developmentally regulated during early microsporogensis in rice.Sex Plant Reprod,2005,18:65-74.
    128.Yang C Y,Xu Z Y,Song J,et al.Arabidopsis MYB26/MALE STERILE35 Regulateds Secondary Thickening in the Endothecium and Is Essential for Anther Dehiscence,The Plant Cell,2007,19:534-548.
    129.Vijayalakshmi J,Matthew K,Mukhergee,et al.The 2.2 A Crystal Structure of Hsp33:A Heat Shock Protein with Redox-Regulated Chaperone Activity.Structure,2001,9:367-375
    130.Jakob U,Muse W,Eser M,et al.Chaperone Activity with a Redox Swith.Cell,1999,96:341-352.
    131.Jacobsen S E,Running M P,Meyerowitz E M.Disruption of an RNA helicase/RNaseⅢgene in Arabidopsis causes unregulated cel division in floral meristems.Development,1999,126:5231-5243.
    132.王鹏,赵旵军,朱国萍等.植物RNA沉默的分子机制研究进展.生命科学,2008,20(5):784-789.
    133.魏军明,潘乃穟,陈章良等,花药特异性表达的类查尔酮合成酶D5与水稻花粉发育相关性.科学通报,2000,(11):1132-1138.
    134.汪迎春,孙勇如,张利明等.植物花药花粉特异表达性基因的调控序列.生物工程进展,2000,20(2):52-54.
    135.Pina C,Pinto F,Feijo J,et al.Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth,Division Control,and Gene Expression Regulation.Plant Physiol,2005,138(2):744-756.
    136.Riechmann J L,Meyerowitz E M.MADs domain Proteins in Plant development.Biol Chem,1997,378:1079-1101.
    137.Coen E S,Meyeromitz E M.The war of whorl genetic interaction controlling flower development.Nature,1991,353:31-37.
    138.Meyerowitz Schnable P S,Wise R P.The molecular basis of cytoplasmid mal sterility and fertility restoration.Trends in Plant Science,1998,31:75-180.
    139.孙清萍,汪莉,易平等.红莲型水稻不育系系统花粉发育不同时期MADS-box基因家族表达分析.武汉植物研究,2002,20(5):325-328.
    140.周琳磷,宋国琦,李红燕等.一个与小麦雄性不育转换相关的MADS-box转录因子基因.作物学报,2008,34(4):598-640.
    141.周云龙主编.植物生物学.北京:高等教育出版社,1999.228-236.
    142.黄运平,蒲云海.植物生长物质与物质雄性不育研究.武汉科技学院学报,2001,14(3):26-30.
    143.黄少白,周燮,水稻细胞质雄性不育与内源GA_(1+4)和IAA的关系,华东农学报,1994(3):16-20.
    144.田长恩,段俊,梁承邺等.水稻细胞质雄性不育系及其保持系幼穗发育过程中内源激素的变化.热带亚热带植物学报,1998(2):137-143.
    145.Rodney G W,Helentjaris T.The Maize Dwarf3 Gene Encodes a Cytochrome P450-Mediated Early Step in Gibberellin Biosynthesis.The Plant Cell,1995,7:1307-1317.
    146.林植芳,梁承邺,孙谷畴等.雄性不育水稻小孢子败育与花药的有机自由基水平,Journal of Integrative Plant Biology,1993,35(3):215-221.
    147.孙谷畴,林植芳,林桂珠等.细胞质雄性不育水稻幼穗和花粉发育期的蛋白酶活性变化热带亚热带植物学报,1997(4):45-51.
    148.蒋培东,朱云国,王小玲等.棉花细胞质雄性不育花粉的活性氧代谢,2007,40(2):244-249.
    149.段俊,梁承邺,张明永.玉米细胞质雄性不育与脂膜过氧化的关系.植物生理学通讯,1996.32(5):331-334
    150.Llave C,Xie Z,Kasschau K D,et al.Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA.Science,2002,297:2053-2056.
    151.Mallory A C,Bartel D P,Bartel B.MicroRNA-directed regulation of Arabidopsis Auxin Response Factor17 is essential for proper development and modulates expression of early auxin response genes.Plant Cell,2005,17:1360-1375.
    152.王磊,范云六.植物微小RNA(microRNA)研究进展.中国农业科技导报,2007,9(3):18-23.
    153.杨致荣,毛雪.细胞色素P450基因及其在植物改良中的作用.遗传,2003,25(2):119-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700