水稻穗叶体温和颖花育性及其影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在大田和人工气候室条件下,通过对不同基因型品种穗叶体温、颖花结实及群体生理生态的测定,系统研究了气温与水稻体温的关系,以及大气湿度、品种株型、水稻器官生理年龄等对水稻体温与气温之关系的影响;此外,本研究探讨了不同基因型穗叶体温和颖花育性的差异机理,以及通过栽培措施调节群体结构,降低植株穗叶和冠层温度,提高水稻抗热害能力,揭示水稻在高温环境下正常结实的成因。主要研究结果如下:
     (1)水稻穗叶体温受大气温度、湿度、品种株型和器官生理年龄的影响。在大气湿度相同的条件下,水稻穗叶的体温随气温升高而提高,但提高的幅度逐渐变小;在气温相似的条件下,大气湿度提高,穗叶体温升高,大气温度与穗叶体温的差距缩小。不同基因型品种的穗叶体温及冠温也存在一定的差异,在大气温、湿度相同的条件下,水稻的穗叶体温直立穗型品种<弯曲穗型、“穗盖顶”型<“叶盖顶”型。器官生理年龄对穗叶体温也有一定的影响,表现为器官生理年龄越轻,体温越低。
     (2)水稻的颖花育性、结实率和千粒重与抽穗开花期和灌浆结实期的大气温、湿度有密切的关系。在高温、低湿环境下水稻的颖花育性、结实率和千粒重明显高于高温、高湿环境,较低的大气湿度可以部分缓解高温胁迫对水稻颖花育性和结实率的不利影响。研究表明:在高温环境中凡植株穗叶体温较低的基因型和栽培处理,其颖花育性、结实率和千粒重也较高;在环境温度为28-35℃条件下,穗温与颖花育性和结实率均呈显著负相关关系;不同基因型穗叶体温与剑叶光合特性和叶绿素含量、质膜透性和丙二醛含量、可溶性糖和脯氨酸含量、ABA与GA含量及热激蛋白表达有密切关系。因此,可以将植株穗叶体温纳入高温胁迫评价体系,作为选择抗高温育种材料的重要指标之一。
     (3)氮素穗肥对水稻穗叶体温和群体冠层温度具有明显的调节作用。在穗肥0-202.5 kg·hm-2(粳稻)或0-168.75 kg·hm-2(籼稻)范围内,随氮素穗肥水平的提高,水稻抽穗期的穗数、LAI、株高、单位株高LAI和比叶重等明显增加,群体内部温度、湿度、光照强度和CO2浓度等微气象因子产生了显著变化,致使水稻穗叶体温和群体冠层温度有明显的不同。研究表明:中肥处理(粳稻135.0 kg·hm-2,籼稻112.5 kg·hm-2)的群体LAI适宜、群体内部微气象较好,叶片净光合速率和蒸腾速率较高,穗叶体温和冠温较低,籽粒结实率较高。
     (4)行株距配置对水稻穗叶体温具有明显的影响。在密度相同条件下,行株距配置不同,水稻群体穗数、LAI、比叶重等差异显著,群体内部CO2浓度、光照强度、温度和湿度等微气象因子及其穗叶体温差异明显,结实率和产量显著不同。研究表明:中等行株距(30cm×13.3cm)配置能容纳更多的穗数和LAI,增加群体内部CO2浓度和光照强度,降低群体内部的湿度和穗叶体温,缩短节间长度,增大节间粗度、茎壁厚度及维管束数目,提高植株抗折力和抵抗外部高温胁迫的能力。
     (5)水分胁迫对水稻穗叶体温和群体冠层温度也具有明显的影响。在重度水分胁迫下,叶片蒸腾速率降低,穗叶体温和冠温明显升高,剑叶丙二醛含量提高,结实率和千粒重下降,籽粒产量显著降低。但在适度水分胁迫下,叶片蒸腾速率、叶绿素含量、净光合速率和气孔导度、剑叶可溶性糖和游离脯氨酸含量、CAT和POD活性等均未受到明显的影响,穗叶体温和冠温未明显升高,群体内部温度、湿度、光照强度和CO2浓度等微气象因子在一个良好的水平上,结实率和千粒重不仅未下降反而有所增加,产量显著提高。
To study how air temperature and relative humidity (RH), genotypes, organ age and agronomic practice affect organs temperature and spikelet fertility of rice, we conducted a series of experiment in the field and plant growth chambers by measuring organs temperature, spikelet fertility and microclimate of rice. In addition, we investigated the effect of agronomic practices on TD and canopy temperature to assess the role of agronomic practices in enhancing the resistance of rice to avoid heat injury. The main results of the study are listed below
     (1) The panicle, leaf temperatures were affected by air temperature, air humidity, plant type and age of organs of rice. Under similar conditions of air humidity, the organ temperature was lower in the low air temperature than in the high air temperature. At the same air temperature, the organ temperature increased when the air humidity was high. The organ temperature was also affected by the plant type of the varieties. Under similar climatic conditions, the organ temperature of erect panicle varieties was lower than that of curved panicle varieties. Cultivars with panicle above the flag leaf showed lower organs temperature than cultivars with panicle below the flag leaf. After heading, there were significant differences between organ temperatures at different stages of rice growth, the more mature the organs, the higher the organ temperature.
     (2) The spikelet fertility, seed setting rate and 1000 grain weight were significantly affected by air temperature and humidity at heading stage of rice. Cultivars grown at a region with lower RH and higher temperature had higher spikelet fertility, seed setting rate and 1000 grain weight than those in higher RH under the similar air temperature during heading. Under ambient temperature of 28-35℃conditions, panicle temperature and spikelets fertility, seed setting rate showed a significant negative correlation. The lower temperature of rice organs during grain filling stage were positively correlated with spikelet fertility, seed setting rate and 1000 grain weight. Thus, it was suggested that temperature of panicle and leaf may be a potential methodology for screening physiologically superior lines in rice breeding programs. The differences in panicle and leaf temperature, and spikelet fertility of different cultivars were related with photosynthesis and chlorophyll content, the conductivity of the soak solutio and MDA, soluble sugar content and amino proline content, ABA and GA, and the expression of heat shock proteins. These differences could be the potential reasons for differences in heat resistance among the rice cultivars.
     (3) Panicle fertilizer application rate (PFAR) had a significant effect on organs and canopy temperature. Increasing PFAR resulted in the higher panicle number, LAI, plant high and specific leaf weight. It was also observed that air temperature, humidity, light intensity and content of CO2 were also affected by different PFAR treatments, medium PFAR was proved to be best for microclimate within rice population. Besides, there were felicitous leaf area index, length of second leaf, photosynthetic rate, transpiration and lower canopy temperature at medium PFAR. The temperature of plant organs was significantly affected by PFAR, the more the PFAR, the lower the temperature of panicle and leaf. This study clearly showed that medium PFAR has a significant effect on the temperature of plant organs and canopy, and also enhance the resistance to heat stress.
     (4) Row-spacing treatments has a significant effect on organ temperature. The panicle number, LAI, specific leaf weight and the yield of medium row-spacing treatments (30 cm×13.3 cm) was the highest, while the lowest values were observed under narrow row-spacing was the lowest with a significant difference at 0.05 level. Medium row-spacing treatments significantly diminished internode length and enhanced internode thickness, wall thickness, the number of vascular bundles, and lodging resistance at the 0.05 level compared to wide row-spacing and medium row-spacing. Significant differences were also observed in the CO2content, light intensity, air temperature and humidity among different row-spacing. These findings clearly showed that the medium row-spacing resulted in ideal microclimate and lower organs temperature reduced chances of heat injury and enhanced heat resistance.
     (5) Water stress has a significant effect on organ and canopy temperature. Increasing water stress caused increase in organs and canopy temperature. The lowest grain yield was observed under higher water stress treatment (W3). Lower seed setting rate and 1000 grain weight were the reasons for lowest yield of W3. Water stress significantly influenced physiological characteristics of flag leaf, soluble sugar content, amino proline content, CAT and POD activity of flag leaf and these values were the maximum under W2 treatment. In addition, water stress has a significant effect on chlorophyll content, photosynthetic rate (Pn), transpiration rate (Tr) and stomata conductance (Cs), W2 were highest. Significant differences existed in air temperature, humidity, light intensity and content of CO2 among different water stress, there was ideal microclimate within population of rice with W2. These results clearly revealed that the water stress treatment significantly influenced plant organs and canopy temperature increased risk of heat injury and ultimately caused reduction in yield.
引文
[1]Faferia, N.K., Baligar, V.C. and Jones, C.A. Growth and mineral nutrition of field crops. Marcel Dekker,Inc.,New York,NY.1991,159-197
    [2]De Datta, S.K. Principles and practices of rice production. John Wiley, New York.1981,618
    [3]IRRI. World rice statistics 1985. International Rice Research Institute, Los Banos, Philippines, 1986b
    [4]Faferia, N.K., Baligar, V.C. and Jones, C.A. Growth and mineral nutrition of field crops. Marcel Dekker,Inc.,New York,NY 1991,159-197
    [5]Peng, S., Cassman, K.G, Virmani, S.S., et al. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci.,1999,39,1552-1559
    [6]Matthews, R.B., Horie, T., Kroff, M.J. A regional evaluation of the effect of future climate change on rice production in Asia. P.95-139. In:R. B. Matthews et al. (ed.) Modeling the impact of climate change on rice production in Asia. CAB International, Wallingford, UK.1999
    [7]Khush, G.S. Breaking the yield frontier of rice. Geo, journal,1995,35,329-332
    [8]袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,(1):1-3
    [9]袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    [10]袁隆平.依靠科技创新发展杂交水稻确保我国粮食安全.中国农业科技导报,2001,3(2):54-56
    [11]薛正平,杨星卫.我国稻谷总产量及粮食政策调整对上海粳米价格走势的影响.上海农业学报,2000,16(2):14-16
    [12]张宇.近40年我国粮食生产变化特征初步分析.中国农业气象.1995,16(3):10-13
    [13]戴云仙.近50年我国粮食产量变化的数学分析.内蒙古农业大学学报(自然科学版),2001,22(3):109-113
    [14]Houghton, J.T., Ding, Y, Griggs, D.J., et al. Climate Change 2001:Scientific Basis. New York: Cambridge University Press,2001,25-28
    [15]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江苏农业学报,2002,18(1):1-4
    [16]Peng, S.B., Huang, J.L., Sheehy, J.E., et al. Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci,2004,101,9971-9975
    [17]Bouman, B.A.M., Feng, L.P., Tuong, T.P., et al. Exploring options to grow rice using less water in northern China using a modelling approach Ⅱ. Quantifying yield, water balance components, and water productivity. Agric. Water Manage,2007,88,23-33
    [18]Krishnan, P., Swain, D.K., Chandra Bhaskar, B., et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agr., Ecosyst. & Environ.,2007,122 (2),233-242
    [19]Ainsworth, E.A. Rice production in a changing climate:a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology,2008,14,1642-1650
    [20]Houghton, J.T., Meira, L.G. and Bruce, J. Climate Chang 1994-Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge, U K:Cambridge, University,1995:1-49
    [21]IPCC. Climate Change 2001-The Scientific Basis. Cambridge, U K:Cambridge, University,2001: 101-125
    [22]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展.杂交水稻,2005,20(1):1-5
    [23]夏明元,戚华雄.高温热害对四个不育系配制的杂交组合结实率的影响.湖北农业科学,2004,(2): 21-22
    [24]杨惠成,黄仲青,蒋之埙,等.2003年安徽早中稻花期热害及防御技术.安徽农业科学,2004,32(1):3-4
    [25]Boote, K.J., Pickering, N.B., Baker, J.T., et al. Modeling leaf and canopy photosynthesis of rice in response to carbon dioxide and temperature. International Rice Research Notes,1994,19,47-48
    [26]Horie, T., Matsui, T., Nakagawa, H., et al. Effect of elevates CO2 and global climate change on rice yield in Japan. In:Omasa, K., Kai, K., Toda, H., et al. Climate change and plants in East Asia. Tokyo:Springer-Verlag.1996,39-56
    [27]上海植物生理研究所人工气候室.高温对早稻开花结实的影响及其防治Ⅱ.早稻开花期高温对开花结实的影响.植物学报,1976,18(4):321-329
    [28]许传桢,元生朝,蔡士云.高温对杂交稻结实的影响.华中农学院学报,1982,2(3):1-7
    [29]农学系水稻栽培课题组.高温对杂交水稻开花结实的影响.西南农学院学报,1984,(1):25-30
    [30]Matsui, T. and Omasa. K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristics. Annals of Botany,2002,89,683-687
    [31]Matsui, T., Omasa, K. and Horie, T. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn J Crop Sci, 1997,66,449-455
    [32]Matsui, T., Omasa, K. and Horie, T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice(Oryza sativa L.). Plant Prod Sci,2000,3, 430-434
    [33]王刚.海口地区杂交早稻产量构成因素的气象条件分析.广西气象,2005,26(1):41-42,50
    [34]贺超兴,白书农,谭克辉.高温对光敏水稻与普通水稻结实率降低方式的分析.杂交水稻,
    1998,13(2):29-32
    [35]西山岩男,赵贵彬,凌天行.水稻高温障碍的研究.国外农学-水稻,1982,(5):17-20
    [36]Matsui, T., Omasa, K.and Horie, T. The difference in sterility due to high temperature during the flowering period among japonica rice varieties. Plant Prod. Sci.,2001,4,90-93.
    [37]李成德.高温导致水稻出现大量空壳分析.陕西农业科学,2003,(5):45-47
    [38]张桂莲,陈立云,雷东阳,张顺堂.水稻耐热性研究进展杂交水稻,2005,20(1):1-5
    [39]Prasad, P.V.V., Boote, K.J., Allen, L.H., Sheehy, J.E. and Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res.2006,95,398-411
    [40]李稳香,陈立云,雷同阳,何强.高温条件下杂交中稻结实率与生理生化特性变化的相关性研究.种子,2006,25(5),12-16
    [41]朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影响.中国农业科学,1983,2:37-43
    [42]杨惠成,黄仲青,蒋之埙,等.2003年安徽早中稻花期热害及防御技术.安徽农业科学,2004,32(1): 3-4
    [43]隗溟,王光明,陈国惠,等.盛花期高温对两系杂交稻两优培九结实率的影响.杂交水稻,2002,17(1):51-53
    [44]Yoshida, S.1981. Fundamentals of rice crop science. Manila:IRRI.
    [45]郭家选,梅旭荣,卢志光.冬小麦冠层温度及其影响因素探析.中国生态农业学报,2003,11(4):24-26
    [46]Marosis, J.J., Wright, L.D. and Wiatrak, J.P. Efect of row width and nitrogen on cotton morphology and canopy microclimate. Crop Sciene.2004,44,870-877
    [47]高士杰,张步龙,陈文福.直立穗型水稻群体小气候环境研究.中国农业气象2000,21(3):23-26
    [48]王文成,张胜景,杜卫军.水稻边际优势利用栽培增产的生态原因分析.中国农学通报,2005,21(2):122-125
    [49]殷宏章,王天铎,李有则,等.水稻田的群体结构与光能利用.实验生物学报,1959,6(3):243-261
    [50]Shimono, H., Hasegawa, T., Fujimura, S. and Iwama, K. Responses of leaf photosynthesis and plant waterstatus in rice to low water temperature at different groeth stages. Field crops research, 2004,89:71-83
    [51]Ziska, L.H., Namuco, O.S., Moya, T.B., et al. Gwoth and yield response of field grown tropical rice to increasing carbon dioxide and air temperature. Agronomy J,1997,89:45-53
    [52]Pamplona, R.R. Effect of solar radiation and temerature on rice yield. PhilRice Technical Bulletin. 1995,1(1)
    [53]Quilang, P.E.J. Temperature reduction in rice canopy to increase yield. M.S thesis. University of the Philippines Los Banos.1999
    [54]Weerakoon, W.M.W., Maruyama, A. and Ohba, K. Impact of humidity on temperature-induced grain sterility in Rice (Oryza sativa L). J. Agron. Crop Sci.,2008,194,135-140
    [55]Prasad, P.V.V., Boote, K.J., Allen, L.H., et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006,95,398-411
    [56]王尚明,胡逢喜,张崇华,等.空气温湿度对水稻灌浆及空壳率的影响研究.农艺科学,2006,22(9):158-162
    [57]Tanner, C.B. Plant temperature. Agron J,1963,55,210-211
    [58]Ayeneh, A., Ginkel, M.V., Reynolds, M.P., et al. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res.,2002,79,173-184
    [59]张文忠,韩亚东,杜宏绢,等.水稻开花期冠层温度与土壤水分及产量结构的关系.中国水稻科学,2007,21(1):99-102
    [60]张彬,郑建初,杨飞,等.施肥水平对抽穗期水稻穗部温度的影响及其原因分析.中国水稻科学,2007,21(2):191-196
    [61]王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究.西北植物学报,2000,20(5):727-732
    [62]张嵩午.小麦温型现象.应用生态学报,1997,8(5):471-474
    [63]张嵩午,冯佰利,王长发,等.小麦冷源及其在干旱条件下的适应性.生态学报,2003,23(12): 2559-2564
    [64]冯佰利,高小丽,赵琳,等.干旱条件下小麦冠层温度及其性状的关联研究.生态学杂志,2005,24(5):508-512
    [65]Blumenthal, C.S., Botey, I.L., Bekes, F., et al. Seasonal change in wheat grain quality associated with high temperatures during grain filling. Aust. J. Agric. Res.1991,42, pp.21-30
    [66]Reynolds, M.P., Delgado, M.I., Gutierrez-Rodriguez, B.M., et al. Photosynthesis of wheat in a warm, irrigated environment. I. Genetic diversity and crop productivity. Field Crops Res.2000,66, 37-50
    [67]Amani, I., Fischer, R.A. and Reynolds, M.P. Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J. Agron. Crop Sci.1996,176,119-129
    [68]Hatfield, J.L., Pinter, Jr., Chasserary, E., et al. Effects of panicles on infrared thermometer measurements of canopy temperature in wheat. Agric. For. Meteorol.,1994,32,97-105
    [69]Araus, J.L., Reynolds, M.P. and Acevedo, E. Leaf posture, grain yield, growth, leaf structure, and carbon isotope discrimination in wheat. Crop Sci.,1993,33,1273-1279
    [70]董振国,于沪宁.农田作物层环境生态.北京:中国农业出版社,1995:40-52
    [71]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究.生态农业研究,2000,8(1):24-26
    [72]蔡焕杰.棉花冠层温度的变化规律及其用于缺水诊断研究.灌溉排水,1997,16(1):1-5
    [73]刘云,宇振荣,孙丹峰,等.冬小麦冠气温差及其影响因子研究.农业工程学报,2003,18(4): 63-69
    [74]Mackill, D.J. and Coffmam, W.R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z P flanzenzuecht,1983,91,61-69
    [75]Weerakoon, W.M.W., Maruyama, A. and Ohba, K. Impact of humidity on temperature-induced grain sterility in Rice (Oryza sativa L). J. Agron. Crop Sci.,2008,194,135-140
    [76]许为钢,胡琳,盖钧镒.小麦耐热性研究.华北农学报,1999,14(2):1-5
    [77]Prasad, P.V.V., Boote, K.J., Allen, L.H., et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006,95,398-411
    [78]郑小林,董任瑞.水稻热激反应的研究Ⅰ、幼苗叶片的膜透性和游离脯氨酸含量的变化.湖南农业大学学报,1997,23(2):109-112
    [79]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报,2000,42(7):673-678
    [80]Robert, R.C.S. and Bewlley, J.D. Lipid per oxidation association with accelerated aging of soybean axes. Plant physical,1980,65:245-248
    [81]雷东阳,陈立云,李稳香,等.高温对不同杂交稻开花期影响的生理差异.农业现代化研究,2005,26(5):397-400
    [82]张桂莲,陈立云,张顺堂,等.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学,2007,40(7):1345-1352
    [83]郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27:461-466
    [84]郑小林,董任瑞.水稻热激反应的研究Ⅲ、高温对水稻幼苗叶片过氧化物酶的影响.湖南农业大学学报,1998,24(6):423-425
    [85]汤日圣,郑建初,陈留根,等.高温对杂交水稻籽粒灌浆和剑叶某些生理特性的影响.植物生理与分子生物学学报,2005,31(6):657-662
    [86]黄英金,张宏玉,漆映雪,等.水稻耐高温逼热的生理机制及育种应用研究初报.科学技术与工程,2004,4(8):655-658
    [87]李稳香,陈立云,雷同阳,等.高温条件下杂交中稻结实率与生理生化特性变化相关性研究.种子,2006,25(5):12-16
    [88]Ziska, L.H., Manalo, P.A. and Ordonez, R.A. Intraspecific variation in the response of rice(Oryza sativa L.) to increased CO2and temperature:Growth and yield response of 17 cultivars. Journal of Experimental Botany,1996,47,1353-1359
    [89]田小海,松井勤,李守华,等.水稻花期高温胁迫研究进展与展望.应用生态学报,2007,18(11):2632-2636
    [90]王才林,仲维功.高温对水稻结实率的影响及其防御对策.江苏农业科学,2004,1:15-18
    [91]曹立勇,朱军,赵松涛.水稻籼粳交DH群体耐热性的QTLs定位.农业生物技术学报,2002,10(3):210-214
    [92]赵志刚,江玲,肖应辉,等.水稻孕穗期耐热性QTLs分析.作物学报,2006,640-644
    [93]Mackill, D.J., Coffman, W.R. and Rutger, J.N. Polle shedding and combining ability for high temperature to lerance in rice.CropScience,1982,22,730-733
    [94]李德红,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换.植物生理学报,1996,22(3):320-326
    [95]夏涛,刘纪麟.玉米细胞质雄性不育性与乙烯的关系.华北农学报,1996,11(3):68-72
    [96]刘宏伟,张改生,王军卫,等.GENESIS诱导小麦雄性不育与幼穗中乙烯含量的关系.西北农林科技大学学报,31(3):39-42
    [97]Hays, D.B., Do, J.H., Mason, R.E., et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science,2007,172,1113-1123
    [98]Maestri, E., Klueva, N., Perrotta, C., et al. Molecular genetics ofheat tolerance and heat shock proteins in cereals.Plant Molecular Biology,2002,48,667-681
    [99]Matsui, T., Omasa, K. and Horie, T. Comparison between anthers of two rice(Oryza sativa L.) cultivars with tolerance to high temperatures at flowering or susceptibility. PlantProduction Science, 2001,4,36-40
    [100]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展.杂交水稻,2005,20(1):1-5
    [101]Inthapanya, P., Sipaseuth, P., Sihavong, et al. Genotype differences in nutrient uptake and utilisation for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Research,2000,65,57-68
    [102]冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究.中国水稻科学2000,14(1):24-30
    [103]Khushu, M.K., Mavi, H.S. and Kachroo, D. Canopy temperature in rice under different transplanting dates.lndian J. Agron,1991,36(suppl),243-245
    [1]王刚.海口地区杂交早稻产量构成因素的气象条件分析.广西气象,2005,26(1):41-42,50
    [2]贺超兴,白书农,谭克辉.高温对光敏水稻与普通水稻结实率降低方式的分析.杂交水稻,1998,13(2):29-32
    [3]Satake, T. and Yoshida, S. High temperature-induced sterility in indica rice at flowering. Jpn. J. Crop Sci.,1978,47,6-10
    [4]西山岩男,赵贵彬,凌天行.水稻高温障碍的研究.国外农学-水稻,1982,(5):17-20
    [5]Matsui, T., Omasa, K.and Horie, T. The difference in sterility due to high temperature during the flowering period among japonica-rice varieties. Plant Prod. Sci.,2001,4,90-93
    [6]李成德.高温导致水稻出现大量空壳分析.陕西农业科学,2003,(5):45-47
    [7]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展杂交水稻,2005,20(1):1-5
    [8]Prasad, P.V.V., Boote, K.J., Allen, L.H., et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res.2006,95, 398-411
    [9]Matsui, T., Omasa, K. and Horie, T. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions. Jpn J Crop Sci,1997, 66,449-455
    [10]李稳香,陈立云,雷同阳,等.高温条件下杂交中稻结实率与生理生化特性变化的相关性研究.种子,2006,25(5):12-16
    [11]朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影响.中国农业科学,1983,2:37-43
    [12]杨惠成,黄仲青,蒋之埙,等.2003年安徽早中稻花期热害及防御技术.安徽农业科学,2004,32(1):3-4
    [13]隗溟,王光明,陈国惠,等.盛花期高温对两系杂交稻两优培九结实率的影响.杂交水稻,2002,17(1): 51-53
    [14]徐正进,陈温福,张龙步,等.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,1990,23(4): 10-16
    [15]张文忠,韩亚东,杜宏绢,等.水稻开花期冠层温度与土壤水分及产量结构的关系.中国水稻科学,2007,21(1):99-102
    [16]石春玲,徐正进,徐海,等.行向对不同穗型水稻品种群体光环境的影响.中国农学通报,2005,21(7):141,142-142
    [17]闫蓉,李凤霞,赵维忠,等.气象条件对水稻蒸腾速率的影响.宁夏农林科技,2005,2:7-10
    [18]Ayeneh, A. and van Ginkel, M. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res,2002,79,173-184
    [19]张嵩午,冯佰利,王长发,等.小麦冷源及其在干旱条件下的适应性.生态学报,2003,23(12):2559-2564
    [20]赵春江,黄文江,王之杰,等.不同水肥处理下冬小麦冠层含水率与温度关系的研究.农业工程学报,2002,18(2):25-28
    [21]Balota, M., Amani, I., Reynolds, M.P., et al. Evaluation of membrane thermostability and canopy temperature depression as screening traits for heat tolerance in wheat. Mexico, DF (Mexico). CIMMYT.1993,26,15-18
    [22]Tumer, N.C., O'Toole, J.C., Cruz, R.T., et al. Response of seven diverse rice cultivars to water deficits:Ⅰ. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res,1986, 13,257-271
    [23]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响.中国水稻科学,2005,19(5):422-426
    [24]郑志广.光温条件对水稻结实及干物质生产的影响.北京农学院学报,2003,18(1):13-16
    [25]娄伟平,张寒,孙永飞,等.光温条件对浙中晚稻抽穗期和结实率的影响.中国农业气象,2006,27(1):49-52
    [26]Jeffrey, T.B. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Meteorology,2004,122,129-137
    [27]兰华雄,王建明,杨居钿.水稻高产气象生态分析.亚热带农业研究,2005,1(2):50-54
    [1]IRRI. Rice almanac:Source book for the most important economic activity on earth,3rd edn. CABI Publishing, Oxon, UK.2002
    [2]Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci.,2007,104,16402-16409
    [3]FAO. World agriculture:Towards 2015/2030 summary report. FAO, Rme, Italy. ftp://ftp.fao.org /docrep/fao/004/y3557e/y3557e00.pdf.2002
    [4]Houghton, J.T., Ding, Y. and Griggs, D.J. Climate Change 2001:Scientific Basis. New York: Cambridge University Press,2001,25-28
    [5]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江苏农业学报,2002,18(1):1-8
    [6]Peng, S.B., Huang, J.L., Sheehy, J.E., et al. Rice yield decline with higher night temperature from global warming. Proc. Natl. Acad. Sci.,2004,101,9971-9975
    [7]Bouman, B.A.M., Feng, L.P., Tuong, T.P., et al.. Exploring options to grow rice using less water in northern China using a modelling approach Ⅱ. Quantifying yield, water balance components, and water productivity. Agric. Water Manage.,2007,88,23-33
    [8]Krishnan, P., Swain, D.K., Chandra Bhaskar, B., et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agr., Ecosyst. & Environ.,2007,122,233-242
    [9]Ainsworth, E.A. Rice production in a changing climate:a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology,2008,14,1642-1650
    [10]IPCC. Climate change 2001-the scientific basis. Cambridge, U K:Cambridge, University,2001, 101-125
    [11]IPCC. The Physical Science Basis:Summary for Policymakers. http://www.ipcc.ch/SPM2fe b07.pdf. 2007
    [12]王刚.海口地区杂交早稻产量构成因素的气象条件分析.广西气象,2005,26(1):41-42,50
    [13]贺超兴,白书农,谭克辉.高温对光敏水稻与普通水稻结实率降低方式的分析.杂交水稻,1998,13(2):29-32
    [14]娄伟平,张寒,孙永飞,等.光温条件对浙中晚稻抽穗期和结实率的影响.中国农业气象,2006,27(1):49-52
    [15]Satake, T. and Yoshida, S. High temperature-induced sterility in indica rice at flowering. Jpn. J. Crop Sci.,1978,47,6-10
    [16]Matsui, T., Omasa, K. and Horie, T. The difference in sterility due to high temperature during the flowering period among japonica-rice varieties. Plant Prod. Sci.,2001,4,90-93
    [17]李合生,孙群,赵世杰,等.植物生理生化试验原理和技术.北京:高等教育出版社,2000:182-261
    [18]张宪政.作物生理研究法.北京:农业出版社,1992:197-212
    [19]丁自立,杨国正,吴金平.热激处理对棉苗子叶可溶性蛋白质种类和含量的影响.棉花学报,2006,18(5):284-288
    [20]Laemmli, U.K. Cleavage of structral proteins during the assembly of the head of bacterio-phage T4. Nature,1970,227,680-685
    [21]Mackill, D.J. and Coffmam, W.R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z P flanzenzuecht,1983,91,61-69
    [22]许为钢,胡琳,盖钧镒.小麦耐热性研究.华北农学报,1999,14(2):1-5
    [23]Prasad, P.V.V., Boote, K.J., Allen, L.H., et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res,2006,95, 398-411
    [24]张彬,郑建初,杨飞,等.施肥水平对抽穗期水稻穗部温度的影响及其原因分析.中国水稻科学,2007,21(2):191-196
    [25]Ayeneh, A., Ginkel, M.V., Reynolds, M.P., et al. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res.,2002,79,173-184
    [26]Weerakoon, W.M.W., Maruyama, A. and Ohba, K. Impact of humidity on temperature-induced grain sterility in Rice (Oryza sativa L). J. Agron. Crop Sci.,2008,194,135-140
    [1]Houghton, J.T., Ding, Y. and Griggs, D.J. Climate Change 2001:Scientific Basis. New York: Cambridge University Press,2001, pp25-28
    [2]Peng, S.B., Huang, J.L. and Sheehy, J.E. Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci,2004,101,9971-9975
    [3]IPCC. Climate Change 2001-the Scientific Basis. Cambridge, U K:Cambridge University,2001, pp101-125
    [4]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江苏农业学报,2002,18(1):1-8
    [5]Krishnan, P., Swain, D.K., Chandra Bhaskar, B., et al. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment,2007,122,233-242
    [6]杨惠成,黄仲青,蒋之埙,等.2003年安徽早中稻花期热害及防御技术.安徽农业科学,2004,32(1):3-4
    [7]Horie, T., Matsui, T. and Nakagawa, H. Effect of elevates CO2 and global climate change on rice yield in Japan. In:Omasa K, Kai K, Toda H. Climate Change and Plants in East Asia. Tokyo, Japan: Springer-Verlag,1996, pp39-56
    [8]Matsui, T., Omasa, K. and Horie, T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice(Oryza sativa L.). Plant Prod. Sci.,2000,3,430-434
    [9]Matsui, T., Omasa, K. and Horie, T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice(Oryza sativa L.). Plant Prod Sci.,2000,3,430-434
    [10]Garrity, D.P. and O'Toole, J.C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agron J,1995,87,773-779
    [11]Fischer, R.A., Rees, D., Sayre, K.D., Lu, Z.M. and Condon, A.G. Wheat yield progress associated with a higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci.,1998, 38,1467-1475
    [12]Tumer, N.C., O' Toole, J.C. and Cruz, R.T. Response of seven diverse rice cultivars to water deficits: I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res.,1986,13, 257-271
    [13]Chauham, J.S., Moya, T.B., Singh, R.K., et al. Influence of soil moisture stress during reproductive stage on physiological parameters and grain yield in upland rice. Ozyza,1999,36,130-135
    [14]孙成明,伏广成,董桂春,等.水稻抽穗期叶型特性及其与产量因子关系的研究.中国农学 通报,2005,21(10):132-135,156
    [15]Mackill, D.J. and Coffmam, W.R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z P flanzenzuecht,1983,91,61-69
    [16]许为钢,胡琳,盖钧镒.小麦耐热性研究.华北农学报,1999,14(2):1-5
    [17]Prasad, P.V.V., Boote, K.J., Allen, L.H., et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res.,2006,95, 398-411
    [18]张彬,郑建初,杨飞,等.施肥水平对抽穗期水稻穗部温度的影响及其原因分析.中国水稻科学,2007,21(2):191-196
    [1]许凤英,马均,王贺正,等.水稻强化栽培下的稻米品质.作物学报,2005,31(5):577-582
    [2]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000:150-154
    [3]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响.中国水稻科学,2005,19(5):422-426
    [4]王建林,徐正进,魏树和.水稻株型育种生理生态特性的研究现状与展望.辽宁农业科学,2000(4):23-27
    [5]杨连新,王余龙,黄建晔,等.开放式空气CO2浓度增高对水稻生长发育影响的研究进展.应用生态学报,2006,17(7):1331-1337
    [6]Jeffrey, T.B. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Meteorology,2004,122,129-137
    [7]蔡武城,袁厚积.生物物质常用化学分析法.北京:科学出版社,1982,15-16
    [8]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南.科学出版社,1999,133-134
    [9]关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.吉林农业科学,2004,29(4):6-11
    [10]梁康迳,王雪仁,章清杞,等.基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响.福建农业大学学报,2000,29(1):12-17
    [11]Amano, T., Zhu, Q.S, Wang, Y.I. et al. Case Studies on High Yields of Paddy Rice in Jiangsu Province, China Ⅱ Analysis of characters related to lodging. Jpn J Crop Sci,1993,2,275-281
    [12]林贤青,王雅芬,朱德峰,等.水稻茎鞘非结构性碳水化合物与穗部性状关系的研究.中国水稻科学,2001,15(2):155-157
    [13]Tadashi, T., Takeshi, H. and Masao, O. Filling percentage of rice spikelet as affected by availability of non-structural carbohydrates at the initial phase of grain filling. Jpn J Crop Sci,1996,3,445-452
    [14]杨建昌,徐国伟,王志琴,等.旱种水稻结实期茎中碳同化物的运转及其生理机制.作物学报,2004,30(2):108-114
    [15]刘立军,袁莉民,王志琴,等.旱种水稻倒伏生理原因分析与对策的初步研究.中国水稻科学,2002,16(3):225-230
    [16]郑克武,邹江石,吕川根.氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利用的影响.作物学报,2006,32(6):885-893
    [17]周鸿凯,郭建夫,黎华寿,等.光温因子与杂交水稻生态群体的产量和品质性状的典型相关分析.应用生态学报,2006,17(4):663-667
    [18]谢立勇,徐正进,林而达,等.水稻灌浆期群体光能截获与利用分析.中国农业气象,2005, 26(4):207-209
    [19]谢立勇,冯永祥.田间配置方式对不同穗型水稻生理特性的影响.沈阳农业大学学报,2003,34(6):406-409
    [20]凌启鸿.水稻群体质量理论与实践.南京:江苏科学技术出版社,2000,85-91
    [21]孙旭初.水稻茎秆抗倒性的研究.中国农业科学,1987,20(4):32-37
    [22]陈正龙,周铭成,赵伯康,等.水稻“扩行、减苗”与群体质量关系的再论证.江苏农业科学,2005,5:32-34
    [1]薛全义,荆宇,华玉凡.略论我国旱稻的生产及发展.中国稻米,2002,(4):5-7
    [2]程旺大,赵国平,张国平,等.水稻节水栽培的生态和环境效应.农业工程学报,2002,18(1):191-195
    [3]Boonjung, H. and Fukai, S. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions.1. Growth during drought. Field Crop Research,1996,48,37-45
    [4]Kato, Y., Kamoshita, A. and Yamagishi, J. Growth of rice (Oryza sativa L.) cultivars under upland conditions with different levels of water supply. Plant Production Science,2007,10,3-13
    [5]李华,王冬吟,朱德峰.土壤水分状况对水稻物质积累和产量的影响.西南农业学报,2008,21(1):114-116
    [6]陈海生,陶龙兴,王熹,等.灌水方式对水稻灌浆期光合物质运转与分配的影响.中国农业科学,2005,38(4):678-683
    [7]胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响.应用生态学报,2004,15(1):63-67
    [8]王泽杰,陈永军,谢崇华,等.不同生育期水分胁迫对杂交水稻光合及产量性状的影响.干旱地区农业研究,2008,26(6):138-142,158
    [9]Kumar, R., Sarawgi, A.K., Ramos, C., et al. Partitioning of dry matter during drought stress in rained lowland rice. Field Crops Research,2006,98,1-11
    [10]杨建昌,王志琴,刘立军,等.旱种水稻生育特性与产量形成的研究.作物学报,2002,28(1):11-17
    [11]王熹,陶龙兴,黄效林,等.灌溉稻田水稻旱作技术要素及产量形成.中国农业科学,2004,37(4):502-509
    [12]王成瑷,王伯伦,张文香,等.土壤水分胁迫对水稻产量和品质的影响.作物学报,2006,32(1):131-137
    [13]郑桂萍,李金峰,钱永德,等.土壤水分对水稻产量与品质的影响.作物学报,2006,32(8):1261-1264
    [14]王维,张建华,杨建昌,等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响.作物学报,2004,30(3):196-204
    [15]Mackill, D.J. and Coffmam, W.R. Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z P flanzenzuecht,1983,91,61-69
    [16]Xu, W.G., Hu, L. and Gai, J.Y. A study on heat tolerance of wheat cultivars. Acta Agric Boreali-Sin, 1999,14,1-5
    [17]张宪政.作物生理研究法.北京:农业出版社,1992:197-212
    [18]李合生,孙群,赵世杰,等.植物生理生化试验原理和技术.北京:高等教育出版社,2000:164-261
    [19]蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响.作物学报,2002,28(5):601-608
    [20]陶龙兴,王熹,黄效林,等.水稻灌浆期间土壤含水量对根系生理活性的影响.中国农业科学,2004,37(11):1616-1620
    [21]Hare, P.D., Cress, W.A. and Staden, J.V. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment,1998,21,535-553
    [22]Martino, C., Delfine, S., Pizzuto, R., et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress New Phytologist,2003,158,455-463
    [23]Chaves, M.M. and Oliveira, M.M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal Experimental Botany,2005,55,2365-2384
    [24]Ashraf, M. and Iram, A. Drought stress induced changes in some organic substances in nodules and other plantparts of two potential legumes differing salt tolerance. FLORA,2005,200,535-546
    [25]Pinheiro, C., Chaves, M.M. and Ricardo, C.P. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. Journal of Experimental Botany,2001,52,1063-1070
    [26]Patakas, A., Nikolaou, N., Zioziou, E., et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines Plant Science,2002,163,361-367
    [27]张荣萍,马均,王贺正,等.不同灌水方式对水稻结实期一些生理性状和产量的影响.作物学报,2008,34(3):486-495
    [28]Tanner, C.B. Plant temperature. Agron J,1963,55,210-211
    [29]董振国,于沪宁.农田作物层环境生态.北京:中国农业出版社,1995:40-52.
    [30]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究.生态农业研究,2000,8(1):24-26
    [31]Turner, N.C., O'Toole, J.C. and Cruz, R.T. Response of seven diverse rice cultivars to water deficits: I. Stress development, canopy temperature, leaf rolling and growth. Field Crops Res.,1986,13, 257-271
    [32]Chauham, J.S., Moya, T.B., Singh, R.K., et al. Influence of soil moisture stress during reproductive stage on physiological parameters and grain yield in upland rice. Ozyza,1999,36,130-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700