甘蓝细胞质雄性不育性对核背景的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝(Brassica oleracea L. var. capitata L.)杂交优势明显,利用细胞质雄性不育系对甘蓝等叶类蔬菜进行育种具有独特的优势。但甘蓝中尚未发现天然细胞质雄性不育系,生产上多通过转育外源不育细胞质获得甘蓝细胞质雄性不育系,研究甘蓝细胞质雄性不育性对核背景的响应特性,探寻不同细胞质不育类型其雄性不育性对核背景的响应特性,对丰富和完善细胞质雄性不育理论和确定选育方向,减少转育工作量有重要意义。
     本文以回交转育获得的多组同质异核细胞质雄性不育系为材料,首先利用各类细胞质雄性不育特异的基因鉴定引进不育材料的类型,然后观察各类细胞质雄性不育花器官形态对核背景的响应,而后再对其中三份材料进行多代连续回交转育,获得三组稳定的同质异核雄性不育系。通过石碏切片观察研究了三种不育细胞质花粉败育特征对不同核背景的响应,并利用半定量RT-PCR研究了线粒体上相关基因和花形态建成相关基因在花蕾发育不同阶段的表达情况;同时利用限制性内切酶酶切图谱分析了三种不育细胞质线粒体基因组结构在不同核背景下的变异情况;最后利用聚丙稀酰胺凝胶电泳分析不同核背景ATP、POD同工酶,从同工酶角度研究不同核背景的雄性不育系代谢差异,及细胞质对核基因的反向调控。主要研究结果如下:
     (1)国内目前对甘蓝上应用细胞质雄性不育类型缺乏分类鉴定,对各种不育细胞质类型的应用情况尚不明确,不育细胞质类型较为单一。本研究对从国内外多家科研机构引进的15份细胞质雄性不育材料进行鉴定,仅发现1份属于Nap型细胞质不育系,其余14份材料均属于Ogu胞质不育类型。
     (2)Nap型细胞质不育材料和两份Ogu细胞质不育材料花器官形态具有较大差异。Nap型细胞质不育材料花瓣呈喇叭状,雄蕊短小退化,花药形态多样,蜜腺退化。第一组Ogu细胞质不育材料花瓣皱缩,雄蕊心皮化,蜜腺退化;第二组Ogu不育花瓣较正常,雄蕊部分退化。Nap型花器官形态对不同核背景的响应表现3种类型,第1类与原材料相近或呈负响应,第2类表现为正响应,第3类花器官不同部位响应不一,呈现正或负响应。Ogu型花器官形态对核背景的响应主要表现为不变化或较弱的正响应。同一自交系对不同来源的不育材料影响的稳定性,因自交系不同而异,对于自交系K1、N4,不同来源胞质材料对其响应趋于一致,对自交系37、F1、G7的响应,在不同来源胞质材料间存在差异。
     (3)对Nap型胞质和Ogu型细胞质不育材料花蕾细胞学形态的研究表明,花药以及其中花粉的发育情况受到核背景的影响。Nap型细胞质不育系在不同核背景下败育类型分为无花粉囊分化型和有花粉囊分化型,有花粉囊分化的类型中有部分材料在四分体时期花粉停止发育,还有个别不育材料中四分体可以分离出小孢子,属于花药不开裂导致的雄性不育。第一组Ogu型不育材料花药有心皮化趋势,但是不同核背景下败育特征仍有较大差异,花粉囊分化的情况在不同核背景下表现很不一致。并且,在该组材料普遍雄蕊心皮化的情况下,编号为95材料仍具有较为正常的花药发育。第二组Ogu型不育系败育时期比较稳定,都集中于四分体时期,而花粉囊分化和绒毡层的发育异常方面,在不同核背景下略有差异。(4)通过对线粒体雄性不育相关候选基因在花蕾发育不同阶段和不同转育核背景下表达的研究,发现Nap型细胞质雄性不育材料中orf222, cox1, atp6 3个基因的变化趋势基本一致。cox1, atp6以及不育特异基因orf222均受到核背景的影响,在小中大花蕾中表达的规律,三个基因在不同核背景中表现不同,分为前期表达量高后期降低和发育不同阶段表达一致两种类型。这与材料败育特征表现有相关性。orf222, cox1, atp6表达量前期高后期降低的不育材料表现为无花粉囊型败育;而三个基因在花蕾发育过程中表达量稳定的不育材料表现为有花粉囊分化的败育类型。atpA、atp9在不同大小花蕾中和不同核背景下表达量无显著差异,即不受核背景的影响。
     Ogu型细胞质雄性不育系相关不育基因的表达则与Nap存在差异,且两类Ogu不育之间也不一致。79#来源的不育胞质中orf138在不同核背景下表达存在一定的差异,cox1, atp6 atpA、atp9的表达则不受花蕾发育阶段和核背景的影响。
     对于99#来源的第二组Ogu胞质,在orf138、cox1, atp6 atpA, atp9 5个线粒体基因的表达无明显差异,其表达既不受核背景影响,也不随发育阶段改变而发生变化。
     (5)对与花形态建成相关的AP3、PI、AG基因表达分析,表明AP3、AG在Nap型和Ogu型细胞质不育材料中的表达均表现为不受核背景的影响,并且在花蕾发育的三个阶段表达量保持稳定。但是PI基因在同质异核的不育材料间其表达量表现出了显著变化,推测PI在控制雄性不育系花器官形态发育上有重要作用。(6)经XhoⅠ、PstⅠ、BamHⅠ、EcoRⅠ四种限制性内切酶对三组不育材料线粒体基因组进行酶切后发现,13份Nap型细胞质同质异核不育材料之间,在四种限制性内切酶酶切图谱中没有差异。但两类ogu型不育中均检测到线粒体结构的变异,第一组Ogu型细胞质线粒体在8个材料中发现有1份材料出现了酶切图谱的变化;第二组Ogu型细胞质线粒体中8个材料中发现了3份不育材料出现了相同的酶切图谱上的变化。线粒体的结构受核背景的影响,并且趋向于在相同的位点发生重排。
     (7)对同质异核的不育材料ATP和POD同工酶的分析表明,Nap型细胞质雄性不育材料中ATP同工酶相对保持系,在花蕾发育后期酶活性显著降低,部分材料还表现出谱带的缺失。两组Ogu型细胞质不育材料在花蕾发育不同阶段ATP酶活性基本一致。但在花蕾发育后期同样有部分核背景下表现出谱带的缺失。表明ATP酶在不育材料中的变异程度不同核背景间有一定差异。
     编号为93#和107#的材料分别属于两组Ogu细胞质雄性不育系材料,两者具有相同的保持系,但是在不同细胞质条件下两者的POD同工酶谱带存在差异,Rf=0.787的酶带存在于93#中,但在107#中则缺失。并发现79#不育系中存在的Rf=0.382的核质互作产生的POD谱带,表明细胞质对POD同工酶组成有调控作用。
Cabbage (Brassica oleracea L. var. capitata L.) is an important leafy vegetable crop with widely growing area only second to Chinese cabbage in China. Cabbage is typical allogamy plants and has obvious heterosis. Utilization of male sterile lines is becoming the trends in cabbage heterosis breeding. But cytoplasmic male sterility has not yet been found in cabbages. In application, cabbage CMS lines are always obtained by transmitting foreign sterile cytoplasm to cabbage. Studying on the response of cabbage cytoplasmic male sterility to nucleus background is significant to improve the mechanism of cytoplasmic male sterile and make it more convenient to determined the direction of breeding as well as reduce the breeding workload.
     Plant materials used in the parent study involved many alloplasmic lines which developed by hybridization between introduced CMS lines and different inbred lines, and then successive backcross with those inbred lines as male parents. The CMS types of introduced CMS lines were identified by amplified special cytoplasmic male sterile associated gene, then morphology response of the flowers to nuclear background was observed, after that, anther abortion stages and character were studied by the means of paraffin section method to detect the cytomorphology response of anther to nuclear background in alloplasmic lines developed from CMS lines 78、79、99 backcross with their maintainers. The expression of mitochondrial genes and flower morphogenesis-related genes were analysis using semi-quantitative RT-PCR in different developmental stages of bud. Mitochondrial structure was analyzed by restriction enzyme in and between the three group of CMS lines which with same sources of cytoplasmic and different nuclear background. Isozymes of POD, ATPase, were also analyzed in those materials. The main results are as
     follows:
     (1) Cytoplasmic male sterility materials in Brassica oleracea were lake of classification and identification at present. The application of every type of cytoplasmic male sterility material was also not so clear. Fifteen cytoplasmic male sterile materials introduced from home and abroad in Brassica oleracea was identified in this paper. Ogu CMS take up the most part in the materials investigated. Fourteen materials of 15 belong to this class. Only No.78 belongs to Nap CMS. The usage of sterile cytoplasm on radish (Ogu CMS) was overwhelmed.
     (2) There was an obvious difference between the Nap-type cytoplasmic male sterile and two Ogu cytoplasmic male sterile on floral organs morphology. Nap-type cytoplasmic male sterile petal was horn, and with degraded short stamens, anthers shapes varied greatly, degradation nectary. The first group of Ogu CMS petals wrinkled, and with pistillody stamens, degraded nectarys; the second group of Ogu CMS, their petals were normal, stamens were partly degraded. The response of Nap CMS to different nuclear background showed three types. The first type was similar with original material or show negative response; The second type was positive response; The third type was complicated, varying with floret parts. The Ogu CMS materials either showed a weak positive response to nuclear background or keep unchanged comparing to original material. Morphology response of different source of Ogu CMS to the same nuclear background was varied with unclear background. The inbred-line K1, N4 have similar impact on different cytoplasmic male sterile, but 37, F1 and G7 have different effect on different sources of cytoplasmic male sterile in flower morphology.
     (3) Cytomorphological analysis indicated that the abortion stages and characteristics of Nap CMS and Ogu CMS were affected by nucleus background. Nap-type cytoplasmic male sterile lines with different nucleus background were divided into two type, some materials were no pollen sacs differentiated, others abortion occurred after pollen sacs differentiated. As far as the later with pollen sac, some materials inhibition of pollen development occurred at tetrad stage, but microspores could be released from tetrads in several other materials, abortion in those CMS lines caused by anther failed to cracking.
     In the first group of Ogu CMS materials, their anther show a trend of Pistillody, but nucleus background had a deep affection on the performance of abortion. Absolutely, differentiation of anther were affected by nucleus background. In spite of anthers were pistillody in almost all CMS materials in this group, material coded 95 still had relatively normal anther development. In the second group of Ogu CMS materials, their abortion stages were relatively steady in different nucleus background, which were concentrated in tetrad stage. The abnormity of tapetal and anther development show some difference between different nucleus backgrounds in this group.
     (4) Expression analyze to CMS-associated mitochondrial gene at different development stages reveal that, as far as Nap CMS materials, expression level of orf222, cox1, atp6 always had same trend during bud development in same Nap CMS lines. Expression of the three genes (orf222, cox1, atp6) also affected by nucleus background. The expression tendency of the three genes were varied with nucleus background, which could been classified in two types:expression of these three genes were reduce in middle and large bud compared to that in small bud or show no difference among three stages investigated. This reveals some relationship with corresponding abortion character. Nap-CMS materials which expressed orf222, coxl, atp6 in small bud mostly had no pollen sacs differentiated. Whereas in these CMS lines which had pollen sacs development, orf222, coxl and atp6 express in similar abundance. atpA, atp9 shown no significant difference among three development stages of all the Nap-CMS materials investigated, so the expression of these two genes was not regulated by nucleus background.
     Performance of these mitochondrial genes in Ogu-CMS materials was different with that in Nap-CMS materials, and they were not identical between two groups of Ogu-CMS lines. In the first grope of Ogu-CMS materials whose cytoplasm sourced from No.79, the expression of orf138 show a little difference in different development stages in part of materials in this group. Expression of coxl, atp6 atpA, atp9 was identical among different development stage and different Ogu-CMS lines in this group.
     In the second grope of Ogu-CMS materials whose cytoplasm sourced from No.99, there were no obvious differences in such five mitochondrial genes orf138, cox1, atp6 atpA and atp9. Difference was detected neither in three development stages nor in different CMS lines. Expressions of these five genes were hardly affected by the nucleus background.
     (5) Expression analysis of genes which related to the development of floral organ was carried out by semi-quantitative RT-PCR, the results show that expression of AP3, AG were identical among three development stage of all the CMS materials, whether in Nap-CMS lines or in Ogu-CMS lines. However, the expression of PI show a significant change among these materials with different nucleus background, it suggests that PI may has an important role causing diverse abnormality of floral organ in CMS lines.
     (6) Mitochondrial DNA was isolated from three groups of CMS materials, restriction enzymes Pstl, Xhol, BamHl and EcoRl were used to digest the mtDNA. It was found that Restriction patterns of Mitochondrial DNA were identical among 13 Nap-CMS lines, However rearrangements of mitochondrial DNA were observed in both two groups of Ogu-CMS lines. In 8 Ogu-CMS lines of first group, one of them was distinct from others in BamHl-digested restriction map. It suggests that structure of mitochondrial genome have changed in this material, which may be result from its nucleus background.
     In 8 Ogu-CMS lines of second group, we found three CMS lines whose restriction map diverge considerably from those of other five CMS lines. It suggests that the structure of mitochondria genome was affected by the nucleus background in this group. The result also indicate that rearrangement tend to occur in same set, although the impact come from different nucleus background.
     (7) Isoenzymes of ATPase and POD were analyzed in this paper. The result show that, comparing to male fertile line, activity of ATPase reduced markedly in large-bud of Nap-CMS lines. In some of Nap-CMS lines, several band even have not been detected in large-bud. There was on significant difference in activity of ATPase in Ogu-CMS lines, whether first group or second group, but number of bands were digressed in middle and large bud in some Ogu-CMS lines. The absence of bands was varied with nucleus background.
     No.93 and No.107 belong to two groups of Ogu-CMS material respectively, but they had same maintainer. There was difference between these two lines in POD isozyme bands. The band Rf=0.787 was found in No.93, but obscene in No.107. In CMS line No.79, the band Rf =0.382 was detected which result from interaction of cytoplasm and nuclear. The results show the influence of cytoplasmic on the composition of POD enzyme.
引文
[1]Aarts MGM, Dirkse WG. Transposon tagging of a male sterility gene in Arabidopsis[J]. Nature,1993, 363:715-717.
    [2]Alvarz-Buylla ER, Liljegren SJ, Pelaz S,etal. MADS-box gene evolution beyond flowers:expression in pollen, endosperm, guard cells, roots and trichomes[J].Plant J,2000,24(4):457-466.
    [3]Belliard G, Vedel F, and Pelletier G. Mitochondrial recombination in cytoplasmic hybrids of nicotiana tabacun by protoplast fusion [J]. Nature,1979,281:401-403.
    [4]Bino RJ. Histological aspects of microsporogenesis in fertile, cytoplasmic male sterile and restored fertile Petunia hybrida[J]. Theor Appl Genet,1985,69:423-428.
    [5]Bonhomme S, Budar F, Lancelin D, Small I, Defrance M C, Pelletier G. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids[J]. Mol Gen Genet,1992,235:340-348.
    [6]Chung YY, Lee KJ, An G. Characterization of a tobacco MADS-box gene homologous to AGL2[J].Mol Cells,1998,8(6):764-769.
    [7]Clark 1985 Clark EM, Izhar S, and Hanson MR. Independent segregation of the plastid genome and cytoplasmic male sterility expression in six male sterile sorghum cytoplasms[J]. Crop Sci,1982, 22:536-539.
    [8]Coen ES, Meyeromitz EM. The war of the whorl:genetic interaction controlling flower development [J]. Nature,1991,353:31-37.
    [9]Cui XQ, Wise RP, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize [J]. Science,1996,272:1334-1336.
    [10]Dieterich J H, Braun H P, Schmitz U K. Alloplasmic male sterility in Brassica napus (CMS' Tournefortii-Stiewe') is associated with a special gene arrangement around a novel atp9 gene[J]. Mol Gen Genet,2003,269:723-731.
    [11]Fan Z, Stefansson B R. Influence of temperature on sterility of two cytoplasmic male-sterility systems in rape(Brassica napus L) [J]. Can J Plant Sci,1986,66:221-227.
    [12]Grant I,Beversolorf WD, peterson RL.1986, A comparative light and electronmicroscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape(Brassica napus). Canada Journal of Botany 64(5):1055-1086
    [13]Gray MW. Origin and evolution of mitochondrial DNA [J].Annu Rev Cell Biol,1899,5:25-50.
    [14]Hanson MR and Bentollia Stephane. Interactions of mitochondrial and nuclear genes that affect male gametophyte development[J].2004,16:S154-S169.
    [15]Hanson MR. Male sterility loci in plant mitochondrial genomes[J]. In:Miflin BJ (ed) Oxford Surveys of Plant Molecular Biology,1989,6:61-82.
    [16]Hanson MR, Wilson RK, Bentolila S, Kohler RH, Chen HC. Mitochondrial gene organization and expression in petunia male fertile and sterile plants[J]. J Hered,1999,90(3):362-368.
    [17]Hernould M, Suharsono S, Zabaleta E, Carde J.P, Litvak S, Araya A, and Mouras A. Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants[J]. Plant Mol Biol,1998,36(4): 499-508.
    [18]Hinata K, et al. Studies on a male sterile strain having the Brassica comnpestris nucleus and Diplotaxis muralis cytoplasm [J]. Japan J Breed,1979,29(4):305-311.
    [19]Holford P, Croft J H, Newbury H J. Structural studies of microsporogenesis in fertile and male-sterile onions(Allium cepa L.) containing the cms-S cytoplasm[J]. Theor Appl Genet,1991,82:745-755.
    [20]Honma T. and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature,1994,409:525-529.
    [21]Holford P, Croft J H, Newbury H J. Structural studies of microsporogenesis in fertile and male-sterile onions(Allium cepa L.) containing the cms-S cytoplasm[J]. Theor Appl Genet,1991,82:745-755.
    [22]Horner T. A comparative light and electron microscopic study of microsporgenesis in male-fertile and cytoplasmic male-sterile sunflower (Lelianthus annuus)[J]. Amer J Bot,1977,64:745-759.
    [23]Hosokawa S, Taketa T, Otani Y, Ikehata M. Cytohistological studies on male sterility of suger beets with special refrencce to pollen degeneration and tapetal plasmodium[J]. Japan J breed,1954, 4:196-202.
    [24]Hosokawa S, Taketa T, Otani Y, Ikehata M. Cytohistological studies on male sterility of suger beets with special refrencce to pollen degeneration and tapetal plasmodium[J]. Japan J breed,1954, 4:196-202.
    [25]Iwabuchi M, Koizuka N, Fujimoto H, Fujimoto H, Sakai T, Imamura J. Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homolOgue of the Ogura radish CMS-associated gene, orf138 [J]. Plant Mol Biol,1999,39:183-188.
    [26]Kaul MLH. Male sterility in higher plants[M]. Berlin Heidelberg:Springer-Verleg,1988
    [27]Krishnasamy S, Makaroff CA. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish[J]. Plant Mol Biol,1994, 26:935-946.
    [28]Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterie Brassica lines containing B.tournefortii mitochondria express an ORF 3'of the atp6 gene and a 32kDa protein[J]. Plant Mol Biol,1996,32:879-890.
    [29]Laser KD, Lesten NR. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms [J]. Bot Rev,1972,38:427-454.
    [30]Leving C S. Proceedings of the 31st annual corn and sorghum research conference[C]. Science, 1976:110.
    [31]Levings C S, Pring D R. Restriction Endonuelease Analysis of Mitochondria DNA from Normal, Texas Cytoplasmic male sterile maize[J].Science,1976,193:158-169.
    [32]Leon P, Arroyo A, Mackenzie S. Nuclear control of plastid and mitochondrial development in higher plants[J]. Annu Rev Plant Physiol Plant Mol Biol,1998,49:453-480.
    [33]L'Homme Y, Brown GG. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus[J]. Nucl Acids Res, 1993,21:1903-1909.
    [34]L'Homme Y, Stahl R J, Li XQ, Hameed A, Brown GG. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf 224 gene[J]. Curr Genet,1997,31:325-335.
    [35]Li WQ, Zhang GS, Niu N, Wei F, Wang K, Pan DL. RAPD Analysis on Variation of Mitochondrial DNA for Cytoplasmic-Nuclear Male Sterile Lines in Wheat[J]. Molecular Plant Breeding,2009,7(3): 490-496.
    [36]Mariani C, De Beuckeleer M. Induction of male sterility in plants by a chimaeric ribonuclease gene[J]. Nature,1990,347:737-741.
    [37]Menassa R, L'Homme Y, Brown GG. Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restores gene[J]. Plant J,1999,17(5):491-499.
    [38]Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration[J].Trends in Plant Science,1998,3:175-180.
    [39]Newton K J, Winberg B, Yamato K, Lupold S, Stern D B. Evidence for a novel mitochondrial promoter preceding the cox II gene of perennial teosintes[J]. EMBO J,1995,14:585-593.
    [40]Ogura H. Studies on the new male sterility in Japanese radish, with special references to utilization of this sterility towards the practical raising of hybrid seeds[J].Mem Fac Agric Kagoshima Univ,1968,6:39-78.
    [41]Pearson O H. Cytoplasmically inherited make Sterility characters and flavour components from the species cross B. nigra Koch×B.Oleacea L. [J]. Amer Hort Sci,1972 97(3):397-402
    [42]Polowick PL. Sawhney VK. Microsporogenesis in a normal line and in the Ogu cytoplasmic male sterile line of Brassica napes. I.The influence of the high temperatures [J]. Sex Plant Report,1990,3:263-276.
    [43]Pring, D. R. et al.1977, Pro. Natl. Acad. Sci. USA,74:2904-2908
    [44]Riechmann JL, Meyerowitz EM. MADS domain proteins in plant development[J].Biol Chem,1997,378:1079-1101.
    [45]Shiga T, Baba S. Cyto-plasmic male sterility in oilseed rape(Brassica napus L.), and its utilization to breeding[J]. Japan J Breed,1973,23(4):187-197.
    [46]Singh V P, Kobabe G..Cytomorphological investigations on male-sterility in Allium schoenoprasum L[J]. Indian J Genet Plant Breed,1969,29:241-262.
    [47]Smith RA, Ord MJ. Mitochondrial Form and Function Relationships in vivo:their potential in toxicology and pathology [J]. Int Rev Cytol,1983,83:63-134.
    [48]Stiewe G, Witt U, Hansen S, Theis R, Abel WO, Robbelen G. Natural and experimental evolution of CMS for rapeseed breeding[J]. Adv Plant Breed,1995,18:59-76.
    [49]Tang HV, Chang R, Pring DR.Cosegregation of single genes associated with fertility restoration and transcript processing of sorghum mitochondrial orf107 and urf209.Genetics,1998,150(1):383-91.
    [50]Vedel F, Mathieu C, Lebacq P, Ambard-Bretteville F, Remy R. Comparative macromolecular analysis of the cytoplasms of normal and cytoplasmic male sterile Brassica napus[J]. Theor Appl Genet,1982, 62:255-262.
    [51]Warmke HE, Lee SJ. Pollen abortion in T cytoplasmic male-sterile corn (Zea mays):a suggested mechanism[J]. Science,1978,200:561-563.
    [52]Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes[J]. Cell,1994,78:203-209.
    [53]Wise RP, Gobelman-Werner K, Pei D, Dill CL, Schnable PS. Mitochondrial Transcript Processing and Restoration of Male Fertility in T-cytoplasm Maize [J].The Jour Hered,1999,90(3):380-385.
    [54]Zabala G. Gabay-Langhnan S. Laughnan JR. The Nuclear Gene Rf3 Affects the Expression of the Mitochondrial Implicated in S-Type Male Sterility in Maize [J].Genetics 1997,147:847-860.
    [55]戴亮芳,罗向东,王述彬,等.辣椒细胞质雄性不育系和保持系过氧化物酶同工酶的比较分析[J].西北植物学报,2005,25(10):1960-1964.
    [56]邓晓辉,张蜀宁,侯喜林,韩建明.胞质雄性不育相关基因的克隆及其表达分析[J].西北植物学报,2006,26(9):1859-1863.
    [57]董庆华,利容千,王建波.菜薹细胞质不育系小抱子发生的细胞形态学研究[J].园艺学报,1997,24(2):150-154.(A)
    [58]董庆华,利容千,王建波.萝卜雄性不育系花药发育组织化学的初步研究[J].武汉植物学研究,1997,15(1):10-14.(B)
    [59]董庆华,利容千,王建波等.萝卜雄性不育系花药发育的细胞形态学研究[J].武汉大学学报:自然科学版,1996,42(2):207-212.
    [60]方智远,孙培田,刘玉梅,杨丽梅,王晓武,庄木.几种类型甘蓝雄性不育的研究与显性不育系的利用[J].中国蔬菜,2001,(1):6-10.
    [61]方智远,刘玉梅,杨丽梅,王晓武,庄木,张扬勇,孙培田.甘蓝显性核基因雄性不育与胞质雄性不育系的选育及制种[J].中国农业科学,2004,(5):15.
    [62]傅廷栋,杨光圣,杨小牛,马朝芝.甘蓝型油菜波里马细胞质雄性不育的发现、研究与利用[J].自然科学进展,1995,5(3):288-293
    [63]傅廷栋,杨小牛,杨光圣.甘蓝型油菜波里马雄性不育系的选育与研究[J].华中农业大学学报,1989,(3):1.
    [64]傅军如,徐安庆,贺浩华,等.萍乡显性核不育水稻不育株与可育株同工酶比较分析[J].江西农业大学学报,2005,27(5):641-647.
    [65]龚义勤,汪隆植,刘联,刘京林,丁晓蕾.萝卜雄性不育系和保持系的POD和SOD同工酶酶谱分析[J].中国蔬菜,1995,(4):24-26.
    [66]郭晶心,孙日飞,宋家祥,张淑红.大白菜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,2001,28(5):409—414.
    [67]何承坤,郭素枝,张智钗,李维明,祁建民.花椰菜异源细胞质雄性不育材料的初步研究[J].园艺学报,1999,26(2):125-127
    [68]胡美华,陈竹君,汪炳良.榨菜胞质雄性不育系及其保持系过氧化物酶和酯酶同工酶的比较研究[J].浙江农业学报2000,12(4):201-205.
    [69]黄邦全,常玲,陈建国,等.紫菜墓Ogura细胞质雄性不育系花药发育的细胞形态学研究[J].湖北大 学学报(自然科学版),2001,21(3):273-276.
    [70]李殿荣.甘蓝型油菜(Brassica napus L.)雄性不育系、保持系、恢复系选育成功並已大面积推广[J].中国农业科学,1986,19(04):94
    [71]李鹏,牟秋焕,石运庆,董树亭,刘保申,孔进,李阳生.不同核背景对小麦V-CMS coxⅢ基因转录本编辑的影响[J].生物技术通报,2006,(4):86-91.
    [72]李文强,张改生,牛娜,位芳,汪奎,潘栋梁.小麦质核互作型雄性不育系线粒体DNA变异性的RAPD分析[J].分子植物育种,2009,7(3):490-496.
    [73]李又华,杨暹,罗志刚,关佩聪.青花菜雄性不育系与保持系花蕾同工酶分析[J].华南农业大学学报(自然科学版),2003,24(1):13-15.
    [74]利容千.几种农作物雄性不育的细胞学研究[J].武汉大学学报:自然科版,1978,(1):83-96.
    [75]梁燕,赵稚雅,王鸣.Ogucms结球白菜雄性不育系研究[J].西北农业学报,1994,3(2):14-16.
    [76]林宝刚.甘蓝型油菜细胞质雄性不育系Pol、Shan2A、Ogu和Gli的比较研究[J].浙江大学,硕士学位论文,2005,25-28.
    [77]刘春光,吴郁文,张翠兰,等.粗厚山羊草细胞质对普通小麦遗传效应的初步研究[J].遗传学报,1997,24(3):241-247.
    [78]毛伟海,胡天华,韦顺恋,胡齐赞,包崇来,吕江江.青菜胞质雄性不育材料的育性及农艺性状观察鉴定[J].浙江农业科学,2002,(6):270-273
    [79]裴雁曦,陈竹君,曹家树,陈学军,刘晓辉.茎瘤芥胞质雄性不育性与线粒体T基因选择性剪接有关[J].科学通报,2004,49(22):2312-2317.
    [80]彭永康,祁忠占,张福跃,刘桂琴.高粱同核异质与异核异质雄性不育系、保持系花药及雌蕊过氧化物酶同工酶的比较研究[J].中国农业科学,1988,21(6):45-52.
    [81]彭永康,祁忠占,张丰德,刘桂琴.高粱不育系、保持系正、负极向过氧化物同工酶的电泳比较[J]作物学报,1989,15(1):67-73.
    [82]任成伟,曹寿椿.萝卜细胞质芸薹属作物雄性不育材料的研究概况[J].中国蔬菜,1992,(2):42-45
    [83]任成伟,曹寿椿.萝卜胞质不结球不结球白菜雄性不育材料黄化缺陷的改良研究[J].南京农业大学学报,1992,15(2):13-19.
    [84]任雪松.甘蓝细胞质雄性不育系和保持系的同工酶与线粒体DNA的比较研究[D].2004.
    [85]孙清萍,汪莉,易平,朱英国.红莲型水稻不育系统花粉发育不同时期MADS-box基因家族表达分析[J].武汉植物学研究,2002,20(5):325-325.
    [86]沈火林.不结球白菜异源胞质雄性不育系的选育与育性稳定性研究[J].中国瓜菜,2005,(05):6-9
    [87]王台,童哲.光周期敏感核不育水稻农垦585不育花药的显微结构变化[J].作物学报,1992,18(2):132-138.
    [88]王永飞,马三梅,王鸣,郑学勤,谷茂,胡胜武.油菜Polima和陕2A细胞质雄性不育系相关基因的序列比较[J].科学通报,2001,46(18):1559-1562.
    [89]危文亮.甘蓝型油菜细胞质雄性不育系NCa的研究[D].中国农业科学院学位论文,2005.
    [90]危文亮,王汉中,刘贵华.10个线粒体基因在甘蓝型油菜NCa不育系统不同组织中的转录调控 及其与育性的关系[J].遗传学报,2007,34(1):72-80.
    [91]许明,魏毓棠,白明义.萝卜胞质紫菜薹雄性不育系花药发育的细胞形态学研究[J].华北农学报,2006,21(增刊):58-62.
    [92]徐树华.水稻“红莲-华矮15”不育系及其保持系的花粉发育细胞学观察[J].武汉大学学报(自然科学版),1979,(2):79-84.
    [93]杨光圣,傅廷栋.环境条件对油菜雄性不育的影响[J].中国油料,1987,(03):17-21
    [94]杨光圣,傅廷栋,杨小牛,马朝芝.甘蓝型油菜生态雄性不育两用系的研究[J].作物学报,1995,21(2):129-135.
    [95]杨光圣.甘蓝型油菜细胞质雄性不育的研究[J].遗传,1988,10(5):8-11.
    [96]杨光圣,傅廷栋,陈永德.甘蓝型油菜陕2A细胞质雄性不育的研究[J].华中农业大学学报,1990,9(2):141-147.
    [97]杨丽梅,刘玉梅,王晓武,孙培田,庄木,方智远.甘蓝胞质雄性不育材料主要植物学性状初步观察[J].中国蔬菜,1997,(06):24-25
    [98]易平,余涛,刘义,朱英国.水稻线粒体基因的表达受核背景的影响[J].遗传,2004,26(2):186-188.
    [99]余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究[J].武汉植物学研究,1990,8(3):209-216.
    [100]余风群,傅廷栋.甘蓝型油菜几个品种花药发育的细胞学研究[J].中国油料,1988,4:23-25.
    [101]杨晓云,曹寿椿.温度对不结球白菜波里马胞质雄性不育系育性影响的生化分析[J].园艺学进展,1998,(2):539-542.
    [102]袁建玉.不结球白菜CMS新种质细胞学即生理生化特性研究[J].南京农业大学硕士学位论文,2005:25-29.
    [103]袁自强,杨金水.线粒体和细胞核的互作[J].遗传,1999,21(6):54-58.
    [104]赵双宜,栗翼玟,张燕君,等.萝卜雄性不育系个体发育中的同工酶研究[J].中国农业科学,1994,27(1):18-24.
    [105]张东旭,李润植.高粱CMS材料线粒体基因组DNA指纹研究[J].上海交通大学学报,2002,20(03):173-177
    [106]张方东,郑用琏.玉米S组细胞质雄性不育线粒体R区序列与多型性分析[J].遗传学报,2000,(9):9.
    [107]张丽,宫国义,魏毓棠,李霄燕.萝卜雄性不育小孢子发生的形态学研究[J].华北农学报,2002,17(3):84-89.
    [108]张战凤,张鲁刚,王绮,张明科,惠麦侠.大白菜线粒体DNA有效、快速提取方法[J].生物技术,2006,16(3):48-49.
    [109]张凤兰,冯忠梅,张德双,于贤昌.大白菜新型细胞质雄性不育生理生化机制的研究.华北农学报[J].2007,22(5):101-105
    [110]赵会芳,巩振辉,赵利民,柯桂兰.大白菜萝卜细胞质雄性不育系RC7花药发育的解剖学和同工酶研究.中国农业大学学报[J].2009,14(2):64-69
    [111]周洪生.玉米细胞质雄性不育遗传机理的研究现状[J].遗传,1994,16(1):45-48.
    [112]朱彦涛,李殿荣,郭蔼光,田建华.甘蓝型油菜细胞质雄性不育系Polima A和陕2A的研究进展[J].分子植物育种,2009,(1):5-15.
    [113]朱玉英,姚文岳,张素琴,凌超,沈凤英,龚静,吴晓光,金海军.Ogura细胞质甘蓝雄性不育系选育及其利用[J].上海农业学报,1998,14(2):19-24.
    [114]朱玉英,姚文岳,吴晓光,龚静,沈凤英,金海军.不同遗传背景的青花菜对异源胞质雄性不育材料结实性的影响[J].上海农业学报,1999,15(4):28-30
    [115]朱玉英,龚静,吴晓光,金海军,姚文岳,李式军,吴琴生.萝卜细胞质青花菜雄性不育系花药发育的细胞形态学研究[J].上海农业学报,2004,20(3):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700