小麦新型光温敏不育系337S短日低温不育基因的定位及杂种优势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Recessive Gene Controlling Male Sterility Sensitive to Short Daylength/Low Temperature and Heterosis in a Novel Male Sterile Line 337S of Wheat (Triticum Aestivum L.)
  • 作者:陈晓东
  • 论文级别:博士
  • 学科专业名称:作物遗传育种
  • 学位年度:2010
  • 导师:孙东发
  • 学科代码:090102
  • 学位授予单位:华中农业大学
  • 论文提交日期:2009-12-01
摘要
小麦是世界上最大的栽培作物,小麦生产对粮食安全问题起着十分重要的作用。自1979年Sasakuma和Ohtsuka首次报道小麦光敏感型细胞质雄性不育以来,一系列的光温敏小麦雄性不育系相继被发现。由于小麦光温敏不育系能克服细胞质不育系在小麦杂种优势利用上存在的细胞质负效应、恢复源窄、恢复力不强等缺点,因此,其在小麦杂种优势利用上的价值是不言而喻的。337S是迄今为止所发现的唯一对长日高温、短日低温均敏感的光温敏小麦雄性不育系。在湖北地区,提前或推迟播种都可使其小穗发育处于不育环境下达到高度不育,育性稳定,制种区域广;适期播种时,337S恢复可育,自交结实率达到50%以上;此外,337S具有优良的综合农艺性状等特点。本研究是在前人研究的基础上,主要针对其在短日低温不育条件下的遗传机制、遗传距离与杂优组合的关系及其光合速率的遗传特性进行了分析,定位了短日低温不育基因并对目标基因进行选择评价,主要结果如下:
     1.337S不育基因的遗传特征:以337S为母本与其它5个正常可育小麦品种(系)进行杂交,在短日低温环境下,扬花时,337S的穗部特征表现出与其它父本有着明显差异,其颖壳张开、柱头外露、透光,而其它父本材料及所有F1的穗部外观特征和育性表现完全正常。育性调查结果显示,337S高度不育,所有父本及F1组合均高度可育,F2群体中育性发生分离,这表明337S不育性状是由隐性基因控制。进一步对这5个F:分离群体的育性分离情况进行χ2检验,结果表明,所有组合的F2群体中可育个体和不育个体的分离比例均符合3:1的分离规律。由此推定,337S的短日低温不育性是受一对隐性基因控制。
     2.337S短日低温不育基因定位:根据遗传分析结果,采用SSR标记与BSA分析方法相结合,对短日低温条件下337S不育基因进行标记定位。对定位群体F2(337S/华麦8号)进行严格的育性筛选和鉴定,分别选取12株极端不育和12株完全可育的单株构建基因池,用分布于小麦基因组21条染色体上的228对微卫星引物进行检测并定位目标基因。结果,来自于1B染色体的4个SSR标记(Xgwm413、Xgwm273、Xgwm264和Xgwm11)、来自于5D染色体上的1个SSR标记(Xgwm182)及目的基因wptms3,构建成一个连锁群,总长85.1cM。其中,该不育基因wptms3被定位于Xgwm413和Xgwm182之间,与目标基因距离分别为3.2和23.5cM,且位于1B染色体短臂。利用与目标基因两侧紧密相邻的两个标记Xgwm413和Xgwm182进行标记基因型的单因素方差分析,结果也证实了连锁的可靠性。在本研究中Xgwm182被首次定位于1B染色体上,是一个新的标记位点。因此,本研究暂时将其命名为Xgwm182-1B,将其与以前的研究加以区分。
     3.利用连锁标记对目标基因进行选择:当单独利用标记Xgwm413进行选择时,其选择的准确度(AMAS)及效率(EMAS)分别为82.84%和86.85%,而对于标记Xgwm182来说,AMAS及EMAS分别仅为67.71%和71.25%。当用位于目标基因两侧的这两个标记同时对目的基因进行选择时,即使当两标记间的距离为26.7 cM时,AMAS值也可达到90.10%,然而,EMAS的值略微降低。
     4.遗传距离与337S的杂种优势组合的关系:利用40对SSR引物对337S等17个亲本材料之间进行遗传差异分析,估算各基因型之间的遗传距离(GD)。结果表明,所有小麦品种间的遗传距离总平均值为0.42,最小值为0.26,最大值为0.57,337S与其他16个亲本间的平均遗传距离为0.44。337S与其它16个亲本间的SSR标记遗传距离(GD)与F1表型值、杂种优势(MPH)及特殊配合力(SCA)的相关性分析表明,8个农艺性状中,主穗小穗数、单株穗数及单株产量与亲本间遗传距离正相关,其它5个性状与遗传距离呈负相关。在相关显著性水平上,只有单穗产量与遗传距离达到显著负相关(r=-0.5108,p<0.05);在分析GD和MPH及SCA的相关性时,结果表明相关不显著。在产量方面,对于单株产量性状来说,GD与F1表型值和SCA表现正相关,但是与MPH呈负相关。表明选择遗传距离越大的亲本组合并非一定能获得越强的杂种优势效应,这也证明了杂种优势形成的复杂性。
     5.337S光合速率的遗传特性:用337S等6份亲本材料及以337S为母本组配的2份F1和1份F2,来对337S的光合速率进行遗传分析,结果表明,F1表现出一定的平均优势,但组合间差异较大。根据F2后代中的光合速率分布,经χ2检验,表现出受到一对主基因控制的趋势。
Wheat is one of the largest cultivated crops and plays an important role in the food safety. Since Sasakuma and Ohtsuka first reported wheat photoperiod sensitive cytoplasmic male sterility, a series of photoperiod-temperature sensitive male sterile wheat lines have been discovered. As wheat photoperiod-thermo sensitive male sterile line can conquer alloplasmic effects, lack of restorer source and restoring ability derived from cytoplasmic male sterile system, it will be valuable in the utilization of heterosis in wheat production.337S is the only male sterile wheat line sensitive to both long daylength/high temperature and short daylength/low temperature so far. In Hubei province, the development of spikelet of 337S can be put in a sterile environment if the sowing time is advanced or delayed, and the sterility maintains stable.337S returns to be fertile and the self setting rate amounts to over 50% under appropriate sowing date. In addition,337S has a good integrative agronomic character. The present study mainly aimed at analyzing its genetic mechanism, relationship between genetic distance and heterotic groups, and genetic characteristic of photosynthetic rate under short daylength/low temperature. In this study, the short daylength/low temperature male sterile gene was mapped, selection of the target gene was conducted, and the main results were as follows:
     1. Genetic character of 337S:337S was crossed as a female parent with five fertile parents to produce five F1s and 5 F2sto analyze the genetic mechanism. Under short daylength/low temperature,337S exhibited apparent differences in phenotype from others during anthesis, with the glume opening and the stigma exserting whereas F1 progenies from the five crosses showed the same phenotype of the corresponding male parental lines. Fertility analysis indicated 337S appeared completely sterile while the other five male parental lines and all F1s were highly fertile. Fertility segregation appeared and fitted a ratio of 3:1 with Chi-square test in all the F2 populations. The sterility in 337S was thus governed by a single recessive gene under short daylength and low temperature. We temporarily designated this gene wptms3.
     2. Mapping of wptms3:According to the genetic analysis, the male sterile gene of 337S was located under short daylength/low temperature using the combination of SSR and BSA analysis. Serious fertility screening and identification among the F2 (337S/ Huamai 8) mapping population was performed. Equal amounts of DNA from 12 fertile and 12 sterile individuals were mixed to construct fertile bulk (BF) and sterile bulk (BS), respectively. A total of 228 SSR primers distributing among the wheat genome were used to identify the target gene and the results indicated four SSR markers from chromosome 1B (Xgwm413, Xgwm273, Xgwm264 and Xgwml 1), one from chromosome 5D (Xgwm182) and the target gene (wptms3) construct a linkage map of 85.1 cM. The male sterile gene wptms3 was thus mapped in an interval between Xgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively, on chromosome arm IBS. One-way variance analysis using marker genotypes as groups showed that the fertility difference or variation between the groups divided by Xgwm413 and Xgwm182 was highly significant. This again verified the linkage between markers and the target gene. The marker Xgwm182 was first mapped on chromosome 1B, and thus a new marker locus in the present study. Therefore, we can tentatively designate the new marker as Xgwml82-1B, distinguishing it from previous reports.
     3. Selection of the target gene via linked markers:When selection based on single marker Xgwm413 was performed, AMAS and EMAS was 82.84% and 86.85%, respectively, while they were 67.71% and 71.25% for Xgwm182. When the two bracketing markers were used to select male sterile plants in the F2 progeny, AMAS reached 90.10% in spite of the distance between the two markers extending to 26.7 cM. However, EMAS slightly declined.
     4. Relationship of genetic distance (GD) and hybrid performance derived from 337S: Forty SSR markers distributed over all 21 wheat chromosomes were used to analyze genetic divergence among 17 parental genotypes and estimate the GD. The results indicated the averaged GD among the 17 parental genotypes was 0.42, ranging from 0.26 to 0.57. The averaged GD between 337S and the 16 parental cultivars was 0.44. Correlation of GD between 337S and the other 16 parents with F1 performance, MPH and SCA displayed three agronomic characters positively correlated with GD were spikelets of main head, head number per plant and yield per plant while the other five characters were negatively correlated. However, grain weight per head is the only trait that showed significantly negative correlation with GD (r=-0.3695, p<0.05). No significant correlation of GD with MPH and SCA was detected. These results suggested that high heterotic effects might not be firmly obtained if parental genotypes with large GD between them are chosen.
     5. Genetic character of photosynthetic rate of 337S:6 parental genotypes, and 2 F1 and 1 F2 derived from 337S as a female parent were used to conduct genetic analysis of photosynthetic rate of 337S. The result showed F1 exhibited mid-parent heterosis but obvious discrepancy existed among combinations. According to photosynthetic rate distribution in the F2 population, Chi-square test showed the genetic model of photosynthetic rate of 337S was a single major gene conditioning mechanism.
引文
1. 曹双河,刘冬成,刘立科,郭小丽,张爱民.小麦光温敏核雄性不育相关基因的G-box家族引物差式分析.遗传学报,2003,30:56-61
    2. 曹双河,郭小丽,刘冬成,张相岐,张爱民.小麦光温敏核雄性不育基因的初步定位.遗传学报,2004,31:293-298
    3. 陈潜,汪迎春,张利明,李文彬,孙勇如.花药特异嵌合启动子的构建及雄性不育转基因拟南芥的获得.农业生物技术学报,2001,9:62-64
    4. 程宁辉,杨金水,高燕萍,徐明良,钱星,葛扣麟.玉米杂种一代与亲本基因差异的初步研究.科学通报,1996,41:451-454
    5. 程旭东,孙东发,荣德福.新型光温敏小麦不育系337S的组织结构研究.武汉植物学研究,2004,22:495-499
    6. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,50-58
    7. 高东迎,杜春光,李正玮.温敏雄不育小麦C49S小孢子败育的细胞学研究.西南农业大学学报,1998,20:16-18
    8. 高三基,陈如凯,张木清,廖建峰.甘蔗有性世代单叶净光合速率的遗传变异性.福建农业大学学报,1999,28:8-11
    9. 关荣霞,刘冬成,张爱民.小麦T型雄性不育恢复基因的遗传分析及RAPD标记.农业生物技术学报,2001,9:159-162
    10.郭瑞星.小麦新型光温敏不育系337S的遗传特性及不育基因的定位研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    11.韩笑冰,利容千,徐乃瑜,王建波,徐祖元.小麦不同胞质不育系花粉败育的细胞学比较研究.作物学报,1996,22:646-651
    12.何蓓如,王忠明,王鸿钧.K型小麦雄性不育系的花药和花粉发育.北京:中国农业出版社,1996
    13.何蓓如,孟荣华,宋喜悦,胡银刚,马翎建,奚亚军,徐浩,刘曙东,杨存义.粗厚山羊草(Ae. crassa)细胞质普通小麦核代换系在中国不同光温条件地点的雄性育性变异.西北植物学报,1999,19:10-16
    14.何蓓如,董普辉,宋喜悦,马翎健,胡银岗,蒋通关,王俊鹏,李宏斌.小麦温度敏感不育系A3314温敏特性研究.麦类作物学报,2003,23:1-6
    15.何觉民,戴君惕,邹应斌,周美兰,张海清,刘雄伦.两系杂交小麦研究—Ⅰ.生态雄性不育小麦的发现、培育及其利用价值.湖南农业科学,1992,5:1-3
    16.胡海蓓,邱慧,何之常.G-蛋白与光敏胞质雄性不育小麦育性转换关系.武汉大学学报,2000,46:483-486
    17.黄永菊,赵和句,王玉叶.杂交油菜内源激素的变化特征与杂种优势关系初探.中国油料,1995,17:13-15
    18.江华,王宏炜,苏吉虎,石晓冰,沈允钢,李振声,魏其克,张锡梅,李滨,李鸣,张吉军.小麦杂交后代的光合作用.作物学报,2002,28:451-454
    19.江树业,陈启锋,方宣钧.利用cDNA-RAPD技术分析籼稻光敏核不育基因的差异表达.科学通报,1998,43:2521-2524
    20.康健,陈凡,吴乃虎.光敏核不育水稻育性相关基因cDNA片段的分离.科学通报,1998,43:2078-2082
    21.李传友,孙兰珍.K、V型小麦同核异质雄性不育系及保持系花药内游离氨基酸的比较分析.山东农业大学农学报,1995,26:57-62
    22.李传友,孙兰珍.小麦同核异质雄性不育系花粉发育的超微结构.华北农学报,1998,13:24-29
    23.李继耕.高等植物叶绿体分子遗传学.北京:北京农业大学出版社,1987
    24.李家洋,李继耕.叶绿体类囊体膜多肽与细胞质雄性不育性.遗传学报,1986,13:430-436
    25.李青云,葛会波,胡淑明,王惠英.钠盐和钙盐胁迫对草莓光合作用的影响.西北植物学报,2006,26:1713-1717
    26.李湘裘.水稻光合效率的杂种优势及其与产量构成因素的遗传相关.江西农业学报,1990,2:43-47
    27.李艳红,肖兴国,赵广荣,聂秀玲,张爱民,阎隆飞.将新的人工雄性不育基因导入小麦栽培品种的研究初报.农业生物技术学报,1999,7:255-258.
    28.李云伏.小麦光温敏不育系BS20、BS210的遗传特性及不育候选基因的分离研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    29.梁凤山,王斌.小麦雄性不育遗传及基因定位研究进展.遗传,2003,25:461-465
    30.刘保申,孙其信,高庆荣,孙兰珍,解超杰,李传友,倪中福,窦秉德,魏艳玲.K型小麦细胞质雄性不育系育性恢复基因的SSR分子标记分析.中国农业科学,2002,35:354-358
    31.刘春光,吴郁文,张翠兰,任树新,张炎.小麦D2型细胞质雄性不育系配子发育的细胞形态学特征和同工酶的研究.遗传学报,1995,22:199-205
    32.刘振业,刘贞琦.作物光合作用的遗传与育种研究进展.贵州农学院学报,1991,10:20-38
    33.刘忠松,官春云.植物雄性不育的遗传机制探讨.大自然探索,1995,14:80-87
    34.马宏,王寰宇,刘玉乐,杨怀义.拟南芥花药特异启动子启动的Barnase基因在烟草中的表达.农业生物技术学报,2002,10:144-147
    35.孟祥红,王建波,利容千.光周期对光敏细胞质不育小麦花药发育过程中Ca2+-ATPase分布的影响.植物学报,2000,42:446-454
    36.聂以春,张献龙,郭小平,蔡明历.转Bt基因抗虫杂交棉的光合性状遗传分析.作物学报,2004,30:1173-1175
    37.荣德福,曹卫民.普通小麦光温敏雄性不育的类型与长日高温敏感型不育系的选育.麦类作物学报,1999,19:20-24
    38.荣德福,李少华,郭拥军,周世文.两极光温敏感型小麦雄性不育系337S的选育.湖北农业科学,2001,5:13-16
    39.宋国琦,胡银岗,林凡云,董普辉,何蓓如.YS型小麦温敏不育系育性转换基因的cDNA-AFLP分析.西北植物学报,2006,26:0661-0666
    40.宋亚珍,陈天佑,雷国材,耿东梅,王强,路明.普通小麦PTS光温敏雄性不育的遗传分析.西北农林科技大学学报(自然科学版),2003,31:47-50
    41.孙东发.植物雄性不育新释——变异基因假说(综述).四川农业大学学报.1993,3:457-462
    42.孙其信,倪中福,陈希勇,刘志勇,黄铁城.冬小麦部分基因杂合性与杂种优势表达.中国农业大学学报,1997,2:115-116
    43.孙其信,倪中福,刘志勇,陈希勇,高建伟.普通小麦与斯卑尔脱小麦种间杂种优势的初步研究.中国农业大学学报,1998,3:10
    44.谭昌华,余国东,杨沛丰,张宗华,潘鹰,郑坚.重庆温光型核不育小麦的不育性研究初报.西南农业学报,1992,5:1-6
    45.王台,童哲,匡廷云,等.光敏核不育水稻61KD特异性蛋白的纯化和N-端序列分析.植物学报,1996,38:772-776
    46.王台,赵玉锦,匡廷云.雄性不育水稻农垦58S的P61蛋白质是叶绿体ATP酶β亚基的同工型.植物学报,2000,42:169-172
    47.王小利,张改生,陈新宏,赵继新,刘宏伟,王军卫.二角山羊草细胞质小麦雄性不育系的育性特异性分析.西北植物学报,2004,24:975-981
    48.王艳,张爱民,国凤利,郭小丽,聂秀玲.小麦D2型细胞质光敏雄性不育器官同源异型转变的研究.中国农业科学,2001,34:240-243
    49.王艳,郭小丽,张爱民,吴晓华,李润枝.小麦细胞质光温敏雄性不育育性恢复的遗传研究.麦类作物学报,2000,20:1-7
    50.王志琴,杨建昌,朱庆森.水稻亚种间杂种弱势籽粒形成的原因.中国农业科学,1998,24:782-787
    51.吴敏生,刘大钧,谢纬武,王斌.普通小麦(Triticum aestivum L)T型细胞质雄性不育系及其保持系的线粒体DNA比较研究.作物学报,1995,21:551-555
    52.徐乃瑜,范濂,张清海.不同细胞质对小麦花药游离氨基酸含量影响的初步研究.武汉大学学报,1984,2:76-84
    53.徐乃瑜,严家骐.光周期敏感细胞质雄性不育小麦的研究.武汉植物学研究,1998,16:97-105
    54.姚雅琴,张改生,刘宏伟,王军卫.K型小麦花粉粒内壁及ATP酶活性与雄性不育的相关性.西北植物学报,2002,22:333-337
    55.叶乃兴,陈兴琰,陈国本,王建国.茶树净光合速率的遗传分析.茶叶科学,1990,10:65-69
    56.张爱民,李英贤,黄铁成.小麦雄性不育与内源激素关系的初步研究.农业生物技术学报,1996,4:56-61
    57.张爱民,许占友.正在走向生产的杂交小麦-第1届国际杂种小麦研讨会论文集.2001,216-222
    58.张建奎.重庆温光敏核雄不育小麦育性转换规律及不育机理研究.[博士学位论文].重庆:西南大学图书馆,2006
    59.赵昌平,王新,张风廷,叶志杰,戴惠君.杂种小麦的研究现状与光温敏二系法.北京农业科学,1999,17:3-5
    60.赵凤梧,李慧敏,李爱国.冬小麦温敏型雄性不育系LT-1-3A选育及育性转换与遗传研究.核农学报,2001,15:65-69
    61.周美兰,程尧楚,邹应斌,何觉民.光温敏核不育小麦ES-14花粉败育的细胞学研究.作物研究,1996,4:20-23
    62.周庭波.水稻雄性不育遗传的光温启动因子假说.作物研究,1991,5:38-42
    63.朱进,别之龙,李娅娜.盐胁迫对不同基因型黄瓜幼苗生长和光合作用的影响.沈阳农业大学学报,2006,37:476-478
    64.庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    65. Ahmed TA, Tsujimoto H, Sasakuma T. QTL analysis of fertility-restoration against cytoplasmic male sterility in wheat. Genes Genet Syst.,2001,76:33-38
    66. Anderson JA, Churchill GA, Antrique JE, Tanksley SD, Sorrells ME. Optimizing parental selection for genetic linkage maps. Genome,1993,36:181-186
    67. Barbosa-Neto JF, ME Sorrells, G Cisar. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome, 1996,39:1142-1149
    68. Beckmann JS, Weber JL. Survey of human and rat microsatellites. Genomics.1992, 12:627-631
    69. Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D. Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci,2003,43:797-806
    70. Bhatt JG, Rao MRK. Heterosis in growth and photosynthetic rate in hybrids of cotton. Euphytica,1981,30:129-133
    71. Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. The Plant Cell,2003,15:2236-2239
    72. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisims. Am J Hum Genet,1980, 32:314-331
    73. Brown GR, Kadel EE, Ⅲ, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB. Anchor reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics,2001,159:799-809
    74. Bruce AB. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910,32:627-628
    75. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R. Computational and experimental characteri-zation of physically clustered simple sequence repeats in plants. Genetics,2000,156:847-854
    76. Charcosset A, Essioux L. The effect of population structure on the relationship between heterosis and heterozygosity at marker loci. Theor Appl Genet,1994, 89:336-343
    77. Chen S, Lin XH, Xu CG, Zhang QF. Improvement of bacterial blight resistance of 'Minghui 63', an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci,2000,40:239-244
    78. Chen QF. Improving male fertility restoration of common wheat for Triticum timopheevii cytoplasm. Plant Breeding,2003,122:401-404
    79. Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica,2002,123:273-285
    80. Cox TS, Murphy JP, Harrell LG. Isoelectric focusing patterns of kernel isozymes from 80 North American winter wheat cultivars. Can J Plant Sci,1988,68:65-72
    81. Cox TS, Murphy JP. The effect of parental divergence on F2 heterosis in winter wheat crosses. Theor Appl Genet, 1990,79:241-250
    82. Davenport, C.B. Degeneration, albinism and inbreeding. Science,1908,28:454-455
    83. Diers BW, McVetty PBE, Osborn TC. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Sci,1996,36:79-83
    84. Dong NV, Subudhi PK, Luongl PN, Quang VD, Quy TD, Zheng HG, Wang B, Nguyen HT. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet,2000, 100:727-734
    85. East EM. Heterosis. Genetics,1936,21:375-397
    86. Erkeev-MI, Sal'-nikova-LG, Shakirova-FM. Studying the content of endogenous phytohormones of maize plants differing in the degree of heterosis. Genet. selekts. issled. Na Urale.Inf.materialy.1984,44-45
    87. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104:339-407
    88. Fossati A, Ingold M. A male sterile mutant in Triticum aestivum. Wheat Inf Serv, 1970,30:3-10
    89. Geleta LF, Labuschagne MT, Viljoen CD. Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breeding 2004,123:467-473
    90. Guan RX, Liu DC, Zhang AM. Genetic analysis and identification of RAPD markers of fertility restorer gene Rf6 for the T. timopheevii cytoplasmic Male sterility of wheat. J Agric Biotechnol,2001,9:159-162
    91. Guo RX, Sun DF Cheng XD, Rong DF, Li CD. Inheritance of thermo-photoperiod-sensitive male sterility in wheat. Aust J Agric Res,2006a, 57:187-192
    92. Guo RX, Sun DF, Tan ZB, Rong DF, Li CD. Two recessive genes controlling thermophotoperiod-sensitive male sterility in wheat Theor Appl Genet,2006b, 112:1271-1276
    93. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics,2003,270:315-323
    94. Mehta H, Sarkar KR. Heterosis for leaf photosynthesis, grain yield and yield components in maize. Euphytica,1992,61:161-168
    95. He PR, Meng RH, Song XY, Hu YG, Ma LJ. The variation of male fertility of wheat nuclear substitutional lines in Ae. Crassa cytoplasm in the regions with different photo-thermo condition in China. Acta Bot Boreal-Occident Sin,1999,19:10-16
    96. Hoagland AR, Elliott FC, Rasmussen LW. Some histological and morphological effects of maleic hydrazide on spring wheat. Agron.J.,1953,45:468-472
    97. Huang QY, He YQ, Jing RC, Zhu RS, Zhu YG. Mapping of the nuclear fertility restorer gene for HL cytoplasmic male sterility in rice using microsatellite markers. Chin Sci Bull,2000,45:430-432
    98. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100:2574-2579
    99. Ikeguchi S, Hasegawa A, Murai T, Tsunewaki K. Basic studies on hybrid wheat breeding using the 1BL-1RS translocation chromosome/Aegilops kotschyi cytoplasm system 1. Development of male sterile and maintainer lines with discovery of a new fertility-restorer. Euphytica,1999,109:33-42
    100. Islam MR, Shepherd KW, Mayo GME. Recombination among genes at the L group in flax conferring resistance to rust. Theor Appl Genet,1989,77:540-546
    101. Jia JH, Zhang DS, Li CY, Qu XP, Wang SW, Chamarerk V, Nguyen HT, Wang B. Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice Theor Appl Genet,2001,103:607-612
    102. Jones DF. Dominance of linked'factors as a means of accounting for heterosis. Genetics,1917,2:466-479
    103. Joshi AK, Chanda SV, Krishnan PN, Vaishnav PP, Singh YD. Seedling peroxidase and IAA oxidase activities in relation to hybrid vigour in pearl millet (Pennisetum americanum L.Leeke). Journal-of-Agronomy-and-Crop-Science,1986,157:156-168
    104.Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simples equence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol,2002,48:501-510
    105.Kaul, M L H. Male sterility in higher plants. Berlin:Spring-er-veriag,1988
    106.Khanna-Chopra R. Photosynthesis, photosynthetic enzymes and leaf area development in relation to hybrid vigor in Sorghum vulgare L. Photosynthesis Research,1982,3:113-122
    107. Kihara H. Substitution of nuclear and its effects on genome manifestations. Cytologia,1951,16:177-193
    108. Kiula BA, Lyimo NG, Botha AM. Association between AFLP-based genetic distance and hybrid performance in tropical maize. Plant Breeding,2008,127:140-144
    109.Koh HJ, Son YH, Heu MH, Lee HS, McCouch SR. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.). Euphytica,1999,106:57-62
    110.Kosambi DD. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    111. Kurek I, SterE, Dulberger R, Christou P, Breiman A. Over expression of the wheat FK506-binding protein73 (FKBP73) and the heat-indueed wheat FKBP77 in transgenic wheat reveals different functions of the two isoforms. Transgenic research, 2002,4:373-379
    112. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181
    113.Laser K D, Lersten N R. Anatom and cytology of microspogenesis in cytoplasmic male sterile anagiosperms. Bot Rew,1972,38:425-454
    114. Lee SJ, Penner GA, Devos KM. Characterization of loci containing microsatellite sequences among Canadian wheat cultivars. Genome,1995,38:1037-1040
    115. Lee DS, Chen LJ, Suh HS. Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.). Theor Appl Genet,2005,111:1271-1277
    116. Li XL, Liu LK, Hou N, Liu GQ, Liu CG. SSR and SCAR markers linked to the fertility-restoring gene for a D2-type cytoplasmic male-sterile line in wheat. Plant Breeding,2005,124:413-415
    117. Li YF, Zhao CP, Zhang FT, Sun H, Sun DF. Fertility alteration in the photo-thermo-sensitive male sterile line BS20 of wheat (Triticum aestivum L.). Euphytica,2006,151:207-213
    118. Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics,2001,158:1737-1753
    119. Liang CZ, Gu MH, Pan XB, Liang GH, Zhu LH. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet,1994,88:898-900
    120. Liang FS, Wang B. Heredity and gene mapping of male sterility in wheat. Hereditas, 2003,25:461-465
    121. Liu CG, Wu YW, Zhang CL, Ren SX, Zhang Y. A preliminary study on the effects of Aegilops crassa (6×) cytoplasm on the characters of common wheat. Acta Genetica Sinica,1997,24:241-247
    122. Liu CG, Hou N, Liu GQ, Wu YW, Zhang CL, Zhang Y. Studies on fertility genes and its genetic characters in D2-type CMS lines of common wheat. Acta Genetica Sinica,2002,29:565-570
    123. Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. grain yield components, Genetics, 2001,158:1755-1771
    124. Luo HB, He JM, Dai JT, Liu XL, Yang YC. Studies on the characteristics of seed production of two ecological male sterile lines in wheat. J Hunan Agric Univ,1998, 24:83-89
    125. Gutierrez-Rodriguez M, Reynolds MP, Larque-Saavedra A. Photosynthesis of wheat in a warm, irrigated environment:II. Traits associated with genetic gains in yield. Field Crops Research,2000,66:51-62
    126. Maestri E, Malcevschi A, Massari A, Marmiroli N. Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Mol Genet Genomics,2002,
    127. Ma JX, Zhou RH, Dong YS, Wang LF, Wang XM, Jia JZ. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica,2001,120:219-226
    128. Manga VK, Venkateswarlu B, Saxena MBL. Combining ability and heterosis for non-symbiotic nitrogen fixation in pearl millet. Indian J of Agricultural Sciences, 1987,57:135-137
    129.Mariani C. Induction of the male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    130.Mariani C, Gossele V, et al. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    131. Maric S, Bolaric S, Martincic J, Pejic I, Kozumplik V. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breeding,2004,123:366-369
    132. Martin JM, Talbert LE, Lanning SP, Blake NK. Hybrid performance in wheat as related to parental diversity. Crop Sci,1995,35:104-108
    133.Melchinger AE, Lee M, Lamkey KR, Woodman WL. Genetic diversity for restriction fragment length polymorphisms:Relation to estimated genetic effects in maize inbreds. Crop Sci,1990,30:1033-1040
    134. Michel H, Song S Simon L. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci,1993, 90:2370-2374
    135.Michelmore RW, Paran I, Kesseli V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832
    136. Mohan M, Nair S, Bentur JS, etal. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of gall midge (Orseolia oryzae). Thero Appl Genet 1994,87:782-788
    137. Moll RH, Salhuana WS, Robinson HF. Heterosis and genetic diversity in variety crosses of maize. Crop Sci,1962,2:197-198
    138. Moll RH, Lonnquist JH, Fortuno JV, Johnson EC. The relationship of heterosis and genetic divergence in maize. Genetics,1965,52:139-144
    139.Moser H, Lee M. RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theor Appl Genet,1994,87:947-956
    140.Murai K, Tsunewaki K. Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica,1993,67:41-48
    141.Murai K. Two-line system for hybrid wheat production using photoperiod-sensitive cytoplasmic male sterility. In:Zhang Aimin, Huang TC (eds) Proceedings of the first international workshop on hybrid wheat. China agricultural university press, Beijng, pp,1998,37-39
    142.Murai K. Comparison of two fertility restoration systems against photoperiod-sensitive cytoplasmic male sterility in wheat. Plant Breeding,2002, 121:363-365
    143.Nakamura Y, Leppert M, Connell PO, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science,1987,235:1616-1622
    144. Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA,1979,76:5269-5273
    145.Ni Z, Sun Q, Liu Z, Wu L, Wang X. Identification of a hybrid-specific expressed gene encoding novel RNA-binding protein in wheat seedling leaves using differential display of mRNA. Mol Gen Genet,2000,263:934-938
    146.Nonaka S, Toriyama K, Tsunewaki K, Shimada T. Breeding of male sterile lines and their maintainer lines by backcross method for hybrid wheat production using an Sv type cytoplasm and a 1BL-1RS chromosome. Jpn J Breed,1993,43:567-574
    147.Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genome,1991, 34:1021-1027
    148. Parker GD, Fox PN, Langridge P, Chalmers K, Whan B, Ganter PF. Genetic diversity within Australian wheat breeding programs based on molecular and pedigree data. Euphytica,2002,124:293-306
    149. Peng JH, Fahima T, Roder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E. Microsatellite tagging of the stripe-rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference in chromosome 1B. Theor Appl Genet,1999,98:862-872
    150. Peng JH, Fahima T, Roder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica,2000a,109:199-210
    151. Peng JH, Fahima T, Roder MS, Li YC, Grama A, Nevo E. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol,2000b,146:141-154
    152. Qiao LX, Zhang GS, Wang XL, Liu HW, Wang JW. The cytogenetical studies of fertility restoration of some male sterile lines of alloplasmic wheat. Acta Genetica Sinica,2001,28:647-654
    153.Queiter F, Vedel F. Hetergenous population of mitochondrial DNA moleculars in higher plant. Nature,1977,268:365-368
    154.Riaz A, Li G, Quresh Z, Swati MS, Quiros CF. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breeding,2001,120:411-415
    155. Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW. A microsatellite map of wheat. Genetics 1998,149:2007-2023
    156.Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize(Zea mays L.) plantlets. Theor Appl Genet.1990,80:769-775
    157.Rong DF, Cao WM. The fertility characters of a novel thermo-photoperiod sensitive male sterile line 337S. Tritical Crops,1999,19:20-24
    158. Rood SB, Pharis RP, Major DJ. Gibberellin level as a possible hormonal basis for heterosis in maize. Plant Physiol 1981,67:148
    159. Rood SB, Pharis RP, Masaji Koshioka, Major DJ. Gibberellins and heterosis in maize. Ⅰ. Endogenous gibberellin-like substances. Plant Physiol,1983,71:639-644
    160. Saghai Maroof MA, Yang GP, Zhang Q, Gravois KA. Correlation between molecular marker distance and hybrid performance in U.S. southern long grain rice. Crop Sci,1997,37:145-150
    161. Sasakuma T, Ohtsuka I. Cytoplasmic effects of Aegilops species having D genome in wheat I. Cytoplasmic differentiation among five species regarding pistilody induction. Seiken Ziho,1979,27:59-65
    162.Schoenbeck MA, Temple SJ, Trepp GB, Blumenthal JM, Samac DA, Gantt JS, Hernandez G, Vance CP, Parry. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. Journal of Experimental Botany,2000,51:29-39
    163. Sears E R. The sphaerococcum gene in Wheat. Genetics,1947,32:102-103
    164. Shieh GJ, Thseng FS. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performances using RAPD markers. Euphytica, 2002,124:307-313
    165.Shull GH. The composition of a field of maize. Am Breeders Assoc Rep,1908, 4:296-301
    166. Smith OS, Smith JSC, Bowen SL, Tenborg RA, Wall SJ. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet,1990,80:833-840
    167. Sneath PHA, Sokal RR. Numerical taxonomy. Freeman, San Francisco,1973
    168. Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci arid quantitative loci in crosses between inbred lines. Theor Appl Genet,1976,47:35-39
    169.Souza E, Sorrells ME. Prediction of progeny variation in oat from parental genetic relationships. Theor Appl Genet,1991,82:233-241
    170. Spano G, Fonzo ND, Perrotta C, Platanai C, Ronga G, Lawlor DW, Napler JA, Shewry PR. Physiological characterization of'stay green'mutants in durum wheat. Journal of Exprimental Botany,2003,54:1415-1420
    171.Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992,132:823-839
    172. Subudhi PK, Borkakati RP, Virmani SS, Huang N. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis. Genome,1997,40:188-94
    173. Sun QX, Wu LM, Ni ZF, Meng FR, Wang Z, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci,2004,166:651-657
    174. Sun XL, Liu D, Zhang HQ, Huo NX, Zhou RH, Jia JZ. Identification and mapping of two new genes conferring resistance to powdery mildew from Aegilops tauschii (Coss.) Schmal. J Integr Plant Biol,2006,48:1204-1209
    175. Tan CH, Yu GD, Yu GD, Yang PF, Zhang ZH, P Y, Zheng J. Preliminary study on sterility of thermo-photo-sensitive genetic male sterile wheat in Chongqing. J Xinan Agric Sci,1992,5:1-6
    176.Thiel T, Michalek W, Varshney RK, Graner A. Exploiting EST database for the development and characterization of Igene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet,2003,106:411-422
    177. Timothy AH, John TC, Linda MN, Harker RH. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed,2002,9:63-71
    178.Tsaftaris AS. Molecular aspects of heterosis in plants. Physiologia plantarum,1995, 94:362-370
    179.Tsaftaris AS, Kafka M. Mechanisms of heterosis in crop plants. CROP PROD,1998, 1:95-111
    180. Tsunewaki K. Genetic diversity of the cytoplasms of polyploid species in Tritium and Aegilop. In:Proc.5th Int. Wheat Genet. Symp,1978,261-272
    181. Wang B, Xu WW, Wang JZ, Wu W, Zheng HG, Yang ZY, Ray JD, Nguyen HT. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice(Oryza sativa L.) with molecularmarkers. Theor Appl Genet,1995,91:1111-1114
    182. Wang YG, Xing QH, Deng QY, Liang FS, Yuan LP, Weng ML, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5. Theor Appl Genet, 2003,107:917-921
    183. Wang CH, Zhang P, Ma Z, Zhang MY, Sun GC, Ling DH. Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice(Oryza sativa L.). Euphytica,2004,140:217-222
    184. Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G, Zhai H, Peng Y, Li D, Xu H, Wei X, Cao M, Deng H, Xin Y et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci USA,2009,106:7695-7701
    185. Wilson JA, Ross WM. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Inf Serv,1962,14:29-30
    186. Wu YW, Zhang CL, Liu CG, Ren SX, Zhang Y. Study of male sterile line in wheat having D2-type cytoplasm. Chin Sci Bull,1994,39:1618-1621
    187. Wu YW, Zhang CL, Liu CG, Ren SX, Zhang Y. Breeding of wheat male sterile line with Aegilops crassa (6×) cytoplasm and research of its characters. Chin Sci Bull, 1995,40:243-247
    188. Wu LM, Ni ZF, Meng FR, Lin Z, Sun QX. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Gen Genomics,2003,270:281-286
    189. Xiao JH, Li JM, Yuan LP, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as released by QTL analysis using molecular markers. Genetics, 1995,140:745-754
    190. Xing QH, Ru ZG, Zhou CJ, Xue X, Liang CY, Yang DE, Jin DM, Wang B. Genetic analysis, molecular tagging and mapping of the thermo-sensitive genic male-sterile gene (wtmsI) in wheat. Theor Appl Genet,2003,107:1500-1504
    191. Xiong LZ, Yang GP, Xu CG, Zhang Q, Maroof MAS. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breeding,1998,4:129-136
    192. Xiong LZ, Xu CG, Saghai Maroof MA, Zhang Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation sensitive amplification polymorphism technique. Mol Gen Genet,1999,261:439-446
    193.Xu WJ, Virmani SS, Hernandez JE, Sebastian LS, Redona ED, Li ZK. Genetic diversity in the parental lines and heterosis of the tropical rice hybrids. Euphytica, 2002,127:139-148
    194. Xu NY, Yan JQ. Studies on photoperiod-sensitive cytoplasmic male sterility in wheat. J Wuhan Bot Res,1998,16:97-105
    195. Yamagushi Y, Ikeda R, Hirasawa H, Minami M, Ujihara P. Linkage analysis of the thermo-sensitive genic male sterility gene tms2 in rice (Oryza sativa L.). Breed Sci, 1997,47:371-377
    196. Yang TZ. Investigation on the intraspecifically cytoplasmic variability in Triticum aestivum. Acta Agronomica Sinica,1983,9:217-222
    197. Yang CY, He PR, Meng RH, Liu SD. Studies on photoperiod-thermo sensitive male sterility and status of heterosis in wheat. Tritical Crops,1997,17:25-27
    198. Yao YY, Ni ZF, Zhang YH, Chen Y, Ding YH, Han ZF, Liu ZY, Sun QX. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology,2005,58:367-384
    199. Young ND, Zamir D, Canal MW, Tanksley SD. Use of isogenic lines and simultaneous probing to identify DNA markers tightly lined to the Tm-2a gene in tomato. Genetics,1988,120:579-585
    200. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Saghai Maroof MA. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    201.Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent, EP0534858.1992-9-24
    202. Zhang AM, Huang TC (1998) Progress of hybrid wheat breeding in China. In:Zhang AM, Huang TC (eds) Proceedings of the first international workshop on hybrid wheat. China Agricultural University Press, Beijing, pp 9-14
    203.Zhang GS. Breeding of wheat male sterile line having Aegilops uniaristata cytoplasm. Chin Sci Bull,1992,7:641-645
    204. Zhang QF, Shen BZ, Dai XK, Mei MH, Saghai MAM, Li ZB. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA,1994,91:8675-8679
    205. Zhang QF, Zhou ZQ, Yang GP, Xu CG, Liu KD, Saghai Maroof MA. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet,1996,93:1218-1224
    206. Zhang C, Wang HY, Shen YZ, Zhao BC, Zhu ZG, Huang ZJ. Location of the fertility restorer gene for T-Type CMS wheat by microsatellite marker. Acta Gene Sin,2003, 30:459-464
    207. Zhao SH, Lin F. The comparisons among the methods of extracting and purifying plant DNA. Foreign Agron Grain Crops,1998,18:35-38
    208. Zhou WC, Kolb FL, Domier LL, Wang SW. SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Triticum aestivum. Euphytica,2005,141:33-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700