RXRα在猪前体脂肪细胞分化中的作用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪组织不仅仅是被动的能量储存器官,也是能够分泌多种激素类物质的内分泌器官。脂肪组织的过度发育,即体脂过度沉积在人类表现为肥胖并引发其他相关疾病如糖尿病、冠心病、动脉粥样硬化、高血压、高脂血症等,在畜牧上则造成动物产品胴体品质下降等问题。体脂沉积的核心环节在于脂肪细胞的增殖和分化,因此研究脂肪细胞分化的分子机理尤为重要。猪的解剖及生理学特点与人相似,其体脂沉积模式与啮齿类动物存在显著差异,与人的更为接近,且猪是重要的畜牧养殖对象,因此以猪为实验动物研究脂肪细胞分化的机理,无论在人类医学还是动物生产方面均具有重要意义。
     脂肪细胞分化过程中重要的标志基因包括维甲酸X受体(RXRα)、CCAAT增强子结合蛋白Alpha(C/EBPα)、过氧化物酶体增殖物激活受体Gamma(PPARγ)、脂肪细胞决定与分化因子-1(ADD-1/ SREBP-1)、脂肪细胞特异基因如脂蛋白脂酶(LPL)和脂肪细胞脂肪酸结合蛋白(aP2)等。其中RXR属于核激素受体超家族,它包括α、β和γ三种亚型,它们可以作为配体激活型转录因子调控多细胞动物生命的许多方面。但有关RXR的作用机制尚无定论,除了RXR作为其它核受体的配体这一途径之外,是否还存在独立的RXR调控的信号通路仍是需要深入研究的问题。研究表明,脂肪细胞中RXRα/PPARγ异源二聚体通过调控脂肪细胞特异基因的表达来影响脂肪细胞分化,但关于RXRα在脂肪细胞分化中的直接作用是否存在尚不清楚,其在猪前体脂肪细胞分化中的作用及其机理的研究则尚未见报道。
     本论文以1-3日龄健康状况良好的长白仔猪为实验动物,构建猪前体脂肪细胞体外培养体系,利用SQ RT-PCR、间接免疫荧光技术检测了RXRα在猪前体脂肪细胞分化过程中的时序表达情况;利用油红O染色及提取法、GPDH活性测定、SQ RT-PCR技术研究了RXRα的配体9-cisRA对猪前体脂肪细胞分化的影响;采用载体构建、化学合成、脂质体转染、油红O染色及提取法、GPDH活性测定、SQ RT-PCR、间接免疫荧光和Western blotting等技术检测了超表达和沉默RXRα后猪前体脂肪细胞分化状况并探讨了相关机理,为进一步揭示猪前体脂肪细胞分化规律,完善猪体脂沉积理论提供资料,并为通过基因调控预防和治疗肥胖及相关疾病的方法的进一步确立提供了思路和理论依据。同时本研究也探讨了RXRα对猪前体脂肪细胞凋亡的影响。
     获得的主要研究结果如下:
     1. RXRα在猪前体脂肪细胞分化的2-8 d持续表达,且表达水平在此过程中无显著变化。
     2. RXRα的配体9-cisRA对猪前体脂肪细胞分化具有重要的调控作用,且其作用与浓度有关。低浓度下(0-10 nmol/L)9-cisRA促进猪前体脂肪细胞分化,并且这种促进作用是通过使得脂肪细胞数目、脂肪细胞内脂肪含量、GPDH活性增加,以及上调RXRα、PPARγmRNA表达实现的;高浓度下(100 nmol/L -10μmol/L)9-cisRA则抑制前体脂肪细胞分化,并且这种抑制作用是通过使得脂肪细胞数目减少、脂肪细胞内脂肪含量及GPDH活性降低,以及下调RXRα、PPARγmRNA表达实现的。
     3.超表达RXRα促进猪前体脂肪细胞分化,且这种促进作用是通过使得脂肪细胞数目、脂肪细胞内脂肪含量、GPDH活性增加,以及上调PPARγ和C/EBPαmRNA的表达实现的。
     4.沉默RXRα抑制猪前体脂肪细胞分化,且这种抑制作用是通过使得脂肪细胞数目减少、脂肪细胞内脂肪含量及GPDH活性降低,以及下调PPARγ和C/EBPαmRNA的表达实现的。
     5. RXRα抑制猪前体脂肪细胞凋亡。
     6.运用脂质体Lipofectamine 2000转染pSUPER-RXRα干扰载体和化学合成的siRNA,结果表明pSUPER-RXRα干扰载体太大,转染效率很低,化学合成法可以有效利用Lipofectamine 2000转染猪前体脂肪细胞,且带有荧光标记的siRNA可有效用于检测转染效率及优化转染方法。
     研究认为,RXRα在猪前体脂肪细胞分化过程中持续表达,并对此过程具有促进作用。其配体在不同的剂量范围内,通过活化RXRα对分化过程产生不同影响。RXRα促进猪前体脂肪细胞分化的作用与脂肪细胞转录因子PPARγ和C/EBPα有关,且此作用可能是通过与PPARγ形成异源二聚体或直接调控C/EBPα的基因表达来实现的;同时研究表明RXRα影响猪前体脂肪细胞凋亡,其影响表现为抑制作用。
Adipose tissue stores energy passively, and also acts as an endocrine organ secreting multiple hormonal materials. The over development of the adipose tissue, also expressed as excessive body fat deposition, leads to human obesity and related complications, such as diabetes, coronary artery disease, atherosclerosis, hypertension and hyperlipoidemia, and the decrease of meat quality in animal products. The key loop of fat deposition is the over proliferation and differentiation of adipocytes. Thus, it is very important to study the molecular mechanism of adipocytes differentiation. Compared with rodent animals, the anatomic and physiological characteristics, and the mode of fat deposition of pig are much similar to those of human. Additionally, pig is the main cultivated animal. Therefore, to study the mechanism of porcine adipocytes differentiation is significant not only for human medicine, but also for animal production industry.
     The main marker genes during adipocytes differentiation include RXRα, C/EBPα, PPARγ, ADD-1/ SREBP-1, LPL and aP2. RXR belongs to super family of nuclear hormone receptor, which contains three subtypes (α,βandγ), and regulates many aspects of metazoan life as ligand activated transcriptional factor. However, it is still uncertain about the role of RXR in the adipocytes differentiating process. In addition to the pathway of RXR acting as a nuclear receptor, whether there is other independent signal pathway regulated by RXR or not still needs to be further studied. It has been identified that heterodimer of RXRα/PPARγinfluence adipocytes differentiation by modulating the expression of adipocyte specific genes. However, whether RXRαhas the direct role in adipocytes differentiation or not remains unclear. Furthermore, the role and mechanism of RXRαin porcine preadipocytes differentiation has not been reported.
     In this study, healthy, 1-3-old-day Landrace piglets were used as experimental animal to construct in vitro culture system of porcine preadipocytes. The time-spatial expression of RXRαduring porcine preadipocytes differentiating process was investigated with SQ RT-PCR and indirect immunofluorescence technique. Porcine preadipocytes were treated with 9-cisRA, a ligand of RXRα. Subsequently, the effects of 9-cisRA on porcine preadipocytes differentiation were detected by Oil red O staining, Oil red O extraction, GPDH activity analysis and SQ RT-PCR. The change of porcine preadipocytes differentiation and underlying molecular mechanism were checked by vector construction, chemical synthesis, liposome transfection, Oil red O staining, Oil red O extraction, GPDH activity analysis, SQ RT-PCR, indirect immunofluorescence, and Western Blotting while the overexpression or silencing of RXRαgene. The obtained results provided the information and basis for consummating the RXRαrelated adipocytes differentiation regulation theory. The influence of RXRαon the adipocyts apoptosis was studied as well in the present work.
     The main results were as follows:
     1. RXRαcontinuously expressed at 2-8 d during porcine preadipocytes differentiation and its expressing levels were no significant difference during the differentiating process.
     2. 9-cisRA, a ligand of RXRα, plays an important regulatory role in porcine preadipocytes differentiation. 9-cisRA at lower concentration(0-10 nmol/L)promoted preadipocytes differentiation, proved to be the evidences that the number of adipocytes, fat content in adipocytes, GPDH activity and the expression of RXRα、PPARγmRNA increased. On the other hand, 9-cisRA at higher concentration(100 nmol/L -10μmol/L)repressed preadipocytes differentiation, shown as the phenomena that the number of adipocytes, fat content in adipocytes, GPDH activity and the expression of RXRα, PPARγmRNA decreased.
     3. Overexpression of RXRαgene could promote porcine preadipocytes differentiation. It was shown that the number of adipocytes, fat content in adipocytes, GPDH activity, and the abundance of PPARγand C/EBPαmRNA increased.
     4. Silencing of RXRαgene could inhibit porcine preadipocytes differentiation. It was shown that the number of adipocytes, fat content in adipocytes, GPDH activity, and the abundance of PPARγand C/EBPαmRNA decreased.
     5. RXRαcould inhibit the apoptosis of porcine adipocytes.
     6. Lipofectamine 2000 was used to transfect pSUPER-RXRαRNAi and chemically synthesized siRNA. It was shown that the transfection efficiency was lower with the big pSUPER-RXRαRNAi, while the chemically synthesized siRNA was effectively transfected into porcine preadipocytes by using Lipofectamine 2000. On the other hand, siRNA with fluorescence marker could be used to check transfection efficiency and optimize the transfection method.
     Taken together, RXRαexpresses in the duration of porcine preadipocyte differentiation and enhances this process. Its ligand 9-cisRA influences the differentiation via RXR in different manners with different treating dosage. The effects of RXRαon the porcine preadipocyte differentiation closely relate to its influence on the expression of PPARγand C/EBPαgenes, and these effects might be due to its formation to heterodimer with PPARγor its directly regulation of the expression of C/EBPαgene. It is also concluded that RXRαmight influence the apoptosis of porcine preadipocytes, and this influence appears to be an inhibition effect.
引文
[1] Obesity: preventing and managing the global epidemic[J]. Report of a WHO consultation. World Health Organ Tech Rep Ser, 2000,894:i-xii, 1-253.
    [2] Novakofski J. Adipogenesis: usefulness of in vitro and in vivo experimental models[J]. J Anim Sci, 2004,82:905-15.
    [3] Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine[J]. Cell, 1979,17:771-9.
    [4] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999,284:143-7.
    [5] Hung SC, Chang CF, Ma HL, et al. Gene expression profiles of early adipogenesis in human mesenchymal stem cells[J]. Gene, 2004,340:141-50.
    [6] Nakamura T, Shiojima S, Hirai Y, et al. Temporal gene expression changes during adipogenesis in human mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2003,303:306-12.
    [7] Katz AJ, Llull R, Hedrick MH, et al. Emerging approaches to the tissue engineering of fat[J]. Clin Plast Surg, 1999,26:587-603, viii.
    [8] 屈长青 张国华 杨公社. 猪脂肪间充质干细胞分离培养及成骨诱导[J]. 自然科学进展, 2007,17:182-187.
    [9] 张国华 杨公社 屈长青. 猪前体脂肪细胞的分离培养[J]. 细胞生物学杂志, 2005:693-696.
    [10] Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage[J]. Proc Natl Acad Sci U S A, 2004,101:9607-11.
    [11] Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors[J]. Science, 1998,279:1528-30.
    [12] Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development[J]. Annu Rev Nutr, 1992,12:207-33.
    [13] Wang H, Scott RE. Inhibition of distinct steps in the adipocyte differentiation pathway in 3T3 T mesenchymal stem cells by dimethyl sulphoxide (DMSO) [J]. Cell Prolif, 1993,26:55-66.
    [14] Sugihara H, Yonemitsu N, Miyabara S, et al. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties[J]. Differentiation, 1986,31:42-9.
    [15] Prins JB, O'Rahilly S. Regulation of adipose cell number in man[J]. Clin Sci (Lond), 1997,92:3-11.
    [16] Kirkland JL, Dobson DE. Preadipocyte function and aging: links between age-related changes in cell dynamics and altered fat tissue function[J]. J Am Geriatr Soc, 1997,45:959-67.
    [17] Ailhaud G. Extracellular factors, signalling pathways and differentiation of adipose precursor cells[J]. Curr Opin Cell Biol, 1990,2:1043-9.
    [18] Smas CM, Chen L, Zhao L, et al. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation[J]. J Biol Chem, 1999,274:12632-41.
    [19] Butterwith SC. Molecular events in adipocyte development[J]. Pharmacol Ther, 1994,61:399-411.
    [20] Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation[J]. Mol Cell Biol, 1997,17:977-88.
    [21] Hausman GJ. The influence of dexamethasone and insulin on expression of CCAAT/enhancer binding protein isoforms during preadipocyte differentiation in porcine stromal-vascular cell cultures: evidence for very early expression of C/EBPalpha[J]. J Anim Sci, 2000,78:1227-35.
    [22] Smith SB, Mersmann HJ, Smith EO, et al. Stearoyl-coenzyme A desaturase gene expression during growth in adipose tissue from obese and crossbred pigs[J]. J Anim Sci, 1999,77:1710-6.
    [23] Suryawan A, Swanson LV, Hu CY. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture[J]. J Anim Sci, 1997,75:105-11.
    [24] Dani C, Doglio A, Amri EZ, et al. Cloning and regulation of a mRNA specifically expressed in the preadipose state[J]. J Biol Chem, 1989,264:10119-25.
    [25] Casimir DA, Ntambi JM. cAMP activates the expression of stearoyl-CoA desaturase gene 1 during early preadipocyte differentiation[J]. J Biol Chem, 1996,271:29847-53.
    [26] Tominaga K, Kondo C, Johmura Y, et al. The novel gene fad104, containing a fibronectin type III domain, has a significant role in adipogenesis[J]. FEBS Lett, 2004,577:49-54.
    [27] Tominaga K, Kondo C, Kagata T, et al. The novel gene fad158, having a transmembrane domain and leucine-rich repeat, stimulates adipocyte differentiation[J]. J Biol Chem, 2004,279:34840-8.
    [28] Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro[J]. Mol Cell, 1999,4:611-7.
    [29] Takahashi H, Kato K, Miyake K, et al. Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice[J]. Clin Exp Rheumatol, 2005,23:455-61.
    [30] Wu Z, Xie Y, Morrison RF, et al. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes[J]. J Clin Invest, 1998,101:22-32.
    [31] Hemati N, Erickson RL, Ross SE, et al. Regulation of CCAAT/enhancer binding protein alpha (C/EBP alpha) gene expression by thiazolidinediones in 3T3-L1 adipocytes[J]. Biochem Biophys Res Commun, 1998,244:20-5.
    [32] Hosono T, Mizuguchi H, Katayama K, et al. RNA interference of PPARgamma using fiber-modified adenovirus vector efficiently suppresses preadipocyte-to-adipocyte differentiation in 3T3-L1 cells[J]. Gene, 2005,348:157-65.
    [33] Xu Y, Mirmalek-Sani SH, Yang X, et al. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells[J]. Exp Cell Res, 2006,312:1856-64.
    [34] 王博 吴江维 杨公社. PPAR-γ在八眉猪不同组织中的表达差异[J]. 畜牧兽医学报(已录用).
    [35] Ding ST, McNeel RL, Mersmann HJ. Expression of porcine adipocyte transcripts: tissue distribution and differentiation in vitro and in vivo[J]. Comp Biochem Physiol B Biochem Mol Biol, 1999,123:307-18.
    [36] Juge-Aubry CE, Gorla-Bajszczak A, Pernin A, et al. Peroxisome proliferator-activated receptormediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat[J]. J Biol Chem, 1995,270:18117-22.
    [37] Mourrieras F, Foufelle F, Foretz M, et al. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations[J]. Biochem J, 1997,326 ( Pt 2):345-9.
    [38] Magana MM, Koo SH, Towle HC, et al. Different sterol regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors to activate the promoter for fatty acid synthase[J]. J Biol Chem, 2000,275:4726-33.
    [39] Ericsson J, Jackson SM, Kim JB, et al. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination and differentiation factor 1- and sterol regulatory element-binding protein-responsive gene[J]. J Biol Chem, 1997,272:7298-305.
    [40] Sakakura Y, Shimano H, Sone H, et al. Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis[J]. Biochem Biophys Res Commun, 2001,286:176-83.
    [41] Yeh WC, Cao Z, Classon M, et al. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins[J]. Genes Dev, 1995,9:168-81.
    [42] Chen Z, Torrens JI, Anand A, et al. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms[J]. Cell Metab, 2005,1:93-106.
    [43] Tanaka T, Yoshida N, Kishimoto T, et al. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene[J]. EMBO J, 1997,16:7432-43.
    [44] Francine M, Gregoir E, Cynthia M,et al. Understanding Adipocyte Differentiation[J]. Physiological, 1998,78:783-809.
    [45] Brun RP, Kim JB, Hu E, et al. Adipocyte differentiation: a transcriptional regulatory cascade[J]. Curr Opin Cell Biol, 1996,8:826-32.
    [46] Herrera T, Ro HS, Robinson GS, et al. Adirect role for C/EBP and the AP-1 binding site in gene expression linked to adipocyte differentiation[J]. Mo Cell Biol, 1989:5331 -5339.
    [47] Miller SG, De Vos P, Guerre-Millo M, et al. The adipocyte specific transcription factor C/EBPalpha modulates human ob gene expression[J]. Proc Natl Acad Sci U S A, 1996,93:5507-11.
    [48] Umek RM, Friedman AD, McKnight SL. CCAAT-enhancer binding protein: a component of a differentiation switch[J]. Science, 1991,251:288-92.
    [49] Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program[J]. Proc Natl Acad Sci U S A, 1994,91:8757-61.
    [50] Lin FT, Lane MD. Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes[J]. Genes Dev, 1992,6:533-44.
    [51] Freytag SO, Paielli DL, Gilbert JD. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells[J]. Genes Dev, 1994,8:1654-63.
    [52] Christy RJ, Kaestner KH, Geiman DE, et al. CCAAT/enhancer binding protein gene promoter:binding of nuclear factors during differentiation of 3T3-L1 preadipocytes[J]. Proc Natl Acad Sci U S A, 1991,88:2593-7.
    [53] Wang ND, Finegold MJ, Bradley A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice[J]. Science, 1995,269:1108-12.
    [54] Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism[J]. Genes Dev, 1996,10:1096-107.
    [55] Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out[J]. Nat Rev Mol Cell Biol, 2006,7:885-96.
    [56] Tontonoz P, Kim JB, Graves RA, et al. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation[J]. Mol Cell Biol, 1993,13:4753-9.
    [57] Seo JB, Moon HM, Noh MJ, et al. Adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element-binding protein 1c regulates mouse adiponectin expression[J]. J Biol Chem, 2004,279:22108-17.
    [58] Fajas L, Schoonjans K, Gelman L, et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism[J]. Mol Cell Biol, 1999,19:5495-503.
    [59] Kim JB, Wright HM, Wright M, et al. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand[J]. Proc Natl Acad Sci U S A, 1998,95:4333-7.
    [60] Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture[J]. Cell, 1974,3:127-33.
    [61] Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion[J]. Cell, 1975,5:19-27.
    [62] Chapman AB, Knight DM, Dieckmann BS, et al. Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program[J]. J Biol Chem, 1984,259:15548-55.
    [63] Negrel R, Grimaldi P, Ailhaud G. Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones[J]. Proc Natl Acad Sci U S A, 1978,75:6054-8.
    [64] Zovich DC, Orologa A, Okuno M, et al. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes[J]. J Biol Chem, 1992,267:13884-9.
    [65] Ginette S. Tumorizenicity associated with loss of differentiation and of responses to insulin in the adipogenic cell line 1246 in vitro[J]. Cell and Developmental Biologery, 1985:534-537.
    [66] Reznikoff CA, Brankow DW, Heidelberger C. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division[J]. Cancer Res, 1973,33:3231-8.
    [67] Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone[J]. J CellBiol, 1988,106:2139-51.
    [68] Hausman GJ, Novakofski JE, Martin RJ, et al. The development of adipocytes in primary stromal-vascular culture of fetal pig adipose tissue[J]. Cell Tissue Res, 1984,236:459-64.
    [69] Ramsay TG, Hausman GJ, Martin RJ. Pre-adipocyte proliferation and differentiation in response to hormone supplementation of decapitated fetal pig sera[J]. J Anim Sci, 1987,64:735-44.
    [70] Hausman GJ, Martin RJ. The influence of human growth hormone on preadipocyte development in serum-supplemented and serum-free cultures of stromal-vascular cells from pig adipose tissue[J]. Domest Anim Endocrinol, 1989,6:331-7.
    [71] Suryawan A, Hu CY. Effect of retinoic acid on differentiation of cultured pig preadipocytes. J Anim Sci, 1997,75:112-7.
    [72] McNeel RL, Ding ST, Smith EO, et al. Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo[J]. Comp Biochem Physiol B Biochem Mol Biol, 2000,126:291-302.
    [73] McNeel RL, Mersmann HJ. Effects of isomers of conjugated linoleic acid on porcine adipocyte growth and differentiation[J]. J Nutr Biochem, 2003,14:266-74.
    [74] 李影, 杨公社, 卢荣华等. 原代猪前体脂肪细胞培养方法的优化[J]. 细胞生物学杂志, 2005:697-700.
    [75] 卢荣华, 李影, 张立杰等. 黄芩素对猪前体脂肪细胞增殖分化的影响[J]. 生物工程学报, 2006,22:1002-1006.
    [76] 庞卫军, 孙世铎, 白亮等. 白藜芦醇对猪原代前体脂肪细胞的增殖与分化及Sirt1基因转录表达时序的影响[J]. 生物工程学报, 2006,22:850-855.
    [77] 陈粉粉, 张立杰, 张利红,杨公社. EGCG对猪前体脂肪细胞增殖和分化的作用[J]. 动物学报, 2006,52:1119-1124.
    [78] Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot[J]. Cell, 1995,83:851-7.
    [79] Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes[J]. Gene, 2004,328:1-16.
    [80] Kuhn RW, Schrader WT, Coty WA, et al. Progesterone-binding components of chick oviduct. Biochemical characterization of purified oviduct progesterone receptor B subunit[J]. J Biol Chem, 1977,252:308-17.
    [81] Wrange O, Okret S, Radojcic M, et al. Characterization of the purified activated glucocorticoid receptor from rat liver cytosol[J]. J Biol Chem, 1984,259:4534-41.
    [82] Hollenberg SM, Weinberger C, Ong ES, et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA[J]. Nature, 1985,318:635-41.
    [83] Evans RM. The steroid and thyroid hormone receptor superfamily[J]. Science, 1988,240:889-95.
    [84] Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors[J]. Cell, 1995,83:841-50.
    [85] Sluder AE, Maina CV. Nuclear receptors in nematodes: themes and variations[J]. Trends Genet, 2001,17:206-13.
    [86] Escriva Garcia H, Laudet V, Robinson-Rechavi M. Nuclear receptors are markers of animal genome evolution[J]. J Struct Funct Genomics, 2003,3:177-84.
    [87] Escriva H, Safi R, Hanni C, et al. Ligand binding was acquired during evolution of nuclear receptors[J]. Proc Natl Acad Sci U S A, 1997,94:6803-8.
    [88] Escriva H, Delaunay F, Laudet V. Ligand binding and nuclear receptor evolution[J]. Bioessays, 2000,22:717-27.
    [89] Owen GI, Zelent A. Origins and evolutionary diversification of the nuclear receptor superfamily[J]. Cell Mol Life Sci, 2000,57:809-27.
    [90] Mangelsdorf DJ, Ong ES, Dyck JA, et al. Nuclear receptor that identifies a novel retinoic acid response pathway[J]. Nature, 1990,345:224-9.
    [91] Blumberg B, Mangelsdorf DJ, Dyck JA, et al. Multiple retinoid-responsive receptors in a single cell: families of retinoid "X" receptors and retinoic acid receptors in the Xenopus egg[J]. Proc Natl Acad Sci U S A, 1992,89:2321-5.
    [92] Szanto A, Narkar V, Shen Q, et al. Retinoid X receptors: X-ploring their (patho)physiological functions[J]. Cell Death Differ, 2004,11 Suppl 2:S126-43.
    [93] 宋景春. 孤核受体的研究进展[J]. 生理科学进展, 2001,32:177-179.
    [94] 张玉梅. 孤立核受体与脂质生理学[J]. 国外医学卫生学分册, 2002,29:331-336.
    [95] 卜文,欧阳任荣. 维甲类X受体研究现状[J]. 国外医学输血及血液学分册, 1994,17:111-114.
    [96] Heyman RA, Mangelsdorf DJ, Dyck JA, et al. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor[J]. Cell, 1992,68:397-406.
    [97] Lemotte PK, Keidel S, Apfel CM. Phytanic acid is a retinoid X receptor ligand[J]. Eur J Biochem, 1996,236:328-33.
    [98] de Urquiza AM, Liu S, Sjoberg M, et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain[J]. Science, 2000,290:2140-4.
    [99] Boehm MF, Zhang L, Badea BA, et al. Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids[J]. J Med Chem, 1994,37:2930-41.
    [100] Boehm MF, Zhang L, Zhi L, et al. Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells[J]. J Med Chem, 1995,38:3146-55.
    [101] Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers[J]. Science, 2000,289:1524-9.
    [102] Haq R, Chytil F. Expression of nuclear retinoic acid receptors in rat adipose tissue[J]. Biochem Biophys Res Commun, 1991,176:1539-44.
    [103] Kamei Y, Kawada T, Kazuki R, et al. Retinoic acid receptor gamma 2 gene expression is up-regulated by retinoic acid in 3T3-L1 preadipocytes[J]. Biochem J, 1993,293 ( Pt 3):807-12.
    [104] Villarroya F. Differential effects of retinoic acid on white and brown adipose tissues. An unexpected role for vitamin A derivatives on energy balance[J]. Ann N Y Acad Sci, 1998,839:190-5.
    [105] Villarroya F, Giralt M, Iglesias R. Retinoids and adipose tissues: metabolism, cell differentiationand gene expression[J]. Int J Obes Relat Metab Disord, 1999,23:1-6.
    [106] Murray T, Russell TR. Inhibition of adipose conversion in 3T3-L2 cells by retinoic acid[J]. J Supramol Struct, 1980,14:255-66.
    [107] Puigserver P, Vazquez F, Bonet ML, et al. In vitro and in vivo induction of brown adipocyte uncoupling protein (thermogenin) by retinoic acid[J]. Biochem J, 1996,317 ( Pt 3):827-33.
    [108] Schwarz EJ, Reginato MJ, Shao D, et al. Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription[J]. Mol Cell Biol, 1997,17:1552-61.
    [109] Schupp M, Curtin JC, Kim RJ, et al. A widely used retinoic acid receptor antagonist induces peroxisome proliferator-activated receptor-gamma activity[J]. Mol Pharmacol, 2007,71:1251-7.
    [110] Tontonoz P, Graves RA, Budavari AI, et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha[J]. Nucleic Acids Res, 1994,22:5628-34.
    [111] Chawla A, Schwarz EJ, Dimaculangan DD, et al. Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation[J]. Endocrinology, 1994,135:798-800.
    [112] Brodie AE, Manning VA, Hu CY. Inhibitors of preadipocyte differentiation induce COUP-TF binding to a PPAR/RXR binding sequence[J]. Biochem Biophys Res Commun, 1996,228:655-61.
    [113] Carmona MC, Valmaseda A, Iglesias R, et al. 9-cis retinoic acid induces the expression of the uncoupling protein-2 gene in brown adipocytes[J]. FEBS Lett, 1998,441:447-50.
    [114] Serra F, Bonet ML, Puigserver P, et al. Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids[J]. Int J Obes Relat Metab Disord, 1999,23:650-5.
    [115] Schluter A, Yubero P, Iglesias R, et al. The chlorophyll-derived metabolite phytanic acid induces white adipocyte differentiation[J]. Int J Obes Relat Metab Disord, 2002,26:1277-80.
    [116] Imai T, Jiang M, Chambon P, et al. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes[J]. Proc Natl Acad Sci U S A, 2001,98:224-8.
    [117] Canan Koch SS, Dardashti LJ, Cesario RM, et al. Synthesis of retinoid X receptor-specific ligands that are potent inducers of adipogenesis in 3T3-L1 cells[J]. J Med Chem, 1999,42:742-50.
    [118] Sewter CP, Blows F, Vidal-Puig A, et al. Regional differences in the response of human pre-adipocytes to PPARgamma and RXRalpha agonists[J]. Diabetes, 2002,51:718-23.
    [119] Liu YL, Sennitt MV, Hislop DC, et al. Retinoid X receptor agonists have anti-obesity effects and improve insulin sensitivity in Zucker fa/fa rats[J]. Int J Obes Relat Metab Disord, 2000,24:997-1004.
    [120] 周晓馥,王兴智. 细胞凋亡的相关基因及表达调控研究进展[J]. 吉林师范大学学报, 2003:10-13.
    [121] Prins JB, Walker NI, Winterford CM, et al. Apoptosis of human adipocytes in vitro[J]. Biochem Biophys Res Commun, 1994,201:500-7.
    [122] Qian H, Azain MJ, Compton MM, et al. Brain administration of leptin causes deletion ofadipocytes by apoptosis[J]. Endocrinology, 1998,139:791-4.
    [123] 龚海霞,郭锡熔,陈荣华等. Bcl-2、Bax基因表达改变与禁食诱导的脂肪细胞凋亡研究[J]. 南京医科大学学报, 2001,21:186-188.
    [124] Gong HX,Guo XR,Chen RH,et al. Apoptosis and Lipolysis of White Adipocytes Induced by Neuropeptide Y-Y5 Receptor Antisense Ologodeoxynucleotides[J]. Journal of Nanjing Medacal University, 2003,17:1-6.
    [125] Niesler CU,Urso B,Prins JB,et al. IGF-I inhibits apoptosis induced by serum withdrawal,but potentiates TNF-α induced apoptosis, in 3T3-L1 preadipocytes[J]. Endocrinology, 2000:165-174.
    [126] Fischer-Posovszky P, Tornqvist H, Debatin KM, et al. Inhibition of death-receptor mediated apoptosis in human adipocytes by the insulin-like growth factor I (IGF-I)/IGF-I receptor autocrine circuit[J]. Endocrinology, 2004,145:1849-59.
    [127] Della-Fera MA, Qian H, Baile CA. Adipocyte apoptosis in the regulation of body fat mass by leptin[J]. Diabetes Obes Metab, 2001,3:299-310.
    [128] Porras A, Alvarez AM, Valladares A, et al. TNF-alpha induces apoptosis in rat fetal brown adipocytes in primary culture[J]. FEBS Lett, 1997,416:324-8.
    [129] Prins JB, Niesler CU, Winterford CM, et al. Tumor necrosis factor-alpha induces apoptosis of human adipose cells[J]. Diabetes, 1997,46:1939-44.
    [130] Magun R, Boone DL, Tsang BK, et al. The effect of adipocyte differentiation on the capacity of 3T3-L1 cells to undergo apoptosis in response to growth factor deprivation[J]. Int J Obes Relat Metab Disord, 1998,22:567-71.
    [131] Magun R, Gagnon A, Yaraghi Z, et al. Expression and regulation of neuronal apoptosis inhibitory protein during adipocyte differentiation[J]. Diabetes, 1998,47:1948-52.
    [132] Tarrade A, Bastien J, Bruck N, et al. Retinoic acid and arsenic trioxide cooperate for apoptosis through phosphorylated RXR alpha[J]. Oncogene, 2005,24:2277-88.
    [133] Liu B, Lee HY, Weinzimer SA, et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-alpha regulate transcriptional signaling and apoptosis[J]. J Biol Chem, 2000,275:33607-13.
    [134] Chawla A, Lazar MA. Peroxisome proliferator and retinoid signaling pathways co-regulate preadipocyte phenotype and survival[J]. Proc Natl Acad Sci U S A, 1994,91:1786-90.
    [135] Kim HS, Hausman DB, Compton MM, et al. Induction of apoptosis by all-trans-retinoic acid and C2-ceramide treatment in rat stromal-vascular cultures[J]. Biochem Biophys Res Commun, 2000,270:76-80.
    [136] Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes[J]. Trends Biotechnol, 1990,8:340-4.
    [137] Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995,81:611-20.
    [138] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391:806-11.
    [139] Lohmann JU, Endl I, Bosch TC. Silencing of developmental genes in Hydra[J]. Dev Biol, 1999,214:211-4.
    [140] Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos[J]. Curr Biol, 2000,10:1191-200.
    [141] Kennerdell JR, Carthew RW. Heritable gene silencing in Drosophila using double-stranded RNA[J]. Nat Biotechnol, 2000,18:896-8.
    [142] Zhao Z, Cao Y, Li M, et al. Double-stranded RNA injection produces nonspecific defects in zebrafish[J]. Dev Biol, 2001,229:215-23.
    [143] Nakano H, Amemiya S, Shiokawa K, et al. RNA interference for the organizer-specific gene Xlim-1 in Xenopus embryos[J]. Biochem Biophys Res Commun, 2000,274:434-9.
    [144] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001,411:494-8.
    [145] 陈燕飞. RNAi 技术及其应用[J]. 韶关学院学报自然科学, 2006,27:87-90.
    [146] Hannon GJ. RNA interference[J]. Nature, 2002,418:244-51.
    [147] 李刚,李湘平. RNAi 研究现状与进展[J]. 广东医学, 2003:327-329.
    [148] Holen T, Amarzguioui M, Wiiger MT, et al. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor[J]. Nucleic Acids Res, 2002,30:1757-66.
    [149] Caplen NJ. A new approach to the inhibition of gene expression[J].Trends Biotechnol, 2002,20:49-51.
    [150] Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand[J]. Curr Opin Genet Dev, 2002,12:225-32.
    [151] Tavernarakis N, Wang SL, Dorovkov M, et al. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes[J]. Nat Genet, 2000,24:180-3.
    [152] Gura T. A silence that speaks volumes[J]. Nature, 2000,404:804-8.
    [153] Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell, 1998,95:1017-26.
    [154] Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence[J]. Science, 1998,282:430-1. [155 ] Tymms MJ. Gene Knockout Protocol[M].2001. 431.
    [156] Bosher JM, Labouesse M. RNA interference: genetic wand and genetic watchdog[J]. Nat Cell Biol, 2000,2:E31-6.
    [157] Zamore PD. Ancient pathways programmed by small RNAs[J]. Science, 2002,296:1265-9.
    [158] Boutros M, Kiger AA, Armknecht S, et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells[J]. Science, 2004,303:832-5.
    [159] Ashrafi K, Chang FY, Watts JL, et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes[J]. Nature, 2003,421:268-72.
    [160] Hugh PC, Tomoyasu S, Chen ES, et al. Comprehensive analysis of heterochromatin andRNAi-mediate depigenetic control of the fission yeast genome[J]. Nature Genetics, 2005,37:809-819.
    [161] Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J]. Proc Natl Acad Sci U S A, 2000, 97:649-503.
    [162] Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics[J]. Nat Rev Drug Discov, 2004,3:318-29.
    [163] Barik S. Development of gene-specific double-stranded RNA drugs[J]. Ann Med, 2004, 36:540-51.
    [164] Zheng BJ, Guan Y, Tang Q, et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus[J]. Antivir Ther, 2004,9:365-74.
    [165] Mohapatra JK, Sanyal A, Hemadri D, et al. Evaluation of in vitro inhibitory potential of small interfering RNAs directed against various regions of foot-and-mouth disease virus genome[J]. Biochem Biophys Res Commun, 2005,329:1133-8.
    [166] Chen ZJ, Kren BT, Wong PY, et al. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference[J]. Biochem Biophys Res Commun, 2005,329:646-52.
    [167] Xia XG, Zhou H, Zhou S, et al. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase[J]. J Neurochem, 2005,92:362-7.
    [168] Wannenes F, Ciafre SA, Niola F, et al. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo[J]. Cancer Gene Ther, 2005,12:926-34.
    [169] Gong H, Liu CM, Liu DP, et al. The role of small RNAs in human diseases: potential troublemaker and therapeutic tools[J]. Med Res Rev, 2005,25:361-81.
    [170] Ge Q, McManus MT, Nguyen T, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A, 2003,100:2718-23.
    [171] O'Neil NJ, Martin RL, Tomlinson ML, et al. RNA-mediated interference as a tool for identifying drug targets[J]. Am J Pharmacogenomics, 2001,1:45-53.
    [172] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs[J]. Methods, 2002,26:199-213.
    [173] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference[J]. Nat Biotechnol, 2004,22:326-30.
    [174] Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi[J]. Nat Biotechnol, 2003,21:635-7.
    [175] Gunsalus KC, Yueh WC, MacMenamin P, et al. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects[J]. Nucleic Acids Res, 2004,32:D406-10. [176 ] Grosshans H, Slack FJ. Micro-RNAs: small is plentiful[J]. J Cell Biol, 2002,156:17-21.
    [177] Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in asiRNA[J]. Nucleic Acids Res, 2003,31:589-95.
    [178] Hohjoh H. Enhancement of RNAi activity by improved siRNA duplexes[J]. FEBS Lett, 2004,557:193-8.
    [179] Parrish S, Fire A. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans[J]. RNA, 2001,7:1397-402.
    [180] Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs[J]. Genes Dev, 2001,15:188-200.
    [181] Donze O, Picard D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase[J]. Nucleic Acids Res, 2002,30:e46.
    [182] Calegari F, Haubensak W, Yang D, et al. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA[J]. Proc Natl Acad Sci U S A, 2002,99:14236-40.
    [183] Caplen NJ. RNAi as a gene therapy approach[J]. Expert Opin Biol Ther, 2003,3:575-86.
    [184] Hemann MT, Bric A, Teruya-Feldstein J, et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants[J]. Nature, 2005,436:807-11.
    [185] Paddison PJ, Hannon GJ. RNA interference: the new somatic cell genetics? [J]. Cancer Cell, 2002,2:17-23.
    [186] Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference[J]. Nat Genet, 2003,33:401-6.
    [187] Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products[J]. RNA, 2002,8:1454-60.
    [188] McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs[J]. Nat Rev Genet, 2002,3:737-47.
    [189] Xia H, Mao Q, Paulson HL, et al. siRNA-mediated gene silencing in vitro and in vivo[J]. Nat Biotechnol, 2002,20:1006-10.
    [190] Arts GJ, Langemeijer E, Tissingh R, et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function[J]. Genome Res, 2003,13:2325-32.
    [191] Shen C, Buck AK, Liu X, et al. Gene silencing by adenovirus-delivered siRNA[J]. FEBS Lett, 2003,539:111-4.
    [192] Zhao LJ, Jian H, Zhu H. Specific gene inhibition by adenovirus-mediated expression of small interfering RNA[J]. Gene, 2003,316:137-41.
    [193] Orlicky DJ, Schaack J. Adenovirus transduction of 3T3-L1 cells[J]. J Lipid Res, 2001,42:460-6.
    [194] Orlicky DJ, DeGregori J, Schaack J. Construction of stable coxsackievirus and adenovirus receptor-expressing 3T3-L1 cells[J]. J Lipid Res, 2001,42:910-5.
    [195] Ross SA, Song X, Burney MW, et al. Efficient adenovirus transduction of 3T3-L1 adipocytes stably expressing coxsackie-adenovirus receptor[J]. Biochem Biophys Res Commun, 2003,302:354-8.
    [196] Brown D, Jarvis R, Pallot ta V,et al. RNA Inter-ference in Mammalian Cell Culture:Design , Execution and Analysis of t he siRNA Effect[J]. http:/ / www.ambion.com/ techlib/tn/91/912html.
    [197] Duxbury MS, Whang EE. RNA interference: a practical approach[J]. J Surg Res, 2004, 117: 339-44.
    [198] Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans[J]. Gene, 2001,263:103-12.
    [199] Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene[J]. EMBO J, 1996,15:5336-48.
    [200]Tontonoz P, Singer S, Forman BM, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor[J]. Proc Natl Acad Sci U S A, 1997,94:237-41.
    [201] Devine JH, Eubank DW, Clouthier DE, et al. Adipose expression of the phosphoenolpyruvate carboxykinase promoter requires peroxisome proliferator-activated receptor gamma and 9-cis-retinoic acid receptor binding to an adipocyte-specific enhancer in vivo[J]. J Biol Chem, 1999,274:13604-12.
    [202] Berrodin TJ, Marks MS, Ozato K, et al. Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein[J]. Mol Endocrinol, 1992,6:1468-78.
    [203] Bugge TH, Pohl J, Lonnoy O, et al. RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors[J]. EMBO J, 1992,11:1409-18.
    [204] Kliewer SA, Umesono K, Mangelsdorf DJ, et al. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling[J]. Nature, 1992,355:446-9. [205 ] Swine in biomedical research[J]. Lab Anim Sci, 1986,36:343-433.
    [206] Larsen MO, Rolin B. Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research[J]. ILAR J, 2004,45:303-13.
    [207] Bellinger DA, Merricks EP, Nichols TC. Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications[J]. ILAR J, 2006,47:243-58.
    [208] 张罕星, 朱晓彤, 束刚等. 猪脂肪前体细胞分化过程中聚脂相关基因的表达模式[J]. 动物学报, 2007,53:143-150.
    [209] 庄和林, 林亚秋, 杨公社. 猪RXRα基因SQ RT-PCR扩增体系的优化及在不同组织的表达研究[J]. 待发表.
    [210] Levin AA, Sturzenbecker LJ, Kazmer S, et al. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha[J]. Nature, 1992,355:359-61.
    [211] Villarroya F, Iglesias R, Giralt M. Retinoids and retinoid receptors in the control of energy balance: novel pharmacological strategies in obesity and diabetes[J]. Curr Med Chem, 2004,11:795-805.
    [212] Bonet ML, Ribot J, Felipe F, et al. Vitamin A and the regulation of fat reserves[J]. Cell Mol Life Sci, 2003,60:1311-21.
    [213] Hauner H, Entenmann G, Wabitsch M, et al. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium[J]. J Clin Invest, 1989,84:1663-70.
    [214] Pairault J, Green H. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker[J]. Proc Natl Acad Sci U S A, 1979,76:5138-42.
    [215] Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O[J]. Histochemistry, 1992,97:493-7.
    [216] Safonova I, Darimont C, Amri EZ, et al. Retinoids are positive effectors of adipose cell differentiation[J]. Mol Cell Endocrinol, 1994,104:201-11.
    [217] Tamori Y, Masugi J, Nishino N, et al. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes[J]. Diabetes, 2002,51:2045-55.
    [218] Takahashi N, Kawada T, Yamamoto T, et al. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma[J]. J Biol Chem, 2002,277:16906-12.
    [219] Chihara Y, Rakugi H, Ishikawa K, et al. Klotho protein promotes adipocyte differentiation[J]. Endocrinology, 2006,147:3835-42.
    [220] Moyers JS, Bilan PJ, Reynet C, et al. Overexpression of Rad inhibits glucose uptake in cultured muscle and fat cells[J]. J Biol Chem, 1996,271:23111-6.
    [221] Boizard M, Le Liepvre X, Lemarchand P, et al. Obesity-related overexpression of fatty-acid synthase gene in adipose tissue involves sterol regulatory element-binding protein transcription factors[J]. J Biol Chem, 1998,273:29164-71.
    [222] Horton JD, Shimomura I, Ikemoto S, et al. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver[J]. J Biol Chem, 2003,278:36652-60.
    [223] Franckhauser S, Munoz S, Elias I, et al. Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity[J]. Diabetes, 2006,55:273-80.
    [224] Berger J, Moller DE. The mechanisms of action of PPARs[J]. Annu Rev Med, 2002,53:409-35.
    [225] Mandrup S, Lane MD. Regulating adipogenesis[J]. J Biol Chem, 1997,272:5367-70.
    [226] Sharp PA. RNA interference--2001[J]. Genes Dev, 2001,15:485-90.
    [227] Ngo H, Tschudi C, Gull K, et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei[J]. Proc Natl Acad Sci U S A, 1998,95:14687-92.
    [228] Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons[J]. Annu Rev Biochem, 1998,67:227-64.
    [229] Dorsett Y,Tuschl T. SiRNAs:applications in functional genomics and potential as the rapeutics[J].Nature, 2004:318-329.
    [230] Xu J, Liao K. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation[J]. J Biol Chem, 2004,279:35914-22.
    [231] Mitra P, Zheng X, Czech MP. RNAi-based analysis of CAP, Cbl, and CrkII function in the regulation of GLUT4 by insulin[J]. J Biol Chem, 2004,279:37431-5.
    [232] Amdam GV, Simoes ZL, Guidugli KR, et al. Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA[J]. BMC Biotechnol, 2003,3:1.
    [233] Hemann MT, Fridman JS, Zilfou JT, et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo[J]. Nat Genet, 2003,33:396-400.
    [234] Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999,286:950-2.
    [235] McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice[J]. Nature, 2002, 418: 38-9.
    [236] Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice[J]. J Mol Biol, 2003,327:761-6.
    [237] Akerblad P, Mansson R, Lagergren A, et al. Gene expression analysis suggests that EBF-1 and PPARgamma2 induce adipogenesis of NIH-3T3 cells with similar efficiency and kinetics[J]. Physiol Genomics, 2005,23:206-16.
    [238] Kastner P, Grondona JM, Mark M, et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis[J]. Cell, 1994,78:987-1003.
    [239] Sucov HM, Dyson E, Gumeringer CL, et al. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis[J]. Genes Dev, 1994,8:1007-18.
    [240] Kawada T, Kamei Y, Fujita A, et al. Carotenoids and retinoids as suppressors on adipocyte differentiation via nuclear receptors[J]. Biofactors, 2000,13:103-9.
    [241] Helledie T, Grontved L, Jensen SS, et al. The gene encoding the Acyl-CoA-binding protein is activated by peroxisome proliferator-activated receptor gamma through an intronic response element functionally conserved between humans and rodents[J]. J Biol Chem, 2002,277:26821-30.
    [242] Qiao LP,Paul SM,Hanning YJ,et al. Knocking down Liver C/EBPα by Adenovirus-transduced siRNA Improves Hepatic Gluconeogenesis and Lipid Homeostasis in db/db Mice[J]. Endocrinology, 2006,147:3060-3069.
    [243] Darimont C, Avanti O, Zbinden I, et al. Liver X receptor preferentially activates de novo lipogenesis in human preadipocytes[J]. Biochimie, 2006,88:309-18.
    [244] Hansson M, Asea A, Ersson U, et al. Induction of apoptosis in NK cells by monocyte-derived reactive oxygen metabolites[J]. J Immunol, 1996,156:42-7. [245 ] Raff M. Cell suicide for beginners[J]. Nature, 1998,396:119-22.
    [246] Miller WHJ, Faust IM, Goldberger AC, et al. Effects of severe longterm food deprivation and refeeding on adipose tissue cells in the rat[J]. AMJ Physiol, 1983:E74-80.
    [247] Prins JB, Niesler JB. Tumor necrosis factor-alpha induces apoplosis of human adipose cells[J]. Diabetes, 1997:1939-1944.
    [248] Niesler CU, Urso B, Prins JB, et al. IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-alpha-induced apoptosis, in 3T3-L1 preadipocytes[J]. J Endocrinol, 2000,167:165-74.
    [249] Sun X, Zemel MB. Role of uncoupling protein 2 (UCP2) expression and 1alpha, 25-dihydroxyvitamin D3 in modulating adipocyte apoptosis[J]. FASEB J, 2004,18:1430-2.
    [250] Kim HK, Della-Fera M, Lin J, et al. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes[J]. J Nutr, 2006,136:2965-9.
    [251] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972,26:239-57.
    [252] 胡明昌, 许宏岳. 细胞凋亡的检测方法研究进展[J]. 国外医学临床生物化学与检验学分册, 1996,17:244-246.
    [253] 林亚秋, 陈国柱, 卢建雄, 杨公社. TNF-α对培养大鼠脂肪细胞凋亡的影响[J]. 畜牧兽医学报, 2005,36:823-827.
    [254] Sorisky A,Magun R,Gagnon AM. Adipose cell apoptosis:death in the energy depot[J]. International Journal of Obesity, 2000,24:S3-S7.
    [255] Yin W, Raffelsberger W, Gronemeyer H. Retinoic acid determines life span of leukemic cells by inducing antagonistic apoptosis-regulatory programs[J]. Int J Biochem Cell Biol, 2005,37:1696-708.
    [256] Kang HJ, Song MR, Lee SK, et al. Retinoic acid and its receptors repress the expression and transactivation functions of Nur77: a possible mechanism for the inhibition of apoptosis by retinoic acid[J]. Exp Cell Res, 2000,256:545-54.
    [257] Ozeki A, Tsukamoto I. Retinoic acid repressed the expression of c-fos and c-jun and induced apoptosis in regenerating rat liver after partial hepatectomy[J]. Biochim Biophys Acta, 1999,1450:308-19.
    [258] Agarwal N, Mehta K. Possible involvement of Bcl-2 pathway in retinoid X receptor alpha-induced apoptosis of HL-60 cells[J]. Biochem Biophys Res Commun, 1997,230:251-3. [259 ] 陈国柱. ATRA对大鼠前体脂肪细胞增殖分化与凋亡的影响[D]. 西北农林科技大学, 2005.
    [260] 李艳杰. 肿瘤坏死因子α对大鼠前体脂肪细胞增殖分化的影响[D]. 西北农林科技大学, 2003.
    [261] 林亚秋. 肿瘤坏死因子α对大鼠脂肪细胞凋亡的影响[D]. 西北农林科技大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700