大鼠骨髓胚胎样干细胞分离、鉴定及其在心肌梗塞后心肌修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立骨髓胚胎样干细胞(ELSCs)分离与扩增方法,明确ELSCs的生物学特性及分化潜能,探讨ELSCs移植对心肌梗塞后心肌修复和心功能改善中的作用。方法用阶段特异性胚胎抗原1 (SSEA-1)标记骨髓单形核细胞,流式细胞仪分选ELSCs。透射电镜和扫描电镜观察ELSCs的超微结构特征,免疫细胞化学染色和RT-PCR检测胚胎干细胞(ESCs)转录因子在ELSCs的表达,将ELSCs在小鼠胚胎成纤维细胞饲养层上扩增,进行三胚层细胞分化能力检测,并用细胞因子诱导ELSCs向心肌和内皮细胞分化,检测分化细胞特异蛋白和mRNA的表达。将ELSCs移植到裸鼠皮下观察其致瘤性。建立大鼠心肌梗死模型,于梗死区边缘移植ELSCs,超声心动图检测心功能变化,图像软件分析瘢痕面积和胶原纤维含量的变化,Y染色体原位杂交和免疫组织化学染色观察移植细胞的存活及向心肌细胞和内皮细胞的分化,综合评价ELSCs移植后治疗心肌梗塞的效果,结果ELSCs约占骨髓单形核细胞的0.015%。电镜下可见ELSCs细胞核大,以疏松的常染色质为主,胞质少,核质比高。ELSCs表达Oct4、Nanog、Sox2和Rex1等ESCs转录因子。在普通培养条件下ELSCs增殖不明显,而在饲养层上培养时细胞增殖显著,呈簇状生长。在软琼脂中培养2w左右可见拟胚体样小体形成,细胞自然分化后4 w可检测到Nestin、Brachyury和E-cadherin等三胚层标志物的表达。用细胞因子诱导后4 w,分化的细胞表达心肌细胞特异蛋白cTnT和Cx43以及内皮细胞特异蛋白VWF和CD31。将ELSCs移植入裸鼠皮下后4 w,未观察到肿瘤组织或畸胎瘤形成。在体动物实验研究结果显示,移植预诱导的ELSCs,心功能得到明显改善,瘢痕面积显著减小,胶原纤维含量下降。Y染色体原位杂交和免疫组织化学染色显示Y染色体阳性细胞表达cTnT和Cx43,可见Cx43定位于Y染色体阳性细胞和宿主心肌细胞连接处。Y染色体阳性细胞同时表达CD31,且在预诱导的ELSC组中可见移植的细胞位于新生血管壁上。结论大鼠骨髓中存在ELSCs,这类细胞具有类似ESCs的生物学特特征,表达ESCs转录因子、在饲养层上有很高的增殖能力,在软琼脂中能够形成拟胚体样小体并能分化形成三胚层来源的细胞。在体外诱导条件下,ELSCs能分化形成心肌细胞和内皮细胞。移植入心肌梗塞动物模型后,预诱导的ELSCs能更有效地分化形成心肌细胞和内皮细胞,并可直接参与血管新生,ELSCs移植可通过促进心肌分化和血管新生改善心功能。因此,ELSCs有望成为干细胞研究和再生医学理想的种子细胞。
Objective:Myocardial infarction (MI) is a major health problem and the leading cause of death and disability in industrialized and developing nations. Stem cell therapy is a promising therapeutic strategy for treating MI. However, it is important to select optimal stem cells and explore effectiveness and mechanisms after transplantation. Methods:Bone marrow mononuclear cells were labeled with SSEA-1, the positive cells were sorted by flow cytometry. The biological characteristics of ELSCs were studied in many aspects, the ultrastructural characteristics were observed under transmission electron microscope (TEM) and scanning electron microscope (SEM), the expreesion of transcriptional factors of embryonic stem cells (ESCs) in ELSCs were detected by immunocytochemistry and RT-PCR, prliferative ability was studied on feeder of mouse embryonic fibroblasts (MEF), formation of embryoid-like bodies were observed in agarose and the expression of trilineage markers was dectected in the cells of embryoid-like bodies, the possible formation of tumor and teratoma of ELSCs was investigated by injection into subcutaneous of severe combined immunodeficiency mice. Differentiation of ELSCs toward cardiomyocytes and endothelial cells was induced by cytokines. The expression of specific protein and mRNA was detected in induced cells. On the basis of in vitro experiments, differentiation of ELSCs in vivo and therapeutic effects was explored. MI female rat models were transplantated by PBS, MMSCs, ELSCs and induced-ELSCs. The cardiac function was examed by echocardiography after transplantation. Scar area was evaluated by Masson's trichrome staining. The survival of the transplanted cells was detected by Y chromosome in situ hybridization. The differentiation of cardiomyocytes and endothelial cells in vivo was evaluated by the colocalization of the Y chromosome and cTnT, Cx43 and CD31. Results:ELSCs had typical features for ESCs, the nucleus was large, the ratio of nucleus to cytoplasm was very high under TEM, immunocytochemistry and RT-PCR analysis demonstrated that ELSCs expressed transcription factors Oct4, Nanog and Sox2, the cells proliferated significantly of feeder of MEF, the cells formed embryoid-like bodies after incubation in agarose with LIF and bFGF and expressed Nestin, Brachyury and E-cadherin. However, anatomical observation showed there was neither tumor nor teratoma in the body for 4 weeks after transplantation of ELSCs for SCID mice. After induction with cytokines for 4 weeks, ELSCs expressed cTnT and Cx43 for differentiation toward cardiomyocytes and expressed CD31 and vWF for differentiation toward endothelial cells. After transplantation for MI female rat models, cardiac function was improved and scar area was reduced significantly in the induced-ELSC group as compared with control, non-induced ELSC and MMSC groups. In induced-ELSC group the differentiated cells were parallel alignment and connected with host cardiomyocytes. Y chromosome fluorescence in situ hybridization demonstrated that the positive cells were colocalizated with cTnT and Cx43. Cx43 was located between Y chromosome positive cells and recipient cardiomyocytes. This structural basis was the premise for synchronized contraction of transplanted cells with host cells. Colocalization of the Y chromosome and CD31 revealed that transplanted stem cells also underwent endothelial cells differentiation in the infarcted and peri-infarcted regions. And ELSCs were directly participated in angiogenesis in infarcted and peri-infarcted regions. Conclusions:This is the first time to isolate ELSCs from adult rats. ELSCs have similar biological characteristics with ESCs, ELSCs express transcriptional factors Oct4, Nanog and Sox2, proliferate significantly on feed of MEF, form embryoid-like bodies in agarose and the cells in the embryoid-like bodies can differentiate into cells of trilineage. ELSCs can differentiate into cardiomyocytes and endothelial cells under induction with cytokines. Cardiac function is significantly improved, scar area is reduced and ventricular remodeling is effective controlled by transplantation of induced ELSCs. The transplanted cells differentiate into cardiomyocytes and endothelial cells, and the cells are directly participated in angiogenesis. These biological characteristics enable ELSCs to be an optimal source of seed cells for stem cell research and regenerative medicine, and this study provide a theoretical basis for MI by ELSC transplantation.
引文
[1]World Health Organization. Media centre. Fact sheet. Available at http://www.who.int/mediacentre/factsheets/fs317/en/index.html[N]. Accessed January 2011.
    [2]S. W. van den Borne, J. Diez, W. M. Blankesteijn et al. Myocardial remodeling after infarction:the role of myofibroblasts[J]. Nat Rev Cardiol,2010,7(1) 30-37
    [3]L. A. Leinwand. Hope for a broken heart?[J]. Cell,2003,114 (6):658-659
    [4]B. Pelacho, F. Prosper. Stem cells and cardiac disease:where are we going?[J]. Curr Stem Cell Res Ther,2008,3 (4):265-276
    [5]R. J. Henning. Stem cells in cardiac repair[J]. Future Cardiol,2011,7(1):99-117
    [6]H. D. Guo, H. J. Wang, Y. Z. Tan et al. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction[J]. Tissue Eng Part A,2011,17 (1-2):45-58
    [7]W. Dai, S. L. Hale, R. A. Kloner. Stem cell transplantation for the treatment of myocardial infarction[J]. Transpl Immunol,2005,15 (2):91-97
    [8]X. L. Tang, G. Rokosh, S. K. Sanganalmath et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction[J]. Circulation,2010,121 (2):293-305
    [9]D. Surder, J. Schwitter, T. Moccetti et al. Cell-based therapy for myocardial repair in patients with acute myocardial infarction:rationale and study design of the SWiss multicenter Intracoronary Stem cells Study in Acute Myocardial Infarction (SWISS-AMI)[J]. Am Heart J,2010,160 (1):58-64
    [10]B. E. Strauer, M. Yousef, C. M. Schannwell. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure:the STAR-heart study[J]. Eur J Heart Fail,2010,12 (7):721-729
    [11]N. Christoforou, B. N. Oskouei, P. Esteso et al. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts[J]. PLoS One,2010,5 (7):e11536
    [12]X. L. Tang, D. G. Rokosh, Y. Guo et al. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction[J]. Circ J,2010,74 (3):390-404
    [13]M. Habib, O. Caspi, L. Gepstein. Human embryonic stem cells for cardiomyogenesis[J]. J Mol Cell Cardiol,2008,45 (4):462-474
    [14]S. Lev, I. Kehat, L. Gepstein. Differentiation pathways in human embryonic stem cell-derived cardiomyocytes[J]. Ann N Y Acad Sci,2005,1047:50-65
    [15]J. Y. Min, Y. Yang, M. F. Sullivan et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells[J]. J Thorac Cardiovasc Surg,2003,125 (2):361-369
    [16]J. Nussbaum, E. Minami, M. A. Laflamme et al. Transplantation of undifferentiated murine embryonic stem cells in the heart:teratoma formation and immune response[J]. FASEB J,2007,21 (7):1345-1357
    [17]L. C. Laurent, C. M. Nievergelt, C. Lynch et al. Restricted ethnic diversity in human embryonic stem cell lines[J]. Nat Methods,2010,7 (1):6-7
    [18]B. M. Dickens. International Society for Stem Cell Research (ISSCR) Guidelines for the Conduct of Human Embryonic Stem Cell Research (December 2006)[J]. Med Law,2008,27 (1):179-190
    [19]J. Nussbaum, E. Minami, M. A. Laflamme et al. Transplantation of undifferentiated murine embryonic stem cells in the heart:teratoma formation and immune response[J]. FASEB J,2007,21 (7):1345-1357
    [20]K. Takahashi, S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4): 663-676
    [21]S. Yamanaka, H. M. Blau. Nuclear reprogramming to a pluripotent state by three approaches[J]. Nature,2010,465 (7299):704-712
    [22]Y. Yoshida, S. Yamanaka. iPS cells:a source of cardiac regeneration[J]. J Mol Cell Cardiol,2011,50 (2):327-332
    [23]T. J. Nelson, A. Martinez-Fernandez, S. Yamada et al. Repair of acute myocardial infarction by human sternness factors induced pluripotent stem cells[J]. Circulation,2009,120 (5):408-416
    [24]I. Gutierrez-Aranda, V. Ramos-Mejia, C. Bueno et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection [J]. Stem Cells,2010,28(9): 1568-1570
    [25]Deten A, Volz HC, Clamors S et al. Hematopoietic stem cells do not repair the infarcted mouse heart[J]. Cardiovasc Res.2005 Jan 1;65(1):52-63
    [26]K. Fukuda, J. Fujita. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice[J]. Kidney Int,2005,68 (5):1940-1943
    [27]Y. Imanishi, S. Miyagawa, A. Saito et al. Allogenic skeletal myoblast transplantation in acute myocardial infarction model rats[J]. Transplantation, 2011,91 (4):425-431
    [28]Y. G. Li, P. P. Zhang, K. L. Jiao et al. Knockdown of microRNA-181 by lentivirus mediated siRNA expression vector decreases the arrhythmogenic effect of skeletal myoblast transplantation in rat with myocardial infarction[J]. Microvasc Res,2009,78 (3):393-404
    [29]S. Mastitskaya, B. Denecke. Human spongiosa mesenchymal stem cells fail to generate cardiomyocytes in vitro[J]. J Negat Results Biomed,2009,8:11
    [30]孙丽莉,谭玉珍,王海杰,等.骨髓间充质干细胞的克隆培养及其向心肌细胞的诱导分化[J].复旦学报(医学版),2003,30(6):519-523
    [31]贺其志,谭玉珍,王海杰,等.骨形态发生蛋白-2在骨髓源性心肌干细胞向心肌分化中的作用[J].解剖学报,2005,36(5):505-510
    [32]王新艳,谭玉珍,王海杰,等.Smad信号通路在骨髓源性心肌干细胞向心肌分化中的作用[J].解剖学报,2006,37(5):525-529
    [33]张贵焘,谭玉珍,王海杰,等.骨髓源性心肌干细胞移植治疗心肌梗死的实验研究[J].中华心血管病杂志,2007,35(10):940-944
    [34]M. Kucia, R. Reca, F. R. Campbell et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow[J]. Leukemia,2006,20 (5):857-869
    [35]B. Dawn, S. Tiwari, M. J. Kucia et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction [J]. Stem Cells,2008,26 (6):1646-1655
    [36]E. K. Zuba-Surma, Y. Guo, H. Taher et al. Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodeling after myocardial infarction[J]. J Cell Mol Med,2010
    [37]B. Y. Liao, J. Zhang. Null mutations in human and mouse orthologs frequently result in different phenotypes[J]. Proc Natl Acad Sci U S A,2008,105 (19) 6987-6992
    [38]Friedman R, Hughes AL. The pattern of nucleotide difference at individual codons among mouse, rat, and human[J]. Mol Biol Evol.2005 May;22(5):1285-9
    [39]P. Li, C. Tong, R. Mehrian-Shai et al. Germline competent embryonic stem cells derived from rat blastocysts[J]. Cell,2008,135 (7):1299-1310
    [40]M. Furue, T. Okamoto, Y. Hayashi et al. Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells[J]. In Vitro Cell Dev Biol Anim,2005, 41 (1-2):19-28
    [41]M. Kucia, M. Halasa, M. Wysoczynski et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood:preliminary report[J]. Leukemia,2007,21 (2):297-303
    [42]M. Kucia, E. K. Zuba-Surma, M. Wysoczynski et al. Adult marrow-derived very small embryonic-like stem cells and tissue engineering[J]. Expert Opin Biol Ther, 2007,7 (10):1499-1514
    [43]Kucia M, Machalinski B, Ratajczak MZ. The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? [J]. Acta Neurobiol Exp (Wars). 2006;66(4):331-41
    [44]M. Kucia, M. Wysoczynski, J. Ratajczak et al. Identification of very small embryonic like (VSEL) stem cells in bone marrow[J]. Cell Tissue Res,2008,331 (1):125-134
    [45]M. Z. Ratajczak, D. M. Shin, M. Kucia. Very small embryonic/epiblast-like stem cells:a missing link to support the germ line hypothesis of cancer development?[J]. Am J Pathol,2009,174 (6):1985-1992
    [46]D. V. Shchepkin, G. V. Kopylova, L. V. Nikitina et al. Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay[J]. Biochem Biophys Res Commun,2010, 401 (1):159-163
    [47]贺其志,谭玉珍,王海杰,等.发育心肌和心肌干细胞分化后心肌特异蛋白表达的比较研究[J].中国细胞生物学学报,2011,33(4):364-371
    [48]T. Dvir, A. Kedem, E. Ruvinov et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome[J]. Proc Natl Acad Sci U S A,2009, 106 (35):14990-14995
    [49]S. Park, T. A. DiMaio, E. A. Scheef et al. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions[J]. Am J Physiol Cell Physiol,2010,299 (6):C1468-C1484
    [50]N. A. Turner, L. Nolasco, Z. M. Ruggeri et al. Endothelial cell ADAMTS-13 and VWF:production, release, and VWF string cleavage[J]. Blood,2009,114 (24) 5102-5111
    [51]I. Qayum, M. Ashraf. Increased DNA methyltransferase 1 (DNMT1) gene expression in human lymphomas by fluorescent in situ hybridization[J]. J Ayub Med Coll Abbottabad,2004,16 (4):1-6
    [52]R. Z. Shi, Q. P. Li. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease[J]. Biochem Biophys Res Commun,2008,376 (2) 247-250
    [53]Y. Bi, M. Gong, X. Zhang et al. Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells[J]. Dev Growth Differ,2010, 52 (5):419-431
    [54]谭玉珍,王海杰.心肌干细胞的提交分化及其调控机制[J].国外医学生物医学工程分册,2004,27(1):37-41
    [55]A. Mery, E. Papadimou, D. Zeineddine et al. Commitment of embryonic stem cells toward a cardiac lineage:molecular mechanisms and evidence for a promising therapeutic approach for heart failure [J]. J Muscle Res Cell Motil, 2003,24 (4-6):269-274
    [56]G. T. Zhang, Y. Z. Tan, H. J. Wang et al. [Effects of marrow-derived cardiac stem cell transplantation after myocardial infarction in rats][J]. Zhonghua Xin Xue Guan Bing Za Zhi,2007,35 (10):940-944
    [57]K. A. Schalper, H. A. Sanchez, S. C. Lee et al. Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization[J]. Am J Physiol Cell Physiol,2010,299 (6):C1504-C1515
    [58]J. Tang, Q. Xie, G. Pan et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion[J]. Eur J Cardiothorac Surg,2006,30 (2):353-361
    [59]T. Kinnaird, E. Stabile, M. S. Burnett et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms[J]. Circ Res,2004,94 (5):678-685
    [60]P. R. Crisostomo, A. M. Abarbanell, M. Wang et al. Embryonic stem cells attenuate myocardial dysfunction and inflammation after surgical global ischemia via paracrine actions[J]. Am J Physiol Heart Circ Physiol,2008,295 (4):H1726-H1735
    1. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al. Very small embryonic-like stem cells:characterization, developmental origin, and biological significance. Exp Hematol.2008;36(6):742-51.
    2. Ratajczak MZ, Zuba-Surma EK, Shin DM et al. Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol.2008;43(11):1009-17.
    3. Kucia M, Zuba-Surma EK, Wysoczynski M et al. Adult marrow-derived very small embryonic-like stem cells and tissue engineering. Expert Opin Biol Ther. 2007;7(10):1499-514.
    4. Kucia M, Wysoczynski M, Ratajczak J et al. Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res. 2008;331(1):125-34.
    5. Ratajczak MZ, Zuba-Surma EK, Machalinski B et al. Very small embryonic-like (VSEL) stem cells:purification from adult organs, characterization, and biological significance. Stem Cell Rev.2008;4(2):89-99.
    6. Zuba-Surma EK, Kucia M, Dawn B et al. Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol.2008;44(5):865-73.
    7. Kucia M, Halasa M, Wysoczynski M et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood:preliminary report. Leukemia.2007;21(2):297-303.
    8. Kucia M, Reca R, Campbell FR et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia.2006;20(5):857-69.
    9. Kucia M, Zuba-Surma E, Wysoczynski M et al. Physiological and pathological consequences of identification of very small embryonic like (VSEL) stem cells in adult bone marrow. J Physiol Pharmacol.2006;57 Suppl 5:5-18.
    10. Halasa M, Baskiewicz-Masiuk M, Dabkowska E et al. An efficient two-step method to purify very small embryonic-like (VSEL) stem cells from umbilical cord blood (UCB). Folia Histochem Cytobiol.2008;46(2):239-43.
    11. Zuba-Surma EK, Kucia M, Dawn B et al. Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol.2008;44(5):865-73.
    12. Kucia MJ, Wysoczynski M, Wu W et al. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells. 2008;26(8):2083-92.
    13. Ratajczak MZ, Kucia M, Ratajczak J et al. A multi-instrumental approach to identify and purify very small embryonic like stem cells (VSELs) from adult tissues. Micron.2009;40(3):386-93.
    14. Kucia M, Machalinski B, Ratajczak MZ. The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars). 2006;66(4):331-41.
    15. Dawn B, Tiwari S, Kucia MJ et al. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells.2008;26(6):1646-55.
    16. Zuba-Surma EK, Wu W, Ratajczak J et al. Very small embryonic-like stem cells in adult tissues-Potential implications for aging. Mech Ageing Dev. 2009;130(1-2):58-66.
    17. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M et al. Hunt for pluripotent stem cell regenerative medicine search for almighty cell. J Autoimmun. 2008;30(3):151-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700